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In spite of the enormous complexity of the human brain, there are good 
reasons to believe that only a few basic principles will be needed to under-
stand how it processes sensory input and controls motor output. In fact, the 
most important principles may be known already! These principles pro-
vide the basis for a definite mathematical theory of learning, memory, and 
behavior. 
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1. Introduction 

I am here to tell you that another major scientific revolution is well 
under way, though few scientists are aware of it even in fields where the 
revolution is taking place. In the past decade, a mathematical theory has 
emerged that bridges the gap between neurophysiology and psychology, pro-
viding penetrating insights into brain mechanisms for learning, memory, mo-
tivation, and the organization of behavior. It promises a formulation of 
fundamental principles of psychology in terms of mathematical laws as pre-
cise and potent as Newton's laws in physics. If the current theory is on the 
right track, then we can expect it to develop at an accelerating pace, and 
the revolution may be over by the turn of the century. We will then have a 
coherent mathematical theory of brain mechanisms that can explain a great 
range of phenomena in psychology, psychophysics, and psychophysiology. 

To say that this conceptual revolution in psychology will be over is not 
to imply that all problems in psychology will be solved. It is merely to 
assert that the fundamental laws and principles of explanation in psychology 
will be established. To work out all their implications will be an endless 
task. So has it been in physics, where the laws of classical and quantum 
mechanics have been well established for some time, but even the classical 
theory continues to produce surprises. So has it been with the recent revo-
lution in biology brought about by breaking the genetic code; though some 
principles of genetic coding are undoubtedly still unknown, the available 
principles are sufficient to provide the field with a unified theoretical per-
spective and determine the modes of acceptable explanation. Biology is 
now regarded as a more mature science than psychology, but we shall see 
that it may be easier to give psychology a mathematical formulation. 

If indeed a conceptual revolution is under way in psychology and the 
brain sciences, you may wonder why you haven't heard about it before. 
Why hasn't it been bannered by Psychology Today or proclaimed by some 
expert on the Johnny Carson show? Why is it announced here for the first 
time to an audience of mathematicians, physicists, and engineers? Before 
these questions can be answered, we need to consider the status and inter-
relations of the relevant scientific disciplines. 

2. The Science of Mind and Brain 

let us adopt the term neuroscience for the science of mind and brain. 
Neuroscience is the most interdisciplinary of all the sciences, and it suffers 
accordingly. The whole field has been carved into a motley assortment of 
subdisciplines that rarely communicate with one another. Consequently, 
most experts in one branch of neuroscience are profoundly ignorant about 
even closely related branches. Very few have a well grounded perspective 
on the field as a whole. 

The neurosciences have accumulated overwhelming evidence that the 
characteristics of behavior observed, manipulated, and analyzed by psychol-
ogists are derived from the functioning of animal nervous systems or brains. 
This is the basis for the scientific conception of mind as a function of the 
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brain, and it justifies regarding psychology as the science of mind. Despite 
this modern insight, the traditional academic division between psychology 
and biology perpetuates an artificial separation between mind and brain in 
research as well as knowledge. 

Research on the structural properties of brains is carried out in the well 
established fields of neurophysiology and neuroanatomy as well as in a vari-
ety of related specialties such as electroencephalography. These fields sub-
serve the medical profession, which, for the most part, pays scant attention 
to research in psychology and psychophysics. Psychophysiology attempts to 
bridge the mind-brain gap in research and knowledge, but the connections 
are academically tenuous. 

The established disciplines in neuroscience from neurophysiology to psy-
chology are predominantly empirical in content. They have accumulated a 
vast store of isolated facts about the structure and function of brains, but 
little in the way of coherent theory. They comprise the empirical compo-
nent of neuroscience. The theoretical component of neuroscience is devel-
oping in the fledgling field of neural modeling. This field has yet to become 
a recognized academic discipline, so the academic respectibi lity of anyone 
who works in it is at risk. 

One might expect the established neurosciences to encourage and sup-
port neural modeling. But the empiricist suspicion of theory in general and 
mathematical theory in particular is pervasive in these fields. I recently 
conversed at length with two capable young assistant professors at promi-
nent universities. One was a neurophysiologist, the other a psychologist. 
Both wished to pursue research in neural modeling, but neither would dare 
to mention this to his colleagues or even consider beginning such research 
until he achieves tenure. As a consequence of this pervasive antitheoretical 
bias in the neurosciences, only a few tenured mavericks, like the physiologist 
Walter Freemann at Berkeley, have developed the mathematical skills needed 
for serious neural modeling. Most of the neural modeling is done by mathe-
matically trained outsiders from engineering, mathematics, and physics. 

As the name suggests, neural modeling is concerned with developing 
mathematical models of neurons and their interactions. The modeling 
proceeds at two levels, the single neuron level and the neural network level. 
These levels are concerned with different experimental and theoretical 
techniques, facts, and issues. The single neuron level is the physiological 
level of neural modeling, for it involves the complex details of cell and 
membrane physiology, chemistry, and physics. Neural modeling at this level 
has a measure of respectability in neurophysiological circles owing to the 
impressive success of Hodgkin and Huxley, who won a Nobel Prize for mod-
eling and measuring the propagation of electrical signals along the axon of a 
neuron. The famous Hodgkin-Huxley equations are recognized as a paradigm 
for neural modeling at the neuron level. 

The aim of modeling at the network level is to explain the information 
processing capabilities of macroscopic brain components as collective prop-
erties of a system of interacting neurons. This is the psychophysical level of 
neural modeling. It correlates the electrical activity of neural networks 
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with their 'mental' processing capabilities. At this level the fine physiolog-
ical details of single neuron dynamics become unimportant. 

Network modeling is the theoretical bridge between the microscopic 
and the macroscopic levels of brain activity, between neurophysiology and 
psychology. Consequently it is open to objections by empiricists at both 
ends who care little about connecting the antipodes. Little wonder that 
network modeling is mostly ignored by the neuroscience establishment I 
Little wonder that the establishment is unaware of the theoretical revolution 
taking place in its own fieldsl 

I am especially pleased to tell this audience about the exciting develop-
ments in network modeling, because the field is wide open for theoretical 
exploration, and I doubt that I could find an audience more qualified to con-
tribute. Neural modelers have yet to employ statistical concepts such as 
entropy with the skill and sophistication of the scientists gathered here. 
Indeed, I believe that maximum-entropy theory will play its greatest role 
yet in the neural network theory of the future. 

3. Introduction to Grossberg 

While neural modeling is ignored by the neuroscience establishment, the 
neural modelers tend to ignore one another. A more fragmented field would 
be hard to find. Almost everyone in the field seems to be pushing his or her 
own model, although a few small groups of interacting modelers have 
formed. One could read extensively in the literature without discovering 
that a coherent, general network theory already exists. The theory has 
been developed over the past two decades by Stephen· Grossberg. 

Grossberg is by far the most versatile and prolific of the neural mod-
elers. He has written extensively on nearly every aspect of neural model-
ing. He has elevated the subject from a collection of isolated models to a 
genuine mathematical theory with a small set of general principles to guide 
the modeling of any brain component, and he has worked out many specific 
applications. He has thus produced the first truly coherent theory of learn-
ing, perception, and behavior. His theory provides coherent explanations for 
a wide range of empirical results from psychology, psychophysics, psycho-
physiology, and even neuropharmacology. And it makes a number of striking 
new predictions that are yet to be verified. Right or wrong, Grossberg has 
produced the first mathematical approach to psychology that deserves to be 
called a theory in the sense that the term 'theory' is used in the physical 
sciences. 

In spite of all this, Grossberg has been overlooked or ignored by most of 
the neural modeling community as well as the neuroscience establishment. 
Grossberg is seldom referenced by other neural modelers except for an 
occasional criticism, and he returns the favor. No doubt my remarks have 
strained your credulity to the limit, so let me try to explain why Grossberg 
is not more widely appreciated. 

Let us first consider why Grossberg's impact on the neuroscience estab-
lishment has been so slight. In recent years, Grossberg has attempted to 
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reach psychologists with several long reviews of his work. Unfortunately, 
few psychologists have the background needed to understand the mathemat-
ical core of his theory. Aware of this fact, Grossberg has pushed the math-
ematics into the background and presented a detailed qualitative account of 
this theory. But verbal arguments lack the logical force of mathematics at 
the most crucial points. Moreover, few psychologists are convinced that 
neural mechanisms are needed in psychological theory. So Grossberg's at-
tempt to give a coherent account of the diverse phenomena in psychology 
looks to many psychologists like a series of extravagant claims of credit for 
every significant result in the field. 

