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CLIFFORD ALGEBRA AND THE INTERPRETATION

OF QUANTUM MECHANICS

David Hestenes

ABSTRACT. The Dirac theory has a hidden geometric structure. This talk traces the concep-
tual steps taken to uncover that structure and points out significant implications for the interpre-
tation of quantum mechanics. The unit imaginary in the Dirac equation is shown to represent the
generator of rotations in a spacelike plane related to the spin. This implies a geometric interpreta-
tion for the generator of electromagnetic gauge transformations as well as for the entire electroweak
gauge group of the Weinberg-Salam model. The geometric structure also helps to reveal closer con-
nections to classical theory than hitherto suspected, including exact classical solutions of the Dirac
equation.

1. INTRODUCTION

The interpretation of quantum mechanics has been vigorously and inconclusively debated since
the inception of the theory. My purpose today is to call your attention to some crucial features of
quantum mechanics which have been overlooked in the debate. I claim that the Pauli and Dirac
algebras have a geometric interpretation which has been implicit in quantum mechanics all along.
My aim will be to make that geometric interpretation explicit and show that it has nontrivial
implications for the physical interpretation of quantum mechanics.

Before getting started, I would like to apologize for what may appear to be excessive self-reference
in this talk. I have been pursuing the theme of this talk for 25 years, but the road has been a lonely
one where I have not met anyone travelling very far in the same direction. So I will not be able to
give much in the way of reference to the work of others, except on occasion when I found my road
crossing theirs. I have reached a vantage point from which I can see where the road has been taking
me pretty clearly. I will describe what I see so you can decide if you would like to join me on the
trip.

Since the pursuit of my theme has been a personal Odyssey, I will supply a quasi-historical account
of my travels to give you some sense of where the ideas came from and how they developed. I began
a serious study of physics and mathematics only after a bachelors degree in philosophy and other
meanderings in the humanities. Although that handicapped me in technical skills, which are best
developed at an earlier age, it gave me a philosophical perspective which is unusual among American
students of science. I had found in my studies of modern epistemology that the crucial arguments
invariably hinged on some authoritative statement by the likes of Einstein, Bohr, Schroedinger and
Heisenberg. So I concluded (along with Bertrand Russell) that these are the real philosophers, and
I must scale the Olympus of physics to see what the world is really like for myself. I brought along
from philosophy an acute sensitivity to the role of language in understanding, and this has been a
decisive influence on the course of my studies and research.

Under the influence of Bertrand Russell, I initially believed that mathematics and theoretical
physics should be grounded in Symbolic Logic. But, as I delved more deeply into physics, I soon
saw that this is impractical, if not totally misguided. So I began to search more widely for a coherent
view on the foundations of physics and mathematics. While I was a physics graduate student at
UCLA, my father was chairman of the mathematics department there. This gave me easy access to
the mathematics professors, students and courses. Consequently, I spent as much tlme on graduate
studies in mathematics as in physics, I still regard myself as much mathematician as physicist.

I mention these personal details because I believe that influences from philosophy, physics and
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mathematics converged to produce a result that would have been impossible without any one of
them. To be more specific about training that bears on my theme, from physics I became very skilful
at tensor analysis because my mentor, Robert Finkelstein, was working on unified field theories, and
I became familiar with the Pauli and Dirac algebras from courses in advanced quantum theory. In
mathematics, I had one of the first courses in “modern” differential geometry from Barret O’Neill,
and I studied exterior algebra and differential forms when the only good books on the subject were
in French. Now this is what that background prepared me for:

Immediately after passing my graduate comprehensive examinations I was awarded a research
assistantship with no strings attached, whereupon, I disappeared from the physics department for
nearly a year. My father got me an isolated office on the fourth floor of the mathematics building
where I concentrated intensively on my search for a coherent mathematical foundation for theoretical
physics. One day, after about three months of this, I sauntered into a nearby math-engineering
library and noticed on the “New Books shelf” a set of lecture notes entitled Clifford Numbers and
Spinors by the mathematician Marcel Riesz [1]. After reading only a few pages, I was suddenly
struck by the realization that the Dirac matrices could be regarded as vectors, and this gives the
Dirac algebra a geometric meaning that has nothing to do with spin. The idea was strengthened
as I eagerly devoured the rest of Reisz’s lecture notes, but I saw that much would be required to
implement it consistently throughout physics. That’s what got me started.

About two months later, I discovered a geometrical meaning of the Pauli algebra which had been
completely overlooked by physicists and mathematicians. I went excitedly to my father and gave
him a lecture on what I had learned. The following is essentially what I told him, with a couple of
minor additions which I have learned about since.

