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A key to the astounding success of science in discovering the inner workings of natural 
phenomena has been the development of a powerful way of thinking called modeling. To describe 
and understand the structure of things, from raindrops to animals, and the regularities in natural 
processes, from evaporation to locomotion, scientists create conceptual models of things and 
processes. Conceptual models differ from familiar concrete models, like dolls and planetariums, 
in being built out of concepts (or ideas) instead of physical materials. Mathematics supplies 
"conceptual tools and materials" for creating models of great clarity, coherence and flexibility. It 
is through modeling that mathematics can be applied to discover and create order in the world of 
concrete things. The designs of engineers are conceptual models constructed with "conceptual 
tools and materials" created by scientists and mathematicians. Thus, modeling is a key to creating 
new technology. And there is more! Though modeling has achieved the most spectacular results 
in the natural sciences and engineering, it is equally applicable to social systems of every kind. 
Indeed, the experience of science tells us that modeling is essential to understand and address the 
complex problems of modern society. Unfortunately, modeling savvy is in short supply among the 
leaders in business and government, not to mention the general populace. This can be attributed to 
serious deficiencies in our educational system. 
 

Since modeling is "the name of the game" in science and technology, it should be the 
central theme of science education. To appreciate its educational implications, we need a deeper 
understanding of modeling and its role in the creation and application of scientific knowledge. 
This article is aimed at that target. 
 
1. What makes knowledge scientific? 
 

Scientific knowledge is distinguished from ordinary knowledge by its  
objectivity, precision and structure. 
 

These distinctions are erratically maintained and sometimes missing altogether in introductory 
science textbooks and programs. To help students develop thinking patterns that are objective, 
precise and systematic, we must have a clear idea of how this is achieved in science. Science is 
concerned with investigating and describing the properties of natural things and processes. 
Superficially, a scientific description is similar to an ordinary description, because both employ 
the subject-predicate form of natural language. But the predicates are fundamentally different: The 
difference is semantic, arising from a difference in the way properties are attributed to objects. 
Ordinary predicates tacitly assume comparisons with subjective standards. Thus, when I say, "This 
book is heavy," I express a comparison of the book with my mental prototype of heavy objects. In 
contrast, "scientific predicates" express comparisons of things with one another, rather than with 
subjective prototypes.  
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Science achieves objectivity by adopting well-defined procedures for systematically 
comparing objects with respect to properties.  

 
This is the nub of the concept of measurement in science. Science courses should help students 
develop his habit of objective comparison from the beginning and become explicitly aware of the 
process as soon as they are sufficiently mature. Students cannot be expected to comprehend the 
structure of science until they have learned to think objectively, in the sense that they can readily 
distinguish between "objective" properties of physical objects and their own subjective perceptions 
of them. Undoubtedly many students stumble and fall on this first step to scientific knowledge. 
Teachers who miss the step cannot be expected to help students over it. 
 

To understand science, it is essential to understand the crucial role of objectivity. The 
objective mode of thinking does more than enable us to make sharp distinctions between inherent 
properties of concrete things and the attributes of those things in our subjective sensations and 
states of mind. It enables us to refine and extend our abilities to discriminate among observations, 
to communicate information and to replicate events, in short to improve the precision of our 
thoughts and actions. Students can learn to appreciate these virtues from "information games" that 
require them to communicate with greater precision than they are accustomed –– precision 
sufficient to accurately replicate events. 
 

Objectivity provides the basis for the next step to scientific knowledge: an increase in 
precision by quantifying properties, a systematic procedure for representing properties by 
numbers.  

 
Quantification provides the basis for a mathematical description of objects and processes, so it is 
an essential step in the development of mature science. Quantification is a complex process, and 
textbooks overlook many of the concepts involved, so it is no wonder that students are invariably 
confused by it. Consider the quantification of length, for example. This involves the construction 
of a rule (or function) which assigns numbers a, b, c, . . . to objects A, B, C, . . ., as expressed by 
an equation relating objects to numbers: 
 

L(A)  =  a. 
 