For quite different reasons, Grossberg is likely to be quickly dismissed 
by experts in neurophysiology. These experts are aware of many uncertain-
ties and complexities in neuron dynamics, so they know that Grossberg's 
equations cannot be empirically justified by current physiological evidence, 
even though the questions are not inconsistent with the evidence. They look 
for "bottom-up" justification from physiology, whereas the main justifica-
tion for Grossberg's equations is "top-down," from psychology. Grossberg's 
theory suggests constraints on physiological theory to make it consistent 
with psychological evidence. It therefore provides a guide for physiological 
research. But the physiologists are not looking for external guidance. And 
experts often point to the vast mass of partially digested data about brains 
as evidence that brains are much too complex for simple explanations. So 
they are skeptical of Grossberg's claim to explain brain functions with a 
small number of mathematical laws and organizing principles-too skeptical, 
probably, to give Grossberg the attention he needs in order to be under-
stood. 

It is harder to explain why Grossberg has been ignored by other neural 
modelers, since they share certain basic ideas about neural modeling and its 
significance. I believe the main reason is that very few have expended the 
substantial effort required to understand and evaluate Grossberg's work. 
Grossberg is not an easy read. To be understood, he must be studied-stud-
ied for weeks or months, not merely days. Let me cite my own experience 
by way of example. 

In 1976 I made my initial foray into the neural modeling literature and 
came away with the disappointing impression that the field was hopelessly 
far from explaining anything important. I was unmoved by the only article 
of Grossberg's that I came across at the time. A couple of years ago I 
encountered a former student of mine, Bob Hecht-Nielsen, who spoke enthu-
siastically about Grossberg's work and told me how he was using it to design 
practical devices that learn to classify patterns. Since I had great respect 
for Bob's judgment, I decided to give Grossberg a closer look. Fortunately, 
Bob gave me sufficient insight into Grossberg's ideas to overcome the diffi-
culties I again found in understanding his writings. Being a theoretical 
physicist, I had no difficulties at all with the mathematics in Grossberg's 
articles. But at first I had trouble in orienting myself to the thrust of his 
work and even in interpreting the variables in his equations. Interpretation 
and evaluation of Grossberg's equations require some familiarity with empir-
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ical data spanning the entire range from neurophysiology to psychology. 
had a much stronger background in psychology and psychophysics than most 
physicists. Nevertheless, I initially had difficulty in Grossberg's -papers dis-
tinguishing established empirical fact from tentative conjecture or even wild 
speculation. 

I have since reviewed the experimental results relevant to Grossberg's 
work sufficiently to be confident that his citations of such results are apt 
and reliable. Indeed, I am impressed by his judgment in selecting results to 
explain with his theory. I believe his grasp of the entire empirical domain 
from neurophysiology to psychology is unsurpassed. But I am most im-
pressed by the way he has gone about developing his theory. His theoretical 
style has all the elements of the best theoretical work in physics-studies of 
specific mathematical models in search of general principles, emphasis on 
functional relations without premature commitment to specific functional 
forms, and a high level of idealization to isolate major relations among vari-
ables, followed by successive elaborations to capture more details. Gross-
berg is especially clever at developing Gedanken experiments to motivate 
his theoretical constructions. 

I don't expect you to accept my assessment of Grossberg at face value. 
My purpose here is to introduce you to Grossberg and supply some of the 
background you will need to make your own evaluation, to help you over the 
initial credibility barrier as Hecht-Nielsen helped me. The recent publica-
tion of Grossberg's collected papers [1982] makes it much easier to ap-
proach his work now. But I hope to give you a good idea of what you can 
expect to find there. I will introduce you to basic ideas generally accepted 
by neural modelers and discuss the distinctive contributions of Grossberg. 

4. Empirical Background 

Although the human brain is the most complex of all known systems, we 
need only a few facts about neurons and neuroanatomy to establish an 
empirical base for neural network theory. Only a brief summary of those 
facts can be given here. For more extensive background, see Kandel and 
Schwartz [1981]. 

The signal processing unit of the nervous system is the nerve cell or 
neuron. There are, perhaps, a thousand types of neurons, but most of them 
have in common certain general signal processing characteristics, which we 
represent as properties of an ideal neuron model. To have a specific exam-
ple in mind, let us consider the characteristics of an important type of long 
range signaling neuron called a pyramid cell (schematized in Fig. 1). 

(1) The internal state of a neuron is characterized by an electrical po-
tential difference across the cell membrane at the axon hillock (Fig. 1). 
This potential difference is called the generating potential. External inputs 
produce deviations in this potential from a baseline resting potential (typi-
cally between 70 and 100 mY). When the generating potential exceeds a 
certain threshold potential, a spike (or action) potential is generated at the 
hillock and propagates away from the hillock along the axon. 
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Figure 1. Anatomy of a pyramid cell. 
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(2) Axonal signals: The action potential is a large depolarizing signal 
(with amplitude up to 110 mY) of brief duration (1 to 10 ms). In a given 
neuron, every action potential travels with the same constant velocity (typi-
cally between 10 and 100 m/s) and undiminished ampl itude along all axon 
collaterals (branches) to their terminal synaptic knobs. 

Axonal signals are emitted in bursts of action potentials with pulse fre-
quencies typically in the range between 2 and 400 Hz for cortical pyramid 
cells or between 2 and 100 Hz for retinal ganglion cells (see below). Single 
spike potentials are also spontaneously emitted, evidently at random. A 
single spike is not believed to carry information. It appears that all the in-
formation in an axonal Signal resides in the pulse frequency of the burst. 
Thus, the signal can be represented by a positive real number in a limited 
interval. 
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(3) Synaptic inputs and outputs: The flow of signals in and out of a 
neuron is unidirectional. A neuron receives signals from other neurons at 
points of contact on its dendrites or cell body known as synapses. A typical 
pyramid cell in the cerebral cortex (see below) receives inputs from about 
105 different synapses. When an incoming axonal signal reaches the synap-
tic knob it induces the release of a substance called a neurotransmitter from 
small storage vesicles. The released transmitter diffuses across the small 
synaptic gap to the postsynaptic cell, where it alters the local receptor po-
tential across the cell membrane. The synaptic inputs have several impor-
tant properties: 

(a) Quantized transmission: Each spike potential releases (approxi-
mately) the same amount of transmitter when it arrives at the synaptic 
knob. 

(b) Temporal summation: Changes in receptor potential induced by suc-
cessive spike potentials in a burst are additive. Consequently, deviations of 
the receptor potential from the resting potential depend on the pulse fre-
quency of incoming bursts. 

(c) Synaptic inputs are either excitatory or inhibitory, depending on the 
type of interaction between neurotransmitter and receptor cell membrane. 
An input is excitatory if it increases the receptor potential or inhibitory if it 
decreases the receptor potential. 

(d) Weighted spatial summation: Input-induced changes in the various 
receptor potentials of a neuron combine additively to drive a change in the 
generating potential. 

Now let us identify some general anatomical characteristics of the 
brain to guide our constructions of networks composed of ideal neurons. We 
can do that by examining a major visual pathway called the geniculostriate 
system (Fig. 2). Light detected by pootoreceptors in the retina drives the 
production of signals that are transmitted by retinal ganglion cells from the 
retina to the lateral geniculate nucleus (LGN), which (after some process-

Cor te x 

Figure 2. The geniculostriate system. 
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ing) relays the signal to the visual cortex (also known as the striate cortex 
or Area 17). From Area 17, signals are transmitted to Areas 18, 19, and 
other parts of the brain for additional processing. 

In Fig. 3 the geniculostriate system is represented as a sequence of 
three layers of slabs connected by neurons with inputs in one slab and out-
puts in another slab. There are about 106 ganglion cells connecting the 
retina to the LGN, so we may picture the retina as a screen with 106 pixels. 
Let Ik(t) be the light intensity input detected at the kth pixel at time t. 
Then the input intensity pattern or image displayed on the retina can be 
represented as an image vector with n = 106 components: 

(1) 

This vector is filtered (transformed) into a new vector input to the LGN by 
several mechanisms: (a) the receptive fields (pixel inputs of the ganglion 
cells) overlap; (b) nearby ganglion cells interact, and (c) the output from 
each ganglion cell is distributed over the LGN slab by the arborization 
(branching) of its axon. Later we will see how to model and understand 
these mechanisms. 

