Introduction
Part I: Geometric Algebra
1. | Intrepretation of Clifford Algebra |
2. | Definition of Clifford Algebra |
3. | Inner and Outer Products |
4. | Structure of Clifford Algebra |
5. | Reversion, Scalar Product |
6. | The Algebra of Space |
7. | The Algebra of Space-Time |
Part II: Electrodynamics
8. | Maxwell's Equation |
9. | Stress-Energy Vectors |
10. | Invariants |
11. | Free Fields |
Part III: Dirac Fields
12. | Spinors |
13. | Dirac's Equation |
14. | Conserved Currents |
15. | C, P, T |
Part IV: Lorentz Transformations
16. | Reflections and Rotations |
17. | Coordinate Transformations |
18. | Timelike Rotations |
19. | Scalar Product |
Part V: Geometric Calculus
20. | Differentiation |
21. | Coordinate Transformations |
22. | Integration |
23. | Global and Local Relativity |
24. | Gauge Transformation and Spinor Derivatives |
Conclusion
Appendices
A. | Bases and Pseudoscalars |
B. | Some Theorems |
C. | Composition of Spacial Rotations |
D. | Matrix Representation of the Pauli Algebra |
GC R&D | Home | Overview | Evolution | Intro | NFMP | UGC | STC | GA in QM | GC Gravity | CG | Books | Infer Calc | Modeling | Links | PDF |