By juxtaposing objects A and B (physical addition, denoted by ⊕ ) we produce (denoted by ≈ ) a 
new object C, as expressed by the equation 
 

A ⊕ B  ≈  C. 
 
This corresponds to the equation for addition of numerical values: 
 

a + b  =  c, 
 

provided physical addition is analogous to numerical addition, as expressed by the equation 
 

L(A ⊕ B) = L(A) + L(B). 
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This correspondence between "physical addition" and numerical addition is crucial to 
quantification and measurement not only of length but of any other property, though it is entirely 
tacit in the science textbooks at every grade level. Moreover, a complete explication of 
"quantification" requires precise operational definitions of the function L, the operation ⊕, and the 
equivalence relation  ≈.  
 

Students frequently confuse physical equivalence ≈ with numerical equivalence = , or 
physical additivity (⊕) with numerical additivity (+). To detect such mistakes, it would be 
desirable to design tests for every component of the operational definition and quantification of 
primary variables in science. Furthermore, activities should be designed to make sure that every 
aspect of quantification is actually taught when it is needed. It would not be appropriate to present 
students with a formal theory of quantification, but formal theory is necessary to ascertain precisely 
what ought to be taught. 
 

The development of scientific knowledge goes hand-in-hand with the development of 
suitable language and other symbolic devices to assist scientific thinking and record accumulated 
knowledge. Natural languages like English are already powerful tools for thinking. But for the 
purposes of science the natural language must be refined to meet scientific standards of objectivity 
and precision as well as extended to express new scientific concepts. Mathematical symbols, in 
particular, have been created to express concepts of order and structure. Indeed, mathematics has 
been aptly described as "the science of patterns." 
 

Natural language is often ambiguous about distinctions between concepts and things, 
leading to muddled thinking and even superstition among the unwary. To maintain the objectivity 
of science, it is essential to make a sharp distinction between the conceptual world of ideas (or 
concepts) and the concrete world of things. Mathematical concepts (such as number, set and 
function) reside solely in the conceptual world, though they are often used to create conceptual 
models of things in the concrete world. Thus, the numeral '8' (a thing) designates the number "8" 
(a concept) which, among other things, represents the count of planets in a model of the solar 
system. 
 
2. Conceptual Models 
 

Scientists go beyond mere description by developing validated conceptual models of 
natural things. Such models are objects in the conceptual world, which represent things and their 
properties in the concrete world. Modeling begins with description: creating a list of descriptive 
variables (or descriptors), each representing a property of the thing (or class of things) in question. 
Descriptors are concepts while the properties they represent are inherent in the concrete world. 
The natural language is commonly used to describe things by listing their properties, but the crucial 
distinction between the concrete properties and the (conceptual) descriptors that represent them is 
seldom made; moreover, the scientific standards of objectivity and precision are not met. When 
these scientific standards have been satisfied and the fidelity of the description has been 
empirically established, a conceptual model is said to be validated. 
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Like the property "length," which can be attributed to solid objects, the representation of 
many properties can be quantified by adopting appropriate rules for comparing things that possess 
them. Then the corresponding descriptors can be assigned numerical values along with a unit (like 
foot or meter) representing the standard for comparison. All the descriptors of physical properties 
(such as mass, position, temperature and force) have been quantified. The advantages of 
quantification are twofold: First, it is a means for describing subtle variations in properties.	Second, 
it enables the representation of "natural laws" relating different properties of things as invariant 
mathematical equations relating descriptors. Here "invariant" means independent of the reference 
standards chosen for quantification. 
 

Scientists have discovered that the descriptors of natural things fall into three broad classes: 
physical, chemical and biological, each with its own system of natural laws. Without delving into 
specifics of the sciences, we note some general features of properties and laws that have been 
established in all the sciences and so enable us to refine our general concept of conceptual model. 
 