Actually, each of the three main slabs in the geniculostriate system is 
itself composed of several identifiable layers containing a matrix of inter-
neurons (neurons with relatively short range interactions). We will take 
these complexities into account to some extent by generalizing our models 

Retina LGN Area 17 

Figure 3. Layered structure of the brain (arrows indicate signal directions). 
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of slab-connecting neurons. There is little reason to believe that the details 
we omit from our models will detract from our general conclusions. 

The layered structure in Fig. 3 is typical of the organization of major 
portions of the brain, so we can hope to learn general principles of brain 
design by understanding its functional significance. 

Notice the reciprocal axonal connection from Area 17 back to the LGN. 
We shall see that the significance of that connection may be especially 
profound. 

5. Neural Variables 

We are now prepared to consider Grossberg's general principles for 
modeling a system of interacting neurons. The ith neuron is represented by 
a node Vi connected to node Vj by a directed pathway eij terminating in a 
synaptic knob Nij as indicated in Table 1. The physical state of each of 
these three components of a neuron is characterized by a single real-valued 
state variable, which has a psychological as well as a physiological interpre-
tation. These dual interpretations (mind-brain duality) provide the link 
between psychology and the brain sciences. The physiological interpreta-
tions are fairly evident from what we have said already. We shall see that 
the psychological interpretations convert the neural network theory into a 
genuine psychological theory. 

Table 1. Neuron Components and Variables 

Directed Synaptic 
Node pathway knob 

Components: v· I eij N·· I J Vj - • ... 
Variables: Xi Sij Zij Xj 

Physiological Psychological 
Name/variable interpretation interpretation 

Activity Xi Average generat- Stimulus trace 
ing potential or STM trace 

Signal Sij Average firing Sampling or per-
frequency formance signal 

Synaptic Transmitter LTM trace 
strength Zij release rate 
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The 'internal state' of node vi is described by a variable xi called the 
activity of the node. Physiologically, xi can be interpreted as the deviation 
of a neuron generating potential from its equilibrium (resting) value. Psy-
chologically, it can be interpreted as a stimulus trace or short term memory 
(STM) trace. The latter interpretation is especially interesting because it 
ascribes a definite physical referent for the STM concept. In cognitive psy-
chology, the STM is regarded as some unspecified brain mechanism for the 
temporary :;torage of information. For example, a telephone number you 
have just heard is said to be stored in your STM for a time on the order of 
10 seconds, after which it will soon be lost unless you re-store it in STM by 
rehearsing it or using it in some other way. Note that this way of speaking 
suggests that the STM is a special component of the brain to which a limited 
amount of information can be transferred for temporary storage. However, 
Grossberg claims that STM storage is simply an enhanced activity or activa-
tion of neurons somewhere in the brain, different neurons in different places 
for different concepts stored. He applies the term' STM storage' to any 
neuron activity Xi that is temporarily maintained at 'positive values by local 
feedback loops. Undoubtedly, the cognitive psychologists are unable to 
probe more than a limited subset of such activated brain states in their 
studies of STM storage. So Grossberg's STM concept is broader as well as 
more specific than the conventional STM concept. 

A signal propagated along the directed pathway eij is represented by a 
nonnegative real variable Sij. In Grossberg's theory Sij is not an independ-
ent variable; it is some definite function of the node activity Xi. For the 
value of the signal when it reaches the synaptic knob we can write 

(2) 

where Tij is a 'time delay constant' and bij is a 'path strength constant' 
determined by physical properties of the pathway. In general, f(Xi) is a 
sigmoid function, but for many purposes it can be approximated by the 
'threshold-linear function' 

(3) 

where ri is a positive threshold parameter, and [u]+ = u for u ú =0, [u]+ = 0 
for u < o. Thus, the node Vi emits a signal only when its activity Xi exceeds 
the threshold rio 

The variable Sij [or f(xi), rather] is to be interpreted physiologically as 
the average firing frequency of a neuron. Therefore, it does not describe 
the sudden signal fluctuations in the bursts that are observed experimen-
tally. Because those fluctuations are not believed to carry information, it is 
reasonable to suppress them in a theory that aims to characterize the infor-
mation content of neuronal processes. 

Psychologically, the variable Sij may be interpreted as an information 
sampling signal when it is concerned with information input, or as a per-
formance signal when it is concerned with output. We shall see that either 
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of these interpretations might apply to a signal in a given pathway, depend-
ing on the state of the rest of the network. 

The coupling of a synaptic knob Nij to a postsynaptic node Vj is charac-
terized by a positive real variable zij called the synaptic strength. Physio-
logically, it can be interpreted as the average rate of neurotransmitter 
release (per unit Signal input) at the knob N ij. This interpretation is tenta-
tive' however, because the biochemical processes at a synapse are complex 
and incompletely understood. In any case, a single variable should be suffi-
cient to characterize the signal transmission rate across a synapse, whatever 
the underlying processes. 

We shall see that the variable Zij can be interpreted psychologically as a 
long term memory (LTM) trace. This is to assert that the long term storage 
of information in a brain takes place at the synapses, and that learning is a 
biochemical change of synaptic states. Although one cannot claim yet that 
this assertion is an established fact, there is considerable evidence to sup-
port it, much more than can be mustered to support any alternative hypoth-
esis about the physiological basis for learning and memory. As a working 
hypothesis, our dual interpretations of the synaptic strength variable has 
immense implications for psychology. To begin with, we shall see that it has 
much to tell us about the way brains encode information. 

6. Network Field Equations 

Having identified the significant components of a neural network and 
appropriate variables to represent their properties, to complete the formula-
tion of a network theory we need to postulate laws of interaction and equa-
tions of motion for the variables. The main facts and hypotheses about 
neurons that we have already mentioned are accounted for by Grossberg's 
field equations for a neural network with n nodes: 

. 
Xi = 

n 

-Aixi + L SkiZki-
k=1 

n 

L Cki + li(t) 
k=1 

where the overdot denotes a time derivative and i,j = 1,2, ••• ,n. 

(4) 

(5 ) 

Grossberg's equations are generic laws of neural network theory in the 
same sense that F = ma is a generic law of Newtonian mechanics. To con-
struct a mathematical model in mechanics from F = ma, one must introduce 
a force law that specifies the function form of F. Similarly, to construct a 
definite network model from Grossberg's equations, one must introduce laws 
of interaction that specify the functional dependence of the quantities Ai, 
Ski, Cki, Bij, and Si on the network variables Xi and Zij' To investigate 
these laws of interaction is a major research program within the context of 
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Grossberg's theory, just as a theoretical and experimental investigation of 
the force laws" realized" in nature has been a major research program in 
physics since it was initiated by Newton. 

Before examining specific interactions, we should be clear about the 
general import of Grossberg's equations. Let us refer to Eq. (4) as the 
activity equation of node vi. The right-hand side of this equation describes 
interactions of the node or, if you prefer, inputs to the node. The first 
thing to note about the equation is the additivity of inputs from different 
sources, which represents the basic experimental fact of the spatial summa-
tion of synaptic inputs to a neuron. The term I i(t) represents input from 
sources outside the network, usually some other neurons but sometimes sen-
sory transducers such as photoreceptors in the retina. The other terms rep-
resent internal interactions within the network. 

The term -AiXi characterizes self-interactions of the node vi. In the 
simplest case when the node represents a single neuron, Ai is a positive con-
stant, so the term represents the passive decay that is inevitable in a dissi-
pative system. More generally, it will often be convenient to use a single 
node to represent a lumped subsystem or pool of interneurons coupled to a 
single output neuron such as a cortical pyramid cell. The pool can be 
designed with feedback to make the node capable of STM and more complex 
responses to inputs. The net result can be described simply by making the 
decay coefficient Ai into some function Ai = Ai(xi) of the activity Xi. It is 
reasonable to suppose that, on account of the additivity of interactions, a 
neuron pool will have an activity equation of the same general form as that 
of a single neuron, if the time scale for integrating inputs to the pool is suf-
ficiently short. As the theory develops, it should become possible to replace 
such reasonable assumptions by rigorous "lumping theorems." 