Physicists tacitly assign a geometric meaning to the Pauli matrices σk by putting them in one-
to-one correspondence with orthogonal directions in Euclidean 3-space. The σk can be interpreted
as unit vectors representing these directions, because their products have a geometric meaning.
Thus, the orthogonality of σ1 and σ2 is expressed by the anticommutative product σ1σ2 = −σ2σ1,
which can also be regarded as Grassmann’s outer product σ1 ∧σ2, so the result can be interpreted
geometrically as a directed area (a bivector). This implies a geometric meaning for the formula

σ1σ2σ3 = i , (1.1)

which appears only as formal result in the textbooks on quantum mechanics. This formula tells us
that i should be interpreted as the unit pseudoscalar for Euclidean 3-space, for it expresses i as a
trivector formed from the outer product σ1 ∧ σ2 ∧ σ3 = σ1σ2σ3 of orthogonal vectors.

Equation (1.1) suggests that the unit imaginary (−1)
1
2 in quantum can be interpreted geomet-

rically as the unit pseudoscalar i for physical 3-space, though, strictly speaking, i is related to
(−1)

1
2 I, where I is the identity matrix for the Pauli algebra. This idea turned out to be wrong, as

we shall see. But the suggestion itself provided a major impetus to my research for several years.
It demanded an analysis of the way the Pauli and Dirac algebras are used in physics.

Physicists generally regard the σk as three components of a single vector, instead of an orthonor-
mal frame of three vectors as I have suggested they should. Consequently, they write

σ · a =
∑
k

σk · ak (1.2)

for the inner product of a vector σ with a vector a having ordinary scalar components ak. To
facilitate manipulations they employ the identity

σ · aσ · b = a · b + iσ · (a× b) . (1.3)

This is a good example of a redundancy in the language of physics which complicates manipulations
and obscures meanings unnecessarily.
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Formula (1.3) is a relation between two distinct mathematical languages, the vector algebra of
Gibbs and the Pauli matrix algebra. This relation expresses the fact that the two languages have
overlapping “geometric content,” and it enables one to translate from one language to the other.
However, by interpreting the σk as vectors generating a geometric algebra we can eliminate all
redundancy incorporating both languages into a single coherent language. Instead of (1.2) we write

a =
∑
k

akσk (1.4)

expressing the expansion of a vector in terms of an orthonormal basis. Then (1.3) takes the form

ab = a · b + i(a× b) , (1.5)

where
a× b = −i(a ∧ b) (1.6)

defines the vector cross product as the dual of the outer product. By the way, this shows that the
conventional distinction between polar and axial vectors in physics is really the distinction between
vectors and bivectors in disguise, for (1.6) exhibits the vector a×b as a representation of the bivector
a ∧ b by its dual.

Sometime later I realized that the conventional interpretation of (1.2) as an inner product of a
with a spin vector σ is completely consistent with my interpretation of the σk as a frame of vectors,
for the physicists always sandwich the σ between a pair of spinors before calculations are completed.
Thus, if φ is a 2-component Pauli spinor, one gets a spin density

φ†σkφ = 1
2Tr (φφ†σk) = ρs ·σk . (1.7)

The notation on the right indicates that the matrix trace is equivalent to projecting out the com-
ponents of a vector ρs which is inherent in the matrix φφ† by dotting it with the basis vectors σk.
Thus, (1.2) gives us

φ†σk · aφ =
∑
k

φ†σkφak = ρ s · a , (1.8)

which is an ordinary inner product on the right.
These observations about the Pauli algebra reveal that is has a universal significance that physi-

cists have overlooked. It is not just a “spinor algebra” as it is often called. It is a matrix repre-
sentation for the geometric algebra R3, which, as was noted in my first lecture, is no more and
no less than a system of directed numbers representing the geometrical properties of Euclidean 3-
space. The fact that vectors in R3 can be represented as hermitian matrices in the Pauli algebra
has nothing whatever to do with their geometric interpretation. It is a consequence of the fact
that multiplication in R3 is associative and every associative algebra has a matrix represention.
This suggests that we should henceforth regard the σk only as vectors in R3 and dispense with
their matrix representations altogether, because they introduce extraneous artifacts like imaginary
scalars.

