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Abstract. The Kustaanheimo theory of spinor regularization is given a new formulation in terms of geo- 

metric algebra. The Kustaanheimo-Stiefel matrix and its subsidiary condition are put in a spinor form 

directly related to the geometry of the orbit in physical space. A physically significant alternative to the KS 

subsidiary condition is discussed. Derivations are carried out without using coordinates. 

The spinor regularization of the Kepler motion by Kustaanheimo (1964) was given 

a matrix formulation by Kustaanheimo and Steifel (1965). This matrix formulation 

has been developed as a general computational method by Stiefel and Scheifele (1971). 

In spite of its theoretical and computational advantages, the method has not been 

widely employed in astrodynamics and celestial mechanics. This may be because the 

method appears to be founded on anad hoc mathematical trick of obscure significance. 

We believe that this mistaken impression is the result of using an inappropriate 

matrix formulation. We give here an alternative formulation which reveals a clear 

and simple geometric foundation for the method. 

The theory will be reformulated here in terms of 9eometric alyebra. The funda- 

mentals of geometric algebra are developed in Hestenes (1971) and Hestenes (1983) 

We shall employ the basic definitions, notations and results given there, so the reader 

is advised to become familiar with one of these references before proceeding. The 

reasons for using geometric algebra should be reiterated here, however. It suffices to 

note that geometric algebra integrates quaternion algebra and conventional vector 

algebra into a single system combining the advantages of both algebras considered 

separately. In particular, it enables us to define vectors and spinors and perform 

computations without breaking them into components. The advantage of this is 

most obvious in the representation of rotations. 

Geometric algebra enables us to write any rotation-dilation of Euclidean 3-space 

in the canonical form 

x ' =  U~xU, (1) 

where x and x' are vectors and U is a quaternion with conjugate U t. This equation 
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describes the rotation and dilation of any given vector x into a unique vector x'. 

A quaternion U which is used in this way to describe a rotation-dilation may be 

called a spinor, because it is mathematically equivalent to the spinors used in quantum 

mechanics (Hestenes and Gurtler, 1971; Hestenes, 1979). One might refer to U as the 

quaternion form (or representation) of a spinor, to distinguish it from the matrix 

representation of a spinor commonly used in quantum mechanics or the one employed 

by Kustaanheimo (1964). 

The modulus ] U] of the spinor U is a positive scalar determined by 

[U[ 2 = U*U = UU*. 

Consequently, the spinor U, like any nonzero quaternion, has an inverse 

U - 1  = I U ] - 2 U  ). 

Equation (1)can now be written in the form 

x'-Iul2(U-lxU). 

This exhibits the transformation as the composite of a rotation U-  1xU and a dilation 

by a scale factor I UI 2. A proof that any rotation can be put in the form U - l x U  is 

given, for example, in Hestenes (1971). Of greatest importance is the fact that this 

representation of a rotation is completely coordinate-free. 

1. Position Vector and Spinor 

Let r be the radius vector between two particles, or, as a special case, the position of a 

single particle relative to a fixed center of force. In either case we shall refer to r as 

the position of a particle. 

The position r relative to a fixed unit vector 0.1 is determined by a spinor U in the 

equation 

r = U t 0 . 1 U .  (2) 

This is just Equation (1) applied to a single vector rather than regarded as a linear 

transformation of the whole vector space. Squaring (2), we get r 2 = [ U [4, so 

r=l l=lvl (3) 

Thus, the radial distance r is represented as the scale factor I U ] 2 of a rotation-dilation. 

Given r, the corresponding spinor U is not uniquely determined by (2). Indeed, 

if S is a spinor such that 

St0.1S = o"1, (4) 

then (2) gives us 

r = Uta,  U = g t0 .1  (5) 



GEOMETRY OF SPINOR REGULARIZATION 173 

where 

V = SU, (6) 

and S is arbitrary except for the condition (4). The condition (4) simply states that 

al  is an eigenvector of the rotation StxS. In other words, S may be any spinor describ- 

ing a rotation about the r axis. From Hestenes (1971) or Hestenes (1983), we know 

that such a spinor can be written in the parametric form 

S : e  (1/2)ia1r (7) 

where 4) is the scalar angle of rotation and i is the unit pseudoscalar. For the purposes 

of this paper, the only thing one needs to know about  i are that i commutes with all 

vectors and i 2 - -  - -  1 .  

Let us refer to the transformation (6) of U into Vas a gauge transformation, because 

it is similar to the gauge transformation of a spinor state function in quantum theory. 