For a neuron pool, the activity Xi of the output neuron may be propor-
tional to the number of excited interneurons in a subpopulation of the pool. 
In that case, it may be more useful to interpret Xi as the number of excited 
states in the pool rather than as the potential of a single neuron, especially 
when characterizing the self-interaction properties of the pool. 

The term SkiZki describes an excitatory node-node interaction as indi-
cated by the plus sign preceding it in the activity equation (4). It expresses 
the effect of node vk on node Vi mediated by the signal Ski as given by 
Eq. (2). The synaptic strength zki plays the role of a variable coupling con-
stant in the activity equation. Typically the time variation of zki is slow 
compared to that of Xi. In many cases zki is essentially constant, and we 
say that the connection from vk to Vi is hardwired. This includes the 
common case when there is no direct connection from vk to Vi if we regard 
it as a case with zki = O. The multiplicative form of the interaction SkiZki 
expresses the temporal summation of synaptic inputs. Grossberg describes 
the role of the synapse by saying that "zki gates the signal Ski." 

The term Cki in the activity equation (4) describes an inhibitory node-
node interaction as indicated by the minus sign preceding it, supplemented 
by the assumption that Cki ú = o. We can interpret Cki as a signal function 
similar to Ski. The symmetry as well as the generality of the activity equa-
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tion could be increased by allowing for a variable inhibitory coupling con-
stant. However, the available evidence suggests that inhibitory connections 
are usually (if not invariably) hardwired. So we restrict our considerations 
to that case and incorporate the fixed coupling constant into the signal 
function Cki. 

From a general theoretical perspective it is crucial to realize that in-
hibitory interactions are essential for the stability of the network activity 
equations, just as attractive forces are essential for bound systems in phys-
ics. This can be proved as a mathematical theorem of great generality, and 
we shall see its significance later on in Grossberg's solution to the noise-
saturation problem. In spite of the fact that this has been known to some 
neural modelers for a long time, papers that are flawed by a failure to take 
stability requirements into account are still being published. 

Now let us turn to Eq. (5) and refer to it as the learning equation in 
anticipation of support for our interpretation of zij as an L TM trace. We 
can identify SIj [xiJ + as the learning term in the equation since it drives an 
increase in Zij' The factor Sh is a nonnegative signal similar to the signal 
Sij in the activity equation, but possibly differing in its dependence on the 
presynaptic activity Xi, owing to details of the underlying biochemical 
processes. The multiplicative form of the learning term implies that learn-
ing takes place only when the presynaptic learning signal Sij and the post-
synaptic activity Xj are simultaneously positive. Thus, learning at a synapse 
is driven by correlations between presynaptic and postsynaptic activities. 

The term -BijZij can be regarded as a forgetting term, describing pas-
sive memory decay when Bij is a positive constant. By allowing Bij to be a 
more general function of the network parameters, Grossberg allows for the 
possibility of modulating memory loss. 

For the case of constant Bij = B, the learning equation (5) can be given 
the enlightening integral form 

(6) 

This is an integral equation rather than a solution of Eq. (5) because xj("r) 
depends on zij('r) in the activity equation (4). However, it shows that in 
the long run the initial STM trace Zij(O) is forgotten and Zij(t) is given by a 
time correlation function of the presynaptic signal Sij with the postsynaptic 
activity Xj' 

Special cases and variants of Grossberg's equations have been formu-
lated and employed independently by many neural modelers. But Grossberg 
has gone far beyond anyone else in systematically analyzing the implications 
of such equations. In doing so, he has transformed the study of isolated 
ad hoc neural models into a systematic theory of neural networks. But it 
will be helpful to know more about the empirical status of the learning 
equation before we survey the main results of Grossberg's theory. 
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7. Hebb's Law 

From the viewpoint of neural network theory, Hebb's law is the funda-
mental psychophysical law of associative learning. It should be regarded, 
therefore, as a basic law of psychology. However, most psychologists have 
never heard of it because they do not concern themselves with the neural 
substrates of learning. 

Hebb [1949] first formulated the law as follows: "If neuron A repeat-
edly contributes to the firing of neuron B, then A's efficiency in firing B 
increases." The psychological import of this law comes from interpreting it 
as the neural basis for Pavlovian (classical) learning. To see how, recall 
Pavlov's famous conditioning experiment. When a dog is presented with 
food, it salivates. When the dog hears a bell, it does not salivate initially. 
But after hearing the bell simultaneously with the presentation of food on 
several consecutive occasions, the dog is subsequently found to salivate 
when it hears the bell alone. To describe the experiment in more general 
terms, when a conditioned stimulus (CS) (such as a bell) is repeatedly paired 
with an unconditioned stimulus (UCS) (such as food) that evokes an uncon-
ditioned response (UCR) (such as salivation), the CS gradually acquires the 
ability to evoke the UCR. 

To interpret this in the simplest possible neural terms, consider Fig. 4. 
Suppose the firing of neuron B produces the UCR output, and suppose the 
UCS input fires neuron C, which is coupled to B with sufficient strength to 
make B fire. Now if a CS stimulates neuron A to fire Simultaneously with 
neuron B, then, in accordance with Hebb's law, the coupling strength zAB 
between neurons A and B increases to the point where A has the capacity to 
fire B without the help of C. In actuality, of course, there must be many 
neurons of types A, B, and C involved in the learning and controlling of a 
molar behavioral response to a molar stimulus, but our reduction to the in-
teraction of just three neurons assumes that the learning actually takes 
place at the synaptic level. 

cs.-. -
(belli 

A 

ucs ... I C 
(food) 

8 
ú r ` o =

(sa livation) 

Figure 4. A neural interpretation of Pavlovian learning. 

Thus, the molar association strength between stimulus and response that 
psychologists infer from their experiments is a crude measure of the synap-
tic coupling strength between neurons in the central nervous system (CNS). 
The same can be said about all associations among ideas and actions. Thus, 
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the full import of Hebb's law is this: All associative (long term) memory 
resides in synaptic connections of the CNS, and all learning consists of 
changes in synaptic coupling strengths. 

This is a strong statement indeed! Although it is far from a proven 
fact, it is certainly an exciting working hypothesis, and it provides a central 
theme for research in all the neurosciences. It tells us where to look for 
explanations of learning and memory. It invites us to do neural modeling. 

I ronically, cognitive psychologists frequently dismiss Pavlovian learning 
as too trivial to be significant in human learning. But Hebb's law tells us 
that Pavlovian learning is simply an amplified form of the basic neural proc-
ess underlying all learning. Neural modeling has already advanced far 
enough to give us good reasons for believing that the most complex cogni-
tive processes will ultimately be explained in terms of the simple neural 
mechanisms operating in the Pavlovian case. 

Direct physiological verification of the synaptic plasticity required by 
Hebb's law has been slow in coming because the experimental difficulties are 
extremely subtle and complex. Peripheral connections in the CNS are most 
easily studied, but they appear to be hardwired as one would expect because 
the delicate plastic synapses must be protected from destructive external 
fluctuations. Though some limited experimental evidence for synaptic plas-
ticity exists, there are still considerable uncertainties about the underlying 
physiological mechanism. There are still doubts as to whether plasticity is 
due to a pre- or postsynaptic process, though a postsynaptic process is most 
likely [Stent, 1973]. 

Considering the experimental uncertainties, many neuroscientists are 
reluctant to take Hebb's law seriously. They fail to realize that the best 
evidence for Hebb's law is indirect and theory dependent. Hebb's law should 
be taken seriously because it is the only available theoretical construct that 
provides plausible, coherent explanations for psychological facts about 
learning and memory. Indeed, that is what led Hebb to the idea in the first 
place. Empiricists may regard such inverse arguments from evidence to 
theory as unconvincing or even inadmissible, but history shows that inverse 
arguments have produced the most profound advances in physics, beginning, 
perhaps, with Newton's law of gravitation. As an example with many paral-
lels to the present case, recall that the modern concept of an atom was 
developed by a series of inverse arguments to explain observable macro-
scopic properties of matter. From macroscopic evidence alone, remarkably 
detailed models of atoms were constructed before they could be tested in 
experiments at the atomic level. Similarly, we should be able to infer a lot 
about neural networks from the rich and disorderly store of macroscopic 
data in psychology. Of course, we should not fail to take into account the 
available microscopic data about neural structures. 