I wondered aloud to my father how all this had escaped notice by Herman Weyl and John von
Neumann, not to mention Pauli, Dirac and other great physicists who has scrutinized the Pauli
algebra so carefully. When I finished my little talk, my father gave me a compliment which I
remember word for word to this day, because he never gave such compliments lightly. He has always
been generous with his encouragement and support, but I have never heard him extend genuine
praise for any mathematics which did not measure up to his own high standards. He said to me,
“you understand the difference between a mathematical concept and its representation by symbols.
Many mathematicians never learn that.”
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My initial insights into the geometric meaning of the Pauli algebra left me with several difficult
problems to solve. The first problem was to learn how to represent spinors in terms of geometric
algebra without using matrices. Unfortunately, Marcel Riesz never published the chapter in his
lectures which was supposed to be about spinors. From his other publications I learned that spinors
can be regarded as elements of minimal left ideals in a Clifford algebra, and ideals are generated by
primitive idempotents. But I had to find out for myself how to implement these ideas in quantum
mechanics. So I spent much of the next three years intensively studying spinors and ideals in the
Pauli algebra, the DIrac algebra and Clifford algebras in general. I was unaware that Professor
Kähler was engaged in a similar study at about the same time. I could have profited from his
publications [2,3], but I did not learn about them till more than a decade later.

The mathematical problem of constructing spinors and ideals for the Dirac and Pauli algebras is
fairly simple. The real problem is to find a construction with a suitable geometrical and physical
interpretation. Let me describe for you the solution which I developed in my doctoral dissertation
[4]. As you know, the Dirac algebra is mathematically the algebra C(4) of complex 4× 4 matricies
and this is isomorphic to the complex Clifford algebra C4. A physico-geometrical interpretation
is imposed on C4 by choosing an orthonormal frame of vectors γµ (for µ = 0, 1, 2, 3) to represent
directions in spacetime. Of course, the γµ correspond exactly to the Dirac matrices in C(4). In
addition, I provided the unit imaginary in C4 with a physical interpretation by identifying it with
the unit pseudoscalar of R3 as specified by (1.1). This entails a factorization of C4 into

C4 = R3 ⊗R2 . (1.9)

Of course, this factorization is to be done so that the σk in R3 correspond to the same physical
directions as the γk (for k = 1, 2, 3) in C4.

The factorization (1.9) implicitly identifies C4 with a real geometric algebra Rp,q. As Lounesto
[5] and others have noted, every complex Clifford algebra C2n can be identified with a real algebra
Rp,q where p+ q = 2n+ 1 and n(2n+ 1) + q are odd integers. These conditions on p and q imply
that a unit pseudoscalar of Rp,q commutes with all elements of the algebra and has negative square.
Therefore, it has the algebraic properties of the unit imaginary scalar in C2n. In the case of physical
interest p + q = 4 + 1 = 5, and we can choose an orthonormal basis e0, e1, e2, e3, e4 for Rp,q so the
unit so the unit pseudoscalar can be written i = e0e1e2e3e4. From this we can see explicitly that

i2 = e2
0e2

1e2
2e2

3e2
4 = −1 , (1.10)

provided q = 1, 3 or 5. Thus, C4 is isomorphic to R4,1, R2,3 and R0,5. Among these alternatives
the best choice is determined by geometrical considerations.

The simplest relation to the spacetime algebra R1,3 is determined by the projective conditions

γµ = eµe4 . (1.11)

Imposing the spacetime metric

γ2
0 = −e2

µe2
4 = 1, γ2

k = −e2
ke2

4 = −1 ,

we find that e2
4 = e2

k = −e2
0 = 1. Thus, we should identify C4 with R4,1. You will recognize (1.11) as

defining a projective map, whose general importance was pointed out in my first lecture. It identifies
R1,3 with the even subalgebra of R4,1 as expressed by

R+
4,1 = R1,3 . (1.12)

To show that this is consistent with the factorization (1.9), we write

σk = γke0 = eke40 . (1.13)
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Then we find that the pseudoscalar for R3, R4,1 and R1,3 are related by

σ1σ2σ3 = i = e01234 = γ5e4 , (1.14)

where γ5 = γ01234 = e01234. Thus, all the requirements for a geometrical identification of i have
been met. It may be of interest also to note that (1.14) and (1.11) can be solved for

e4 = −iγ5 and eµ = iγ5γµ , (1.15)

which expresses the generating vectors of the abstract space R4,1 in terms of quantities with direct
physical interpretations.

I did not employ the projective mapping (1.11) in my dissertation, because I did not appreciate
its significance until later, but what I did was equivalent to it for practical purposes. With a definite
physico-geometrical interpretation for C4 in hand, I went on to the study of ideals and spinors in
C4. As most of you know, the columns of a matrix are minimal left ideals in a matrix algebra,
because columns are not mixed by matrix multiplication from the left. The Dirac matrix algebra
C(4) has four linearly independent minimal left ideals, because each matrix has four columns. The
Dirac spinor for an electron or some other fermion can be represented in C(4) as a matrix with
nonvanishing elements only in one column, like so

ψ1 0 0 0
ψ2 0 0 0
ψ3 0 0 0
ψ4 0 0 0

 , (1.16)

where the ψi are complex scalars. The question arises: Is there a physical basis for distinguishing
between different columns? The question looks more promising when we replace C(4) by the iso-
morphic geometric algebra R4,1 in which every element has a clear geometric meaning. Then the
question becomes: Is there a physical basis for distinguishing between different ideals?