We say then that Equation (2) is invariant under the one-parameter group of gauge 

transformations specified by (6) and (4) or (7). If Equat ion (2) is regarded as a linear 

transformation of the vector a I into r, the gauge invariance simply means that this 

transformation is invariant under a rotation about the radial axis. We suppose that 

a 1 is some definite unit vector, though the choice is arbitrary. Given a l ,  by Equation (2) 

a spinor U determines a unique vector r, but the vector r, determines U only up to a 

gauge transformation. This nonunique correspondence between spinors and vectors is 

to be expected, of course, because it takes four scalar parameters to specify the quater- 

nion U but only 3 parameters to specify the vector r. To associate a unique spinor U 

with the vector r, we must impose some gauge condition consistent with (2) to f ix  

the gauge uniquely. A natural gauge condition appears when we consider kinematics. 

2. Vector  and Spinor Veloc i ty  

Let r = r(t) be the orbit 

f = dr/dr determine the angular momentum (per unit mass) 

of a particle in position space. The position r and velocity 

h -  r x (8) 

As defined in Hestenes (1971 and 1983), the geometric product of vectors r and f are 

related to the dot and cross products of conventional vector calculus by 

rf = r - i  + i(r x / ' )  = r~: + ih. (9) 

The kinematic significance of this quantity will become apparent in the following. 

Equation (2) relates an orbit U = U(t) in spinor space to an orbit r = r(t) in position 

space. We still need to relate the velocity D in spinor space to the velocity f in position 

space. Differentiating r = I U[ 2, we obtain 

= CU t + U U + =  2(UUt>,  (10) 
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where (Q}  means  scalar part  of 

nion W defined by 

W = 2 U - 1 U  = 2 r -  1 U t U  - -  r - i f  + ira, 

where e~ is a vector and (10) has been used to determine that  ( W )  = r 

We can put  (11) in the form 

C = ! u w ,  
2 

= ~ W ~ U ~ from which we obtain C t ?- . 

[ " - -  g t o "  1 V n t- u t o "  1 C 

obtained by differentiating (2), we get 

= 1 W ) .  f ~(Wtr  + r 

Using (11) this can be written 

= / ' f  + � 8 9  mr). 

Then using re) = r 'e)  + i(r x w), we obtain 

i -  ~:~ + e~ x r .  

Thus, we identify o~ as the angular velocity of the orbit r = r(t). 

According to (14), the radial componen t  of o~ is irrelevant to i. 

to eliminate it by introducing the subsidiary condit ion 

e~.r = ( m r )  : 0. 

This condit ion can be written in several equivalent ways ; thus ,  

Q. Next, it will be convenient  to introduce a quater- 

o r  : - -  r ed  

OF, 

W*r = rW, 

which after inserting (11) and (2), gives us 

C * ~  U = U*~ 1 0. 

This is equivalent to the scalar condit ion 

( i u * ~  C ) : ( i~ 1 Cu~) = o. 

- 1 / : .  

(11) 

(12) 

If we insert these expressions into the equat ion 

{13) 

(14) 

Hence, we are free 

(15) 

(16) 

{17) 

(18) 

Thus, we have expressed the subsidiary condit ion as a relation between U and its 

derivative U. By expressing U and 0 in terms of components ,  one can show that (18) 

is equivalent to the matr ix form of the KS subsidiary condition. 

Now, using (16) in (13) we obtain 

r = r W .  
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Solving for W and using (11), we get the fundamental result 

W = 2 U - 1 U  = r - i f  = r- i t :  q- ie). (19) 

Comparison with (9) shows us that the angular velocity is related to the angular 

momentum by 

o) = r - 2 h .  

This is a consequence of or, if you prefer, an alternative form of the subsidiary condi- 

tion (15). 

Equation (19) specifies completely our desired relation between C and r. Various 

special relations be tween/ )  and r are easily derived from it. For example, 

I w l  = = w w *  - -4] C I  = e = 
r r 2" 

(20) 

Useful alternative forms of (19) are obtained by multiplying it by r and using (2) 

Thus, we obtain 

f = 2Uto"  1 U,  (21) 

or, equivalently, 

2r [? = ~r~ Ur. (22) 

The KS subsidiary condition is a gauge condition. To see how it determines the 

gauge, consider an arbitrary time dependent gauge transformation V = S U .  We 

wish to relate 12 to C to determine the effect of the gauge transformation. Differenti- 

ating (7)with q5 = r we have 

,~, 1 - ~ S  1 r (23) 
- - -  - ~ l a  i = S-~ ia 1 

So, using (12), we have 

( / =  SU + SU = ~ i a ~ V  + VW). 