Hebb's original formulation of the associative learning law is too general 
to have detailed macroscopic implications until it is incorporated in a defi-
nite network theory. Grossberg has given Hebb's law a mathematical for-
mulation in his learning equation (5). Hebb himself was not in position to do 
that, if only because the necessary information about axonal signals was not 
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available. Of course, Hebb's formulation is vague enough to admit many dif-
ferent mathematical realizations. Grossberg has chosen the simplest reali-
zation compatible with the known physiological facts. No doubt Grossberg's 
law of synaptic plasticity is a crude description of real synaptic activity, but 
it may be sufficient for the purposes of network theory. In any case, it is 
good research strategy to study the simplest models first. Recall that Lo-
rentz's classic theory of optical dispersion is based on an electric dipole 
oscillator model of an atom. The dipole is hardly more than a caricature of 
a real atom, but Lorentz's dispersion theory was so successful that it is still 
used today, and failures of the theory were important clues in the develop-
ment of quantum theory. Grossberg's theory may not characterize neurons 
any better than a classic dipole characterizes an atom, but it may neverthe-
less have great success, and any clear failures will be important clues to a 
better theory. That's how theories progress. 

8. The Outstar Learning Theorem 

There is one obvious property of neurons that we have not yet incorpo-
rated into the network theory, and that is the treelike structure of an axon. 
What are its implications for information processing? Grossberg's "outstar 
theorem" shows that the implications are as profound as they are simple. 

Consider a slab of noninteracting nodes V = {vl'v2 , ••• ,vn} with a time 
varying input image I(t) = [ll(t), 12 (t), ••• ,l n(t)] that drives the nodes above 
signal threshold. The total intensity of the input is I = E k Ik, so we can 
write Ik = 6 k I where E k 6 k = 1. Thus, the input has a reflectance pattern 
e(t) = [6 1 (t),6 2 (t), ••• ,6 n(t)]. 

Now consider a node Vo with pathways to the slab as shown in Fig. 5. 
This configuration is called an outstar because it can be redrawn in the sym-
metrical form of Fig. 6. When an "event" lo(t) drives Vo above threshold, a 

Figure 5. The outstar is the minimal network capable of 
associative learning. 
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learning signal Sok is sent to each of the synaptic knobs to trigger a sam-
pling of the activity pattern 'displayed' on the slab by driving changes in 
the synaptic strengths Zo k • 

.... L ú k ú K s O =
• • 

• 
Figure 6. Symmetry of the outstar anatomy. 

The outstar learning theorem says that an outstar learns a weighted 
average of reflectance patterns 8 = (el ,e2 , ••• ,en) displayed on the slab in 
the sense that 

Zok(t) --- e k t+ co 
(7) 

where 

(8) 

Grossberg calls the Zok 'stimulus sampling probabilities' to emphasize the 
statistical aspect of the learning process. 

The outstar has truly learned the pattern i in the sense that it can 
recall the pattern exactly in the following way. Suppose that, at some time 
after learning, the external slab input I(t) vanishes but lo(t) is sufficient to 
stimulate signals Sok from v,. The signals So read out an activity pattern on 
the slab that is proportional to the synaptic strengths zok and hence to the 
pattern e k. When the Sok are sufficiently strong by themselves to drive the 
slab above threshold, they are called performance signals. 

It will be recognized that outstar learning is an instance of Pavlovian 
learning, where Vo corresponds to neuron A in Fig. 4 and instead of a single 
neuron B we have a whole slab of neurons. Accordingly, we can interpret 
the slab output as the UCR controlled by a UCS input I. When the CS input 
10 is synchronized with the UCS input I, the outstar gradually gains control 
over the UCR. 
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To see how the outstar theorem follows from Grossberg's equations, let 
us consider the simplest case, where the signals p ú â = = p ú = are the same for 
all pathways, and all nodes have identical constant self-interaction coeffi-
cients. Then the outstar network equations are 

(9a) 

(9b) 

(9c) 

The internal processes in a neuron are comparatively fast, so it is often a 
good approximation to suppose that the relaxation time aj(l is short com-
pared to the time variations of the input Ik(t). Then we can use the equi-
librium solutions of the activity equations (9b). Therefore, for So = 0, 
Eq. (9b) gives us 

(10) 

Thus, the activity pattern across the slab is proportional to the reflectance 
pattern. 

Suppose now that the same reflectance pattern 0 is repeatedly pre-
sented to the slab, so the 9 k are constant but the intensity I (t) may vary 
wildly in time. For the sake of simplicity, suppose also that the signal So 
does not significantly perturb the activity pattern across the slab. Then, 
the integral of the learning equation (9c) has the form of Eq. (6), and gives 
the asymptotic result 

zok(t) = N(t) 9k (11a) 
where 

N(t) = r d, e-a(t-,) 5;(,) .-. 1(,) • 

o 

(11b) 

According to Eq. (11a), the outstar learns the reflectance pattern exactly. 
The same result is obtained with more mathematical effort even when per-
turbations of the slab activity pattern are taken into account. 

Note that, according to Eq. (11b), the magnitude of N(t), and therefore 
the rate of learning, is controlled by the magnitudes of the sampling signal 
p ú E í F = and the total input intensity I(t). Stronger signals, faster learningl 

If the 9k are not constant, the learning equation will still give an 
asymptotic result of the form (11a) if 9k is replaced by a suitably defined 
average 9 k. To see this in the simplest way, suppose that two different but 
constant patterns 0(1) and 0(2) are sampled by the outstar at different 
times. Then the additivity property of the integral in Eq. (6) allows us to 
write 
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(12) 

where Nl and N2 have the same form as N in Eq. (11b), except that the in-
tegration is only over the í á ú = intervals when É ú ä F = (or É ú O F F = is displayed on 
the slab. Thus, the pattern a stored in the outstar LTM is a weighted aver-
age of sampled patterns. Note that this is a consequence of formulating 
Hebb's law specifically as a correlation function. 

Outstar learning has a number of familiar characteristics of hl.ll1an 
learning. If the outstar is supposed to learn pattern a(1), and a(2) is an 
error, then according to Eq. (12), repeated sampling of a(l) will increase 
the weight (NdN) of a(1) and If + a(1). Thus outstar learning is 'error 
correcting' and 'practice makes perfect.' Or if 0(1) is presented and sam-
pled with sufficient intensity, the outstar can learn 0(1) on a single trial. 
Thus, 'memory without practice' is possible. On the other hand, if an 
outstar repeatedly samples new patterns, then the weight of the original 
pattern decreases. So we have an 'interference theory of forgetting.' 
Forgetting is not merely the result of passive decay of LTM traces. 

Grossberg has proved the outstar theorem for much more general func-
tional forms of the network equations than we have considered. For pur-
poses of the general theory, it is of great importance to determine the vari-
ations in physical parameters and network design that are compatible with 
the pattern learning of the outstar theorem. 

The outstar theorem is the most fundamental result of network theory 
because it tells us precisely what kind of information is encoded in L TM, 
namely, reflectance patterns. It goes well beyond Hebb's original insight in 
telling us that a single synaptic strength zok has no definite information 
content. All L TM information is in the pattern of relative synaptic strengths 
zok defined by Eq. (8). 

To sl.ll1 up, we have learned that the outstar network has the following 
fundamental properties: 

o Coding: The functional unit of LTM is a spatial pattern. 
o Learning: A pattern is encoded by a stimulus sampling signal. 
o Recall: Probed read-out of LTM into STM by a performance signal. 
o Factorization: A pattern is factored into a reflectance pattern, which is 

stored, and the total intensity I, which controls the rate of learning. 
The outstar is a universal learning device. Grossberg has shown how to 

use this one device to model every kind of learning in the CNS. The kinds 
of learning are distinguished by the different interpretations given to the 
components of the outstar network, which, in turn, depend on how the com-
ponents fit into the CNS as a whole. To appreciate the versatility of the 
outstar, let us briefly consider three examples of major importance: 

Top-down expectancy learning: Suppose the slab V = {V1,V2, ... ,vn} 
represents a system of sensory feature detectors in the cerebral cortex. A 
visual (or auditory) event is encoded as an activity pattern x = (x ltx2, ••• ,X n) 
across the slab, where xk represents the relative importance of the kth fea-
ture. The outstar node Vo can learn this pattern, and when the LTM pattern 
is played back on V, it represents a prior expectancy of a sensory event. 