The properties of things are of two general types: intrinsic and interactive. Intrinsic 
properties belong to the thing by itself, while interactive properties are shared with other things. 
Some intrinsic properties (such as the physical property of mass or the chemical property of 
valence) may have fixed values in a model while other properties change. It is convenient to 
express this distinction in the descriptors by introducing the term object variable for a fixed 
property and state variable for a changeable property. Thus, an object variable has a constant value 
for a particular thing, whereas it may take different values for different things. It is often called a 
“parameter of the model,” as it can be adjusted so the same model describes a whole class of 
different things. Behavior of a thing is represented by changes of its state variables. 
 

The descriptors of interactive properties are called interaction variables or just interactions. 
A thing that acts on another thing is called the agent of the action. Two things that act on one 
another are said to interact. Thus, interactions (Also called connections, links, bonds, or couplings) 
are mutual (or shared) properties of things. Interactions influence (change or constrain) the object 
variables of a thing according to natural laws. Indeed, it is usually by observing or experimenting 
with changes in object variables that interactions are discovered and characterized by scientists. 
Scientists have identified and modeled a great variety of interactions, including physical forces, 
chemical and social bonds, flows of energy and information. The set of things with which an 
individual thing interacts is called the environment of the thing. A crucial step in understanding 
the behavior of a thing is identifying the agents in the environment that interact with it. Failure to 
realize this is a common source of student confusion in slipshod science courses. 
 
Natural laws are of two general types, best described in terms of their conceptual representations:  
 

(1) Laws of change, which specify how state variables change; 
(2) Interaction laws, which specify relations between state variables and interactions. 
 

When the descriptors are quantitative, as in physics, differential calculus ("the mathematics of 
change") can be employed to give a precise formulation of the laws of change, and this can be 
combined with the interaction laws to give differential equations of change for the model thing. 
Then the conceptual model is called a mathematical model. 
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To summarize, a conceptual model in science is defined by specifying the following: 
 

(1) Constituents: 
Names for the thing of interest and the things in its environment. 

(2) Descriptors: 
Object variables, 
State variables, 
Interactions. 

(3) Laws: 
Laws of change, 
Interaction laws. 

(4) Interpretation: 
Relates descriptors of the model to properties of the object. 

 
A great variety of models can be constructed for any given thing, depending on the purposes of 
the modeler. Scientific theories supply advice on what variables and laws to use. No single model  
characterizes a concrete thing completely. Nor would such a model be desirable, because its 
complexity would make it too cumbersome to be useful. One of the most important objectives of 
modeling is to focus on the most significant or relevant properties of a thing by constructing simple 
models that eliminate or suppress minor details. 
 
3. Objects and Models with structure 
 

The structure of scientific knowledge reflects the structure of things in the concrete world. 
Structure is one of the most significant general properties of things, so it deserves special attention. 
Structure is an abstraction, however, which does not exist apart from some object. To take this into 
account, it is convenient to introduce the concept of system. A system is an object with structure. 
This means that a system is a complex object composed of other objects referred to as its 
constituents or parts. The structure of a system gives it a certain integrity or wholeness, so it is not 
just an arbitrary aggregate of objects. The structure is separable into an internal structure relating 
the constituents to one another and an external structure relating the constituents to objects in the 
system's environment. A system is said to be closed if it has no external interactions; otherwise it 
is open. 
 

Since there are two distinct kinds of object: conceptual and concrete, there are two distinct 
kinds of system. Conceptual systems inhabit the conceptual world, while concrete systems inhabit 
the concrete world. 
 

Unlike things, concepts do not interact. Though interactions are represented by relations in 
conceptual models, an interaction is more than a mere relation. Consequently, though a conceptual 
system can be regarded as a set of interrelated conceptual objects, a concrete system is not the 
same thing as the set of its parts. Sets are concepts, never things, and the assembly of a thing from 
its parts is not to be confused with composing a set. Being concepts, relations among the 
constituents are not inherent properties of a conceptual system; they are simply assigned. The 
assignments are not entirely arbitrary, however, as they must satisfy certain system criteria: 
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consistency and coherence, so the whole system has integrity. 
 