With the help of (5) we can put this in the form 

= ! V ( i f ~  + W ) .  (24) 
2 

This is a completely general relation showing how W can be altered by a gauge 

transformation. Using the specific from (19) for W, we obtain 

2 V  -115" = 2U -~ C + if~b = r -~ i  + i(r-2h + ~@). (25) 

This shows explicitly that the gauge transformation adds a radial component  fq5 to 

the angular velocity. We can solve (25) for qS, with the result 

�9 2 
dp = - ( i f 2  V - ~ 15") = - - (  iV?~ 1 ( / ) .  (26) 

r 
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This reduces to the KS subsidiary condition (18) if and only if 4) = 0. Thus, the KS 

condition fixes the gauge to a constant value. In other words, the gauge can be chosen 

freely at one time, but its value for all other times is then fixed by the KS condition. 

We have proved that any alternative to the KS gauge condition will have in general, 

an angular velocity with a nonvanishing radial component. Equation (14) shows that 

a radial component of the angular velocity will not affect the velocity f in position 

space, so we are free to adopt alternative gauge conditions. A physically significant 

alternative will be discussed in Section 4. In the meantime, we stick with the KS 

condition. 

3. The Spinor Equation of Motion 

The spinor equation of motion corresponding to a given 

position space is most easily found by differentiating (22). Thus, 

Hence, 

2 

d 
(7"If) --  ~1 U r  + ~1 Ur 

dt 

= UU-~a~ Uf + a~ (a 1Ui ' )  ~ ' ' 2 r  

equation of motion in 

d2U 
1-'2~ (27) 2 - -  = U(rf + ~ ), 

ds 2 

where d/ds = rd/dt. This is the fundamental equation determining the relation between 

vector and spinor equations of motion. 

Given the vector equation of motion 

r 
r = - + f ,  ( 2 8 )  

where f is an arbitrary perturbing force (per unit mass), the spinor equation of motion 

is obtained by substitution into (27). Thus, we obtain 

d2U 
2 - -  E U = Urf ( = ral Uf), (29) 

ds 2 

where E is the Kepler energy 

Equation (29) is the KS equation in terms of geometric algebra. It becomes a 

determinate equation in spinor space when f is given as an explicit function of r and f 

so rf can be expressed as a function of U and C by using (2) and (21). 



GEOMETRY OF SPINOR REGULARIZATION 177 

Note that the perturbation factor rf = r-f + i(r x f) in (29) decomposes naturally 

into a radial part r . f  which can alter the size and shape of the osculating Kepler 

orbit and a torque i(r x f) which can alter the attitude (or orientation) of the orbit in 

space. This is closely related to the alternative gauge condition discussed in the next 

section. 

4. An Al ternat ive  G a u g e  Condi t ion  

We have seen that the KS spinor state function U is related to any acceptable 

alternative state function V by a gauge transformation V = SU. According to (5), 

U and V determine the same orbit r = r(t). As a geometrically significant alternative 

to the KS gauge condition, consider 

r - l o  �9 V = li - -  h -  l h ,  
3 

(31) 

where a3 is an arbitrarily chosen fixed unit vector orthogonal to ax- Equation (31) is 

consistent with (5) since h.r = 0. Therefore it is acceptable as a gauge condition. 

The condition (31) has a number of advantages. To begin with, it assures that V has 

a direct geometrical interpretation. The spinor V determines both the position r by 

(5) and the plane of motion in position space by (31). Conversely, given the position r 

and the plane of motion specified by h, then V is determined uniquely (except for 

sign) by Equations (5) and (31). Thus, V provides a unique and direct description of 

the position and plane of motion at every time. 

A further advantage of using V appears when we relate it to the spinor R which 

determines the Kepler  f rame  

e k = R t a k R  

(k = 1,2, 3). This frame, 

e 3 = R*a3R = I! 

and 

with  a = a x a 
2 3 1 '  

(32) 

is specified by the physical conditions 

(33) 

el = R*al R = g:, (34) 

where e is the eccentricity vector pointing towards periapse of the osculating orbit. 

Equations (31), (33), and (34) determine a unique factorization of the spinor state 

funct ion V into 

V=ZR,  (35) 

where Z and R can be regarded as 'internal' and 'external' state functions respectively. 