HOW THE BRAIN WORKS 193 

Motor learning and control. Suppose the slab V represents a system of 
motor control cells, so each vk excites a particular muscle group and the 
activity xk determines its rate of contraction. Then the outstar command 
node Vo can learn to control the synchronous performance of a particular 
motion with factored rate control modulated by the strength of the per-
formance signal. 

Temporal order encoded as spatial order. If the slab V represents a 
sequence of codes for items on a list (such as a phone number) and the rela-
tive magnitudes of the activities xk reflect the temporal order of the items, 
then the outstar node Vo can learn the temporal order. 

9. The Network Modeling Game 

Once the outstar is recognized as the fundamental device for learning 
and memory, it becomes evident that information is represented by spatial 
patterns in the CNS. Information is encoded in STM activity patterns and 
stored in L TM synaptic strength patterns. Information is processed by 
filtering, combining, and comparing patterns with patterns and more 
patterns. Thus, we come to formulate the Network Modeling Game as fol-
lows: Explain all learning and behavior with modular network models 
composed of outstars. The term· behavior· is to be understood here in the 
broadest sense of any output pattern. The emphasis on outstars is an impor-
tant refinement of the game introduced by Grossberg. 

The aim of the Network Modeling Game is to reduce psychology to a 
theory of neural mechanisms. Grossberg has been playing the game for a 
long time and has built up an impressive record of victories. He plays the 
game systematically by formulating a sequence of design problems for neural 
networks. For each design problem he finds a minimal solution that provides 
a design principle for constructing a network with some specific pattern 
processing capability. He has already developed too many design principles 
for us to review them all here. But we will look at a few of the most basic 
design problems and solutions to see how the game gets started. 

We will consider the following network design problems: 

o Pattern registration. Considering the limited dynamic range of a neuron, 
how can a slab be designed to register a well defined pattern if the input 
fluctuates wildly? 

o STM storage. How can an evanescent input be stored temporarily as an 
activity pattern for further processing or transfer to permanent L TM 
storage? 

o Code development. How can a network learn to identify common fea-
tures and classify different patterns? 

o Code protection and error correction. How can a network continue to 
learn new information without destroying what it has already learned? 

o Pattern selection. How does a network decide what is worth learning? 
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9.1. Pattern Registration and STM Storage 

A neuron has a I imited dynamic range; its sensitivity is I imited by noise 
at low activity and by saturation at high activity. How, then, can neurons 
maintain sensitivity to wide variations in input intensities? Grossberg calls 
this the noise-saturation dilemma, and he notes that it is a universal problem 
that must be solved by every biological system. Therefore, by studying the 
class of neural networks that solve this problem, we may expect to discover 
a universal principle of network design. Grossberg has attacked this prob-
lem systematically, beginning with a determination of the simplest possible 
solution. 

Grossberg has proved that the minimal network solving the noise-satu-
ration dilemma is a slab of nodes with activity equations 

Xi = -Axi + (B - Xi) Ii - (xi + C) L Ik, 
â ú á =

(13 ) 

where i = 1,2, ••• ,n, and A,B are positive constants while C may be zero or a 
positive constant. It is easy to see that the form of Eq. (13) limits solutions 
to the finite range B ú =Xi(t) ú = -C, whatever the values of inputs Ik(t). 

Two things should be noted about the form of Eq. (13). First, the exci-
tatory input Ii to each node Vi is also fed to the other nodes as an inhibitory 
input as indicated in Fig. 7. A slab with this kind of external interaction is 
called an on-center off-surround network. Second, both excitatory and in-
hibitory interactions include terms of two types, one of the form Bli and the 
other of the form xilk. Grossberg calls the first type an additive 
interaction and the second type a shunting interaction. Accordingly, he 
calls a network characterized by Eq. (13) a shunting on-center off-surround 
network. 

• • 

Figure 7. A nonrecurrent on-center off-surround anatomy. 

This network can be regarded as a simple model of a retina. The exist-
ence of on-center off-surround interactions in the retina is experimentally 
well established in animals ranging from the mammals to the primitive horse-
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shoe crab. The nodes in our model correspond roughly to the retinal gang-
lion cells with outputs in the LGN as we noted in Sec. 4. The distribution of 
inhibitory inputs among the nodes is biologically accomplished by a layer of 
interneurons in the retina called horizontal cells. Our model lumps_ these 
interneurons together with the ganglion cells in the nodes. It describes the 
signal processing function of these interneurons without including unneces-
sary details about how this function is biologically realized. 

It is well known among neuroscientists that intensity boundaries in the 
image input to an on-center off-surround network are contrast-enhanced in 
the output. So it is often concluded that the biological function of such a 
network is contrast enhancement of images. But Grossberg has identified a 
more fundamental biological function, namely, to solve the noise-saturation 
dilemma. However, shunting interactions are also an essential ingredient of 
the solution. Many neural modelers still do not recognize this crucial role of 
shunting interactions and deal exclusively with additive interactions. It 
should be mentioned that the combination of shunting and additive interac-
tions appears in cell membrane equations that have considerable empirical 
support. 

To see how Eq. (13) solves the noise saturation dilemma, we look at the 
steady-state solution, which can be put into the form 

(B + C)I ( C) 
xi = A + lei - B + C • (14) 

Here, as before, the e i are the reflectances and I is the total intensity of 
the input. This solution shows that the slab has the following important 
image processing capabilities: 

(1) Factorization of pattern and intensity. Hence, for any variations in 
the intensity I, the activities Xi remain proportional to the reflectances e i 
[displaced by the small constant C(B + C)-I). Thus, the slab possesses 
automatic gain control, and the Xi are never saturated by large inputs. 

This factorization matches perfectly with the outstar factorization 
property, though they have completely different physical origins. Since an 
outstar learns a reflectance pattern only, it needs to sample from an image 
slab that displays reflectance patterns with fidelity. Thus, we have here a 
minimal solution to the pattern registration problem. 

(2) Weber law modulation by the factor I(A + 1)-1. Weber's law is an 
empirical law of psychophysics that has been found to hold in a wide variety 
of sensory phenomena. It is usually given in the form ú f g f = = constant, 
where ú =I is the" just noticeable difference" in intensity observed against a 
background intensity I. This form of Weber's law can be derived from 
Eq. (14) with a reasonable approximation. 

(3) Featural noise suppression. The constant C(B + C)-I in Eq. (14) 
describes an adaptation level, and B » C in vivo. The adaptation level 
C(B + C)-I = n-1 is especially Significant, for then if ei = n-1, one gets 
Xi = O. In other words, the response to a perfectly uniform input is com-
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pletely quenched. It has, in fact, been experimentally verified that when 
the human retina is exposed to a perfectly uniform illumination, the subject 
suddenly sees nothing but black. Evidently, the human visual system detects 
only deviations from a uniform background. 

(4) Normalization. From Eq. (14), the total activity is given by x = 
Lk xk = [B - (n-1)C](A+1)-I, which is independent of n if C = 0 or 
C(B+C)_l = n-1• In that case, the total activity has an upper bound that is 
independent of n and I, and we say that the activity is normalized. For 
some purposes it is convenient to interpret a normalized activity pattern as 
a probability distribution. 

A slab with the pattern processing capabilities that we have just men-
tioned can perform a variety of different functions as a module in a larger 
network. It can be used, for example, to compare patterns. Two distinct 
inputs Ii and Ji produce a composite input Ii + Ji. If the patterns mismatch, 
then the peaks of one pattern will tend to fall on the troughs of the other 
and the composite will tend to be uniform and so be quenched by the noise 
saturation property. But if the patterns match, they will be amplified. 
Indeed, if they match perfectly, then Eq. (14) gives 

o _ (B + C)(I + 1) (eo __ C_) 
XI - A + I + JIB + C ' (15) 

where I and J are the intensities of the two patterns. The slab output, 
quenched or amplified, amounts to a decision as to whether the patterns are 
the same or different. This raises questions about the criteria for pattern 
equivalence that can be answered by more elaborate network designs. Note 
that this competitive pattern matching device compares reflectance patterns 
rather than intensity patterns. 

From his analysis of the minimal solution to the noise-saturation 
dilemma, Grossberg identifies the use of shunting on-center off-surround 
interactions as a general design principle solving the problem of accurate 
pattern registration. He then employs this principle to construct more gen-
eral solutions with additional pattern processing capabilities. He introduces 
recurrent (feedback) interactions to give the slab an STM storage capability. 
By introducing distance-dependent interactions he gives the network edge-
enhancement capabilities. Beyond thiS, he develops general theorems about 
the form of interactions that produce stable solutions of the network 
equations. 