Mathematical systems are conceptual systems. Two of the most important are: The real 
number system and Euclidean geometry. They contain an infinite variety of objects as subsystems. 
For example, the integers and rational numbers in the first case; triangles and other geometric 
figures in the second case. These systems are of immense utility for modeling structures in science 
and technology as well as everyday life. 
 

We are now prepared to generalize our concept of model to handle structure. We say that 
system A is a structural model of system B if the structure of A is similar (in some respect) to the 
structure of system B. As before, A is a conceptual model of B if it is a concept. But now we allow 
other possibilities: We say that A is a concrete model of B if A is a thing, and we also allow B to 
be either concept or thing. When both A and B are mathematical systems, the similarity relation is 
called an isomorphism. 
 

Many kinds of concrete model are used in science. Chemists construct ball-and-stick 
models of molecules to accurately portray and visualize spatial structure. Biologists use "animal 
models" of human response to drugs, because they can't experiment on humans, and they don't yet 
know enough to rely on their tentative conceptual models. Computer models, which are embedded 
in computer programs, are increasingly popular because of the great power and flexibility of 
computers. The most common kind of concrete model, however, is constructed from a symbol 
system, such as English, and embedded in "hard copy" on paper. This kind of model requires a 
reader to supply its structure by interpreting the text. Computer models are more powerful not just 
because they can handle great complexity and perform rapid calculations, but also because the 
structure of the models can be built right into them, not merely symbolized. Computers are 
increasingly able to perform "intelligent acts" which could only be performed by the human brain 
in the past. 
 

Conceptual models are more fundamental than concrete models because they are 
abstractions, so when the term "model" is used in science, it should be understood as "conceptual 
model" unless it is designated as concrete. A concrete model can be regarded as a (conceptual) 
model embedded in a concrete medium. It is called a realization of the model. Being an abstraction, 
a conceptual model does not actually exist apart from some realization. The most significant 
realization is as a mental model in the brain of some human. However, computer models in the 
"brains" of robots are fast becoming rivals. Realizations can take many forms called 
representations. Besides symbolic representations there is a variety of graphical, graphic and 
pictorial representations. A representation is sometimes identified (or confused) with the model 
itself. Thus, people speak of "graphical models" or "pictorial models," when they are referring to 
"graphical representations" or "pictorial representations" for part of a model, that might be 
characterized by equations as  well. A single representation is usually insufficient to express the 
full content and structure of a scientific model. A family of coordinated representations is required, 
each particular representation giving one view of the model. 
 

We have already noted the essential role of symbol systems in the development of 
mathematics and science. Computers provide a medium for creating new and more powerful 
representations. One such representation, the computer simulation, is the most prominent scientific 
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application of computers today. Simulations have a temporal feature that cannot be duplicated in 
a permanent medium like a book. Simulations reveal implications (properties) of complex 
mathematical models that cannot be discovered in any other way. But a simulation should not be 
identified (or confused) with the model it represents. As a representation, it gives only one view 
of the model. Though informative, this view is limited. 
 

This completes our explication of the concept "model" in science. To exhibit the power of 
this concept, let us review some amazing conclusions about the structure of nature which modeling 
has produced. 
 
4. Structure of the natural world 
 

We can distinguish two kinds of concrete system: natural systems, such as planets, animals, 
cells and atoms; and artificial systems (created by humans), such as watches, books, factories and 
governments. Unlike a conceptual system, the structure of a natural system is inherent in the 
system itself. Scientists aim to discover the structures of natural systems and represent them 
accurately with models. They have accumulated an enormous body of evidence in support of the 
following claims, which are suitable tenets for a general theory of nature: 
 

(1) Systemic and spatial structure. The structure of any concrete system can be separated 
into systemic and spatial parts, which are connected by natural laws. Interactions of the 
constituents determine a systemic structure for the system. Spatial relations among the 
constituents determine a spatial structure (or configuration). The system of natural laws 
governing spatial structure determines the geometry of space and time. It has been called 
the Zeroth Law, because it applies to every concrete thing and precedes all other laws. The 
Zeroth Law has been thoroughly investigated and precisely formulated by physicists. In 
applications outside physics it is often ignored, though, where systemic structure 
commands greater interest. 