The Dirac theory clearly shows that a single ideal (or column if you will) provides a suitable
representation for a single fermion. This suggests that each ideal should represent a different kind
of fermion, so the space of ideals is seen as a kind of fermion isospace. I developed this idea
at length in my dissertation, classifying leptons and baryons in families of four and investigating
possible interactions with symmetries suggested by features of the geometric algebra, including
SU(2) gauge invariant electroweak interactions.

I was not very convinced by my own dissertation, however, because there was too much guesswork
in associating ideals with elementary particles, though my theory seemed no less satisfactory than
other theories around at the time. I was bothered even more by the relation (1.14) between the
pseudoscalar i for R3 and γ5 for R1,3, because the factor e4 does not seem to make any sense in
terms of spacetime geometry. I should add that this problem is inherent in conventional applications
of the Dirac theory, as can be seen by rewriting (1.13) in the form

γk = σke0 . (1.17)

In conventional matrix representations this is expressed as the decomposition of a 4× 4 matrix into
a Kroenecker product of 2× 2 matrices σk and e0.

Before continuing with the story of my Odyssey, let me point out that I have been exploiting an
elementary property of geometric algebras with general significance. Let Gn = Rp,q be a geometric
algebra generated by orthonormal vectors eλ where λ = 1, 2, . . . , n. Let Gn−2 be the geometric
algebra generated by

σk = eken−1en (1.18)
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where k = 1, 2, . . . , n − 2, and let G2 be the geometric algebra generated by the vectors en and
en−1. It is easy to see that the elements of Gn−2 commute with those of G2. Therefore, Gn can be
expressed as the Kroenecker product

Gn = Gn−2 ⊗ G2 . (1.19)

This factorization has been known since Clifford, but it seems to me that its geometric meaning has
been overlooked. So I want to emphasize that the vectors of Gn−2 are actually trivectors in Gn with
a common bivector factor. Geometrically, they determine a family of 3-spaces which intersect in a
common plane.

It is important to realize that the decomposition (1.19) does not involve the introduction of any
new kind of multiplication aside from the geometric product. I have employed the notation and
terminology of the Kroenecker product only to emphasize that the factors commute. I would like to
add that in publications since my thesis I have avoided use of the Kroenecker factorization (1.19)
in order to emphasize geometric interpretation. However, I believe that the factorization will prove
to be very important in Geometric Function Theory, because it reduces geometric functions to
commuting factors which can be differentiated independently.

The Kroenecker decomposition (1.19) should be compared with the projective decomposition of
a geometric algebra which I emphasized in my first lecture. These are two basic ways of relating
geometric algebras with different dimensions, and I believe they should be employed systematically
in the classification of geometric algebras and their properties. Most work on the classification of
Clifford algebras ignore geometric considerations and develops a classification in terms of matrix
representations. Without denying the value of such work, I suggest that a classification without
matrices is desirable. This is in accord with the viewpoint of my first lecture that geometric algebra
is more fundamental than matrix algebra.

2. REAL SPINOR REPRESENTATIONS

About six months after completing my doctorate, I found a way to resolve the problem of geometric
interpretation which bothered me in my thesis. I had worked out detailed representations for Lorentz
transformations and the equations of electrodynamics in terms of the real spacetime algebra R1,3

and separately in terms of the Pauli algebra before it dawned on me that the representations are
identical if R3 and R1,3 are projectively related by

σk = γkγ0 , (2.1)

so that
i = σ1σ2σ3 = γ0γ1γ2γ3 = γ5 . (2.2)

As we saw in my first lecture, this simplifies computations and makes perfect sense geometrically.
It also eliminates the need to supplement spacetime with additional degrees of freedom in order to
interpret the Dirac algebra geometrically, as in the extension toR4,1 which we just discussed. At first
sight, however, this appears to be incompatible with quantum mechanics, because the imaginary
scalar i′ = (−1)

1
2 of the Dirac algebra appears explicitly in the Dirac equation, and, unlike the

pseudoscalar i′ = γ5, it commutes with the γµ. To see how this difficulty can be resolved, we need
to understand the representation of spinors in the real spacetime algebra R1,3.

The number of linearly independent minimal left ideals in R1,3 is two, half the number we found
for the Dirac algebra. An orthogonal pair of such ideals is generated by the idempotents 1

2 (1±σ3),
where σ3 = γ3γ0 is a unit timelike bivector. Any multivector M in R1,3 can be written in the form

M = M+ +M− , (2.