With the general network design principle for accurate pattern registra-
tion in hand, we are prepared to appreciate how Grossberg uses it to solve 
the STM storage problem. The main idea is to introduce interactions among 
the nodes in a slab in a way that is compatible with accurate pattern regis-
tration. Accordingly, we introduce an excitatory self-interaction (on-
center) for each node and inhibitory lateral interactions (off-surround), as 
indicated in Fig. 8. Such a network is said to be recurrent because some of 
its output is fed back as input. 
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Figure 8. A recurrent on-center off-surround anatomy. 

The minimal solution to the STM storage problem is given by the net-
work equations 

Xi = -Axi + (B - Xi)[li + f(xi)] - (xi + C)[Ji + [f(xk)] , (16) 

k;t:i 

where Ii l 0 and Ji 2 0 are excitatory and inhibitory inputs respectively, and 
f(xk) is the signal from the kth node. Grossberg has systematically classi-
fied signal functions f(x) according to the pattern processing characteristics 
they give to the network. His main result is that a sigmoid form for the 
signal function is essential for stability of the network. In spite of this de-
finitive result and its important impl ications, many modelers continue to 
work exclusively with I inear feedback models. 

Besides solving the STM storage problem, the network equations (16) 
endow the slab with additional pattern processing capabilities. Grossberg 
has proved that the sigmoid signal function has a definite quenching thresh-
old (QT). Activities below the QT are quenched while those above the QT 
are sustained. Moreover, the network can easily be given a variable QT 
controlled by external parameters acting on the interneurons that carry the 
feedback. This improves the pattern-matching capabilities of the slab, 
which we have already mentioned. The variable QT provides a tunable 
criterion for pattern equivalence that can be used as a partial pattern-
matching mechanism. 

9.2. Pattern Classification and Code Development 

Now that we know how to hardwire a slab for accurate pattern regis-
tration and STM storage, we are ready to connect slabs into larger networks 
capable of global pattern processing. Here we shall see how to design a 
two-slab network that can learn to recognize similar patterns and distin-
guish between different patterns. This network is a self-organizing system 
capable of extracting common elements from the time-varying sequence of 
input patterns and developing its own pattern classification code. Thus, the 
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network learns from experience. No programmer is necessary. We call 
such a network an adaptive pattern classifier. 

The simplest version of an adaptive pattern classifier is a feed-forward 
network composed of two slabs with the specifications listed in Fig. 9. To 
emphasize their functions, let's refer to slabs 51 and 52 as the image slab 
and feature slab, respectively. As indicated in Fig. 9, each node in the 
image slab is connected to the nodes in the feature slab by pathways termi-
nating in plastic (modifiable) synapses. The configuration is identical to 
that of the outstar discussed earlier, but we shall not refer to it as an out-
star, because its function is not to learn patterns, as we shall see. 

Xi • • 

•• • 

Ill. 1 

1. Normalize Total Activity 
2. Contrast Enhance 
3. STM 

L TM IN PLASTIC SYNAPTIC 
STRENGTHS 

1. Compute Time-Average of 
Presynaptic Si gnal and 
Postsynaptic STM Trace 
Product. 

2. Multiplicatively Gate Signals 

1. Normalize Total Activity 

In put Pa tter n 

Figure 9. A feed-forward adaptive pattern classifier. 

To have a definite example in mind, we can interpret slab 51 as the LGN 
and slab 52 as the visual cortex in Figs. 2 and 3. The input to 51 can be 
regarded as the visual input to the eye after some "preprocessing" in the 
retina. Assuming that the relaxation time for nodes in 51 is sufficiently 
short, the activity pattern across 51 will be proportional to the reflectance 
pattern 8 = (6 1,6 2, ... ,6 n) of the input. In other words, the input image 8 
is accurately registered on 51. That's why we call 51 the image slab. 

When an image is registered on 51' each node vk in 52 receives a signal 
5ik from every node ui in 511 as indicated in Fig. 10. The signals 5ik are 
gated by synaptic strengths zik when they arrive to produce a total gated 
input to vk: 
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n 

Tk = f SikZik = Sk·zk, 
i=1 

199 

(17) 

where the sum is over all nodes in the image slab, and Sk = (Slk, Szk, ••• , Snk), 
zk = (zlk,Z2k, ••• ,znk). 

Figure 10. Gated image input to a feature detector. 

The excitatory inputs Tk induce a pattern of activities xk on the feature 
slab. However, the nodes vk compete for the input by lateral inhibitory 
interactions as in Fig. 8. The greater the activity of one node, the more it 
inhibits the activities of its neighbors. Consequently, nodes with the largest 
inputs tend to increase their activities and suppress the activities of others 
until equil ibrium is reached. The normalization property I imits the total 
activity of the slab. So an increase in the activity of one node implies a 
decrease in the activities of others. The normalization property, therefore, 
implies that the activities of only a limited number of nodes can be driven 
above their signal thresholds. Thus, the input singles out or chooses these 
nodes. If the threshold is sufficiently high, then only the node with the 
greatest activity will be chosen. For the sake of simplicity, let's limit our 
considerations to this case. 

A variety of different input patterns can maximally activate the same 
node vk. The node vk evidently responds to some common feature of these 
patterns, so we call it a feature detector, and we interpret its output as a 
signal that a pattern with this feature has been detected. To see how the 
feature is described mathematically, we look at the activity equation for vk, 
which must have the general form of Eq. (4). After vk has been chosen and 
the slab is in equil ibrium, the lateral interactions Ci k in Eq. (4) vanish, and 
the activity xk will be proportional to the gated input Tk given by Eq. (17). 
Also, the signal Sik is a function of the reflectance Si, and it will simplify 
our job of interpretation if we assume that the function is linear, though this 
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is by no means necessary. Thus, the activity of vk is given by 

(18) 

where A is a positive constant. This enables us to describe pattern classifi-
cation in more specific terms. 

The feature detector vk classifies (recognizes as equivalent) all pat-
terns in the set 

(19) 

where 11 > 0 defines a recognition threshold. Clearly, the pattern class is 
determined by the vectors Zj, so we call them classifying vectors. But note 
that the pattern class Pk depends on the whole set of classifying vectors and 
not on zk alone. The size of I determines how similar patterns must be to 
be classified by the same vk' 

Since the product 8 'zk can never be negative, the set Pk defined by 
Eq. (19) is convex in the sense that the pattern a8 1 + (1-a)8 2 is in Pk if 81 

and 8 2 are in Pk and 0 ú = a ú =1. This convex set defines the feature identi-
fied by Vk' 

The classification rule in Eq. (19) partitions the set of all input patterns 
into mutually exclusive and exhaustive convex subsets Po, Pit P2, ... , PM, 
where, for 1 ú = k ú = M, Vk detects patterns in the set Pk, and Po is the set of 
undetectable patterns that cannot drive any vk over threshold. Thus, the 
feed-forward pattern classifier is capable of categorical perception. The 
number of feature detectors m determines the maximum number of catego-
ries M ú = m. The choice of classifying vectors zk determines how different 
the categories can be. 

The boundaries between the Pj are categorical boundaries. If a pattern 
input is deformed across a boundary, then there will be a sudden shift in 
category perception, as occurs when we view those ambiguous figures 
exhibited in introductory psychology textbooks. The definition of a cate-
gory Pk by Eq. (19) shows that the boundary of Pk depends on the whole set 
of classifying vectors and not on zk alone. Thus, the representation of a 
single • ú ê Ç ’ = depends on the entire network· vocabulary. • 

Now that we know how patterns are classified, we are ready to see how 
new classifications can be learned. When a particular feature detector vk 
detects a pattern, it is driven by the gated image as indicated in Fig. 10. 
This network system is called an instar because it can be redrawn in the 
symmetrical form of Fig. 11. It differs from the outstar of Fig. 6 only in 
the Signal direction. This is expressed by saying that outstar and instar are 
dual to one another. Their anatomical duality is matched by a functional 
duality, the duality of recall and recognition. An outstar can learn to recall 
a given pattern but cannot recognize it whereas an instar can learn to rec-
ognize a pattern but not recall it. The outstar is blind. The instar is dumb. 