 
(2) A world of systems. The natural world is composed of semi-permanent systems which 
maintain their integrity in suitable environments. Examples of natural systems: atoms, 
molecules, cells, organisms, populations. 

 
(3) Level structure. Natural systems are organized into levels of increasing structural 
complexity (e.g. atomic level, molecular level, cellular level, . . .). The lowest level consists 
of a small number of irreducible elementary particles, such as the electron, which are not 
composed of other things. Thus, elementary particles are the ultimate constituents of all 
concrete things. 

 
(4) Resultant and emergent properties. Every property of a concrete system as a whole is 
either resultant or emergent. A resultant property is a property of the constituents that is 
inherited by the system. The physical properties of energy and electric charge are resultant. 
An emergent property is a property of the whole system that is not possessed by its 
constituents. It is a structural property of the system, depending on how the system is 
assembled. The geometrical property of shape is emergent. Elementary particles and atoms 
do not have shape. Obviously, the shape of a brick house is not inherent in the bricks but 
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emerges from their assembly. Less obvious is the well-established fact that the chemical 
properties of molecules emerge from their assembly out of electrons and atomic nuclei, 
which do not have such properties. 

 
(5) Structural explanation. All properties which are not inherited are emergent, so they can 
be explained as consequences of structure. There is much evidence that this applies even 
to the property of life, that is "being a living thing," though the issue is sure to be under 
scientific investigation for a long time to come. On the other hand, physicists have reduced 
interaction properties to four fundamental kinds: gravitational, electromagnetic, strong (or 
nuclear) and weak. To think that the rich diversity of the natural world may arise from such 
simple constituents is awe-inspiring. 

 
5. Modeling for everyone 
 

We have seen that modeling is a means to discover and create order in the fabulous world 
of everyone's experience. The benefits of modeling should be obvious to anyone who knows what 
modeling is, but a list may be worthwhile for emphasis. 
 

(1) Focus. Modeling helps identify essential factors and eliminate irrelevant information. 
(2) Organization. Modeling organizes complex information systematically and so  
 facilitates memory storage, retrieval and communication. 
(3) Empowerment. Modeling facilitates planning, so it is a means to effective action. 
(4) Access to the power of scientific and technical knowledge is available only to those  
 who understand its origin and use through modeling. 
(5) Protection from pseudoscientific fraud and misinformation comes with the ability to 

 recognize the models underlying scientific claims and arguments. 
(6) Enrichment. A deep appreciation of the wonders of this world revealed by science  
 comes only with an understanding of the models it creates. 

 
6. Modeling in the math-science curriculum 
 

The preceding discussion supports the view that modeling is the main activity of scientists. 
Most of the discussion was devoted to elucidating the concept of "model," to clarify the purpose 
and product of modeling. Modeling is a complex activity, or rather, a coordinated complex of four 
different kinds of activity or modeling modes: 
 

(1) Development. Constructing a model of some concrete system to meet given theoretical 
 or empirical specifications. 

(2) Analysis. Analyzing the structure or implications of a given model; for example, by 
 studying simulations. 

(3) Validation. Evaluating the capability of a model to account for given data or  
 describe/explain given concrete properties and events. 
(4) Deployment. Applying a given model to describe or design concrete systems or to  
 explain or predict events. 

 
Mathematics often plays a big role in all these modeling activities. In fact, mathematics is 
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essential for powerful modeling. However, much more than mathematics is involved. Without 
modeling, mathematics is impotent –– unable to play its role in organizing experience. 
  