Consistency of (31) with (33)implies that 

Z ] o - 3 Z  = Fo, 3 . 

H e n c e ,  we can write  Z in the  form 

Z = (rei~3~ 1/2. (36) 
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Then, using (31) and (34) we obtain 

r = V*a~ V = R*a~ Z Z R  = r~,e ~f'~ (37) 

This exhibits 0 as the true anomaly of the osculating orbit. 

The internal state function Z describes the size and shape of the osculating orbit as 

well as location on the orbit. If we take the eccentricity e = [e l, the angular momentum 

h = Ihl, and the true anomaly 0 as internal state variables, then Z is a determinate 

function Z = Z(e, h, 0) of these variables. The algebraic form of Z exhibited in (36) 

shows that we can identify Z with the Levi-Civita function (Stiefel and Scheifele, 

1971), where the constant bivector ia 3 = o ' 1o"  2 plays the role of the unit imaginary 

satisfying ( i o ' 3 )  2 = - -  1. 

Although the fixed reference frame {ak} can be chosen arbitrarily, it will most 

often be convenient to associate it with an initial osculating orbit of the particle. 

For Kepler motion the best choice is 

0" 1 " - -  gl 0 and a 3 = li, (38) 

where h o is the initial angular momentum and e0 is the initial eccentricity vector. 

The initial value of the spinor V is then 

V 0 : Z 0 : ( g i o r o ) 1 / 2  : rol/2e(1/2)icr30o ' (39) 

where 0 o is the initial true anomaly. 

The external state function R determines the attitude of the osculating orbit in 

position space. A first order equation of motion for R has been derived and discussed 

in Hestenes (1983). 

The factorization V = Z R  should be of value in perturbation theory, because it 

admits a systematic separation of perturbation effects determined by the geometry 

of the orbital elements. Unfortunately, the KS Equation (29) loses its simplicity when 

translated into an equation for V instead of U. Although, of course, Vcan be identified 

with U in the absence of perturbations. On the other hand, if the factorization V - Z R  

is used, it might be best to work with a pair of weakly coupled equations for R and Z, 

but we will not pursue that theme here. 

5. Discussion 

The advantages of formulating KS theory in terms of geometric algebra instead of 

matrix algebra should be evident. First, geometric algebra enables us to formulate 

the entire theory and perform all necessary manipulations without decomposing the 

spinor state function or any other quantity into components. Second, the spinor state 

function and its derivative have definite geometric interpretations characterizing the 

geometry of an orbit in physical space. Consequently, we were able to identify the 

elementary kinematical meaning of the subsidiary condition (18) which is not at all 

evident in the matrix formulation. Indeed, this important point seems to have been 

overlooked in all previous treatments of KS theory. 
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Our formulation makes it clear that the transformation of the Newtonian equation 

of motion into a spinor equation of motion is a general method, not a special method 

concerned only with regularization and perturbations of Kepler motion, as one might 

think from the matrix formulation Stiefel and Scheifele (1971).Thus, our development 

of the theory up to key Equation (27) is completely general. It is interesting to note 

that the usual regularizing change in the time variable is perfectly natural in this 

equation, though no issue of regularization can be raised until the dynamics is 

introduced. We introduce dynamics into that equation in a single step, and the 

Newtonian (or Coulomb) interaction is automatically regularized. Nevertheless, 

the method should be useful for treating other interactions as well. 

It is also interesting to note that our spinor representation of an 'orbital state' in 

classical mechanics is closely related to the spinor representation of a particle state 

is quantum mechanics. The quaternion form for a spinor is used for the wave 

function of an electron in Hestenes (1971 and 1983). Remarkably, the electron spin 

is determined by the electron wave function in the same way that the angular momen- 

tum vector is determined by our 'classical' spinor state function V in Equation (27). 

This suggests new possibilities for interrelating the methods of classical and quantum 

mechanics. 

A representation of KS theory in terms of quaternion algebra has been developed 

by Velte (1978). His quaternion state function is essentially the same as ours. However, 

his method of deriving the quaternion equation of motion does not work if perturba- 

tions to Kepler motion are included. Consequently, he also fails to notice the 

kinematical basis of the KS subsidiary condition. The quaternions form a subalgebra 

of geometric algebra, but quaternion algebra by itself is not a satisfactory substitute 

for geometric algebra, because it fails to distinguish between vectors and bivectors. 

This essential point is discussed in Hestenes (1971). 
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