While the instar to the feature detector vk is operating, the input pat-
tern drives changes in the classification vector zk determined by the learn-
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Figure 11. Symmetry of the instar anatomy. 

ing equation (4). Noting that normalization will keep the feature detector 
activity at a fixed value xk = ll-lCk and assuming, for simplicity, that the 
learning signal has the linear form Sik = lie i, we can put the instar learning 
equations into the vectorial form 

(20) 

where a is a positive constant. 
For constant reflectance, Eq. (20) integrates to 

-at at 
Zk(t) = zk(O)e + (Ck/a)(1 - e )8, (21) 

which holds no matter how wildly the input intensity I(t) fluctuates. For 
t» a-l, this reduces to zk = a-lck8. Thus, the classification vector zk 
aligns itself with the input reflectance vector 8. More generally, it can be 
shown that the classification vector zk aligns itself asymptotically with a 
weighted average 8 of reflectance vectors that activate the feature detec-
tor vk. This is the instar code development theorem. It is dual to the out-
star learning theorem. Like the outstar theorem, it can be proved rigorously 
under more general assumptions than we have considered here. Note that 
the instar factorizes pattern and intensity just like the outstar, but the 
physical mechanism producing the factorization is quite different in each 
case. For the instar, factorization is produced by lateral interactions in the 
image slab. 

The code development theorem tells us that an adaptive classifier tunes 
itself to the patterns it 'experiences' most often. When a single classifying 
vector is tuned by experience, it shifts the boundaries of all the categories 
Pk defined by Eq. (19). 'Dominant features' will be excited most often, so 
they will eventually overwhelm less salient features. Thus, the adaptive 
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classifier exhibits a progressive sharpening of memory. The degree of 
sharpening can be manipulated by varying the QT. The higher the QT, the 
more sharply tuned the evolving code. 

A computer simulant of a feed-forward additive pattern classifier was 
constructed and tested by Christopher von der Malsburg [1973] with a stri k-
ing result. He endowed the system with a random set of initial classifying 
vectors (synaptic strengths). Then he "trained" the system by presenting it 
with a sequence of nine different input patterns in a "training session." 
Each pattern displayed on the two-dimensional image slab was a straight line 
with a particular orientation. He followed the tuning of feature detectors 
with each training session. His main results after 100 sessions are displayed 
in Fig. 12. Each point on the figure represents one of the 169 feature de-
tectors in Malsburg's feature slab. A line through a point indicates that the 
detector is optimally sensitive to a line image with that orientation. Points 
without lines through them do not respond significantly to any of the pat-
terns. The figure shows many feature detectors for each pattern instead of 
a single one as in our discussion. That is because Malsburg's hardwired in-
hibitory interactions were limited in range to near neighbors, so widely sep-
arated nodes hardly affect one another. This is more realistic than the 
simpler case we considered. 
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Figure 12. Selective sensitivity of simple cells in the striate cortex. 

The striking thing about Fig. 12 is its "swirling" short range order. The 
points tend to be organized in curves with gradual changes in the direction 
of the "tangent vector' as one moves from one point to the next. This is 
striking because it is qualitatively the same as experimental results for 
which Hubel and Wiesel received a Nobel prize in 1981. Into the striate 
cortexes (Fig. 2) of cats and monkeys, Hubel and Wiesel inserted microelec-
trades that can detect the firing of single neurons called 'simple cells.' 
Simple cells are selectively responsive to bars of light with particular orien-
tations that are moved across an animal's retina. Moreover, they found that 
the responses of neighboring simple cells are related as in Fig. 12. Mals-
burg's computer experiment suggests an explanation for their results, and so 
provides one among many pieces of evidence that brains actually process 
patterns in accordance with the principles we have discussed. 
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The Adaptive Classifier is a general-purpose pattern processing device. 
We have discussed the processing of spatial patterns by way of illustration, 
but Grossberg shows how the same device can be used to process temporal 
patterns. Moreover, by connecting classifiers in series, one can construct a 
device that can decompose patterns into features and assemble the features 
into a hierarchy of perceptual units [Fukushima, 1980]. Computer simula-
tions like Malsburg's show that Adaptive Pattern Classifiers work the way 
the theory says they should. The development of practical artificial devices 
for pattern learning and recognition based on the same design principles is 
under way [Hecht-Nielsen, 1983]. Such devices will be quite different from 
devices based on the current theory of pattern recognition in the field of 
artificial intelligence. They will mark the beginning of a new species of 
computer designed with principles of neural network theory. 

9.3. Code Stabilization and Pattern Selection 

The feed-forward adaptive pattern classifier of Fig. 9 has a severe limi-
tation. The number of different patterns it can learn cannot exceed the 
number of nodes in the feature slab. Consequently, when the number of dif-
ferent patterns it experiences approaches the number of feature detectors, 
the system begins a massive recoding that destroys things it has already 
learned. This presents us with a new design problem: How can we design a 
pattern classifier that is plastic enough to learn from experience but stable 
enough to retain what it has learned? Grossberg calls this the stability-
plasticity dilemma. His solution to the dilemma is full of surprises and 
brings forth a new set of network design problems whose solutions result in 
network capabilities with increasing similarities to real biological systems. 
Indeed, Grossberg has developed the theory to the point where it has many 
implications for animal learning theory in psychology, perhaps only a step or 
two away from a viable theory of higher order cognitive processes in human 
beings. Unfortunately, we do not have sufficient space here to do more 
than indicate the direction of Grossberg's research program. 

Grossberg solves the stability-plasticity dilemma by introducing feed-
back from the feature slab to the image slab. Each feature detector is then 
the command cell for an outstar that can read out a learned pattern or tem-
plate on the image slab. An outstar of this sort from the visual cortex to 
the LGN is indicated in Fig. 3. The template can be interpreted as an 
expectation; it is the pattern that the feature detector • expects to see.' 
The template is superimposed on an external input image. If the match 
between template and image is sufficiently close, then the instar signal to 
the feature detector is amplified and fed back by the outstar to amplify the 
template. Thus, a feedback loop of sustained resonant activity is set up, 
and it drives a recoding of the classification vector as well as the template 
in the direction of the input image. Grossberg calls this resonant state an 
adaptive resonance. He suggests that every human act of conscious recog-
nition should be interpreted biologically as an adaptive resonance in the 
brain. This brilliant idea has a host of implications that will surely enable us 
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to tell someday whether the idea is true or false. For example, adaptive 
resonances must be accompanied by distinctive electric fields, and the 
experimental study of such fields is beginning to show promising results. In 
the meantime, the adaptive resonance idea raises plenty of questions to keep 
theorists busy. 

Adaptive resonances process expected events (that is, recognized pat-
terns). An unexpected event is characterized by a mismatch between tem-
plate and image. In that case, the mismatch feature detectors must be shut 
off immediately to avoid inappropriate recoding. Here we have a new 
design problem for which Grossberg has developed a brilliant solution involv-
ing two new neural mechanisms that play significant roles in many other 
network designs. 

The first of these new mechanisms Grossberg calls a gated dipole. The 
gated dipole is a rapid on-off switch with some surprising properties. There 
is already substantial indirect evidence for the existence of gated dipoles, 
but Grossberg's most incisive predictions are yet to be verified. In my 
opinion, direct observations of gated dipole properties would be as profound 
and significant scientifically as the recent "direct" detection of electroweak 
intermediate bosons in physics. 

The second new mechanism Grossberg calls nonspecific arousal. It is a 
special type of signal that Grossberg uses to modulate the quenching 
threshold of a slab. It is nonspecific in the sense that it acts on the slab as 
a whole; it carries no specific information about patterns. As Grossberg 
develops the theory further, he is led to distinguish several types of arousal 
Signals, and their similarities to what we call emotions in people becomes in-
creasingly apparent. Grossberg shows that arousal is essential for pattern 
processing. This has the implication that emotions play an essential role in 
the rational thinking of human beings. Reason and emotion are not so inde-
pendent as commonly believed. 

The processing of unexpected events requires more than refinements in 
the design of adaptive classifiers. It requires additional network compo-
nents to decide which events are worth remembering and how they should be 
encoded. To see the rich possibilities opened up by Grossberg's attack on 
this problem, I refer you to his collected works. 

10. Playing the Game 

The Classical Mechanics Game is played by Newton's rules. The Rela-
tivity Game is played by Einstein's rules. The MAXENT Game is played by 
Jaynes' rules. If you want to play the neural Network Modeling Game, you 
had better learn Grossberg's rules or you're not likely to win any of the 
prizes. 
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