This is not the place for a detailed analysis of the four major modes of modeling and the 
various cognitive skills they require. Only a general idea of what modeling involves is needed 
here. With the understanding that modeling is central to science, we formulate the following 
general objectives for science education: 
 

(1) Help students learn the coordinated cognitive skill structures required for modeling. 
(2) Familiarize students with basic models in each of the sciences. 
(3) Give students rich experience in modeling significant systems in the real world. 

 
Science curricula with modeling as the central theme are yet to be developed, but physics 

is far along (see references). There is a particular need to spell out the role that modeling should 
play in elementary school, so let us consider the bearing of ideas in the present paper on the 
problem. 
 

Elementary math-science curricula do aim to teach basic modeling skills. A typical list of 
such skills includes: grouping, ordering, counting, measuring, graphing. These are often called 
"math skills", but "modeling skills" is more apt. Children develop these skills by manipulating 
concrete objects. Counting, for example, must be learned with concrete objects, and its purpose is 
to determine a concrete property, the cardinality of a given set of objects. There is a symbiotic 
relation between mathematics and modeling: not only does mathematics serve as the tool of choice 
for modeling; modeling makes math meaningful. Long experience with both is required for 
students to develop the ability to separate mathematical abstractions from concrete experience. 
 

From our present perspective, elementary math-science curricula suffer most seriously 
from a failure to make modeling the central theme as well as failure to identify basic models with 
many significant applications. Consequently, instruction is often fragmented and haphazard: 
students practicing counting, computing and measuring without purpose. Models are needed to 
coordinate modeling activities toward some goal, toward applications that are meaningful to the 
students. 
 

It should not be difficult to identify and name a small number of basic model types that 
suffice for all the applications of elementary mathematics. To be specific, we identify two: 
inventory models and maps. Inventory models have long been around as a "use class" for 
mathematics, but they have not been given a name. Maps are familiar to everyone, but few 
recognize "map" as a fundamental model type. 
 

To take inventory of a given system of concrete items is to construct an inventory model. 
The system is modeled as a container (such as a store or stockroom) and items within the container 
are regarded as constituents of the system. Taking inventory involves sorting (or grouping) the 
constituents into classes (subsystems) and counting the number of items in each class to determine 
its cardinality. A typical representation for an inventory model consists of a list of names (or bins) 
paired with numeral representing cardinality (multiplicity of contents). Arithmetic addition and 
subtraction are used to model changes in (the state of) the inventory (model), with physical addition 
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⊕ understood to mean "placing in the container." 
 

The inventory model is very useful because it is generic; it can be applied to any system 
whatsoever. Indeed, "taking inventory" or "cataloguing parts" is usually one of the first steps in 
modeling a new system. The only mathematics required for inventory modeling are elementary set 
theory and arithmetic. The model includes nothing about criteria for sorting the items; it requires 
only that the sorting can be done. The classification could be based on natural properties 
or some arbitrary assignment (such as price) to the item. An important elaboration of the inventory 
model is arranging like items into subgroups of singles, tens and hundreds for efficient 
counting and recording by decimal numerals. Replacement of the tally and Roman numeral 
systems by the decimal system (only about 400 years ago) is one of the first great contributions of 
mathematics to business. A short historical account of the revolution it wrought would be 
appropriate in the curriculum to help draw attention to the significance of notational inventions. 
The inventory model must be the most widely (and tacitly) used model in business and practical 
affairs. Once students grasp the idea of an inventory structure, they are likely to start seeing 
inventories everywhere. 
 

The inventory model can be extended in many ways to include other structural properties 
of interest. In middle school the model should be extended to apply to continuous quantities so it 
becomes possible to make "energy inventories," for example. 
 

The map is a generic model type because it models spatial structure, which the Zeroth Law 
says is possessed by every concrete system. Students should recognize architectural plans as well 
as road maps as models of one type. They should learn that to read a map is to know how the model 
(map) relates to its referent. They should realize that the purpose of measuring distance or length 
is invariably to make some kind of a map of an object large or small. Eventually they should come 
to realize that geometry is the scientific theory on which map making is based. 
 

In implementing the modeling theme by developing, analyzing, evaluating and deploying 
basic models, the emphasis should be on the concepts of structure and change and the refinement 
of these concepts with mathematical tools of increasing power. 
 
6. References 
 

The literature on systems and modeling is vast and confused. A beacon of clarity in this 
fog is the work of physicist-philosopher Mario Bunge, which has illuminated much of the present 
article. Bunge has written extensively on systems, models and modeling, including [1979] a 
systematic survey of systems across all the sciences, natural and social. However, his work is very 
sophisticated, so it is recommended only to those who have the time for serious study. The article 
by Hestenes promotes modeling as the central theme of physics instruction. 
 
Bunge, Mario (1977). The Furniture of the World. Dordrecht & Boston: D. Reidel Publ. Co. 
Bunge, Mario (1979). A World of Systems. Dordrecht & Boston: D. Reidel Publ. Co. 
Hestenes, David (1992). Modeling Games in the Newtonian World. American Journal of Physics 
60, 732-748. 
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Historical note: The above paper has remained unpublished since February 1993, when it was 
prepared for a special National Science Foundation Conference of Principal Investigators in 
Science Education. On rereading it after so many years, I am surprised to see that I do not disagree 
with a single thing it says. Moreover, I recall that it expands on an informal note that I gave to NSF 
Program Manager Ray Hannapel in 1989, when I informed him about the remarkable improvement 
in physics teaching documented in the doctoral thesis of Malcolm Wells. Hannapel was intrigued 
by my note and took me on a walk along K Street in DC to discuss it. Then he responded with an 
immediate (no-proposal-required) $50,000 “proof-of-concept” grant for two summer workshops 
to test if Wells’ teaching techniques could be passed on to other teachers. Success of those 
workshops led to a series of much larger NSF grants beginning in 1993. Thus, the above paper 
marks a kind of watershed, when academic research in science teaching morphed into a large scale 
program to improve science education. The following synopsis and bibliography documents what 
has happened since. 
 

 
Modeling Theory and Modeling Instruction for STEM Education 

 
Cognitive Theory: All humans create mental models to plan and guide their interactions 

with the physical world. Science has greatly refined and extended this ability by creating and 
validating formal scientific models of physical things and processes. Research in physics education 
has found that mental models created from everyday experience are largely incompatible with 
scientific models [1]. This supports a view that the fundamental problem in learning and 
understanding science is coordinating mental models with scientific models. Modeling Theory [2, 
3] has drawn on resources of cognitive science to work out extensive implications of this view and 
guide development of an approach to science pedagogy and curriculum design called Modeling 
Instruction [5].  

 
Science Pedagogy: Modeling Instruction is centered on making and using scientific models 

of the physical world as the core of scientific knowledge and practice. Modeling pedagogy and 
instructional materials were first developed and thoroughly tested for high school physics.  
Exemplary outcomes and enthusiastic teacher response to summer Modeling Workshops have 
driven continued growth of the program and extension to chemistry and biology. 

 
Delivery and Support: Intensive 3-week summer Modeling Workshops have proven to be 

an ideal mechanism to upgrade knowledge and skills in science and pedagogy for in-service 
teachers. The Workshops were developed and widely offered across the United State with fifteen 
years of support from the National Science Foundation. The program was so popular among 
teachers that, when NSF funding ceased in 2005, to sustain it they created their own organization 
to sustain it, the American Modeling Teachers Association	[6]. At the time of this writing, the 
AMTA had nearly 2000 members; More than 7000 teachers had taken at least one Modeling 
Workshop, and nearly 50 Workshops were offered every summer. This makes Modeling the largest 
coherent STEM education program in the United States. 

 
Education Reform: Over the last two decades, Modeling Instruction has evolved into a promising 
program to drive rapid, deep and sustained STEM education reform on a national scale [7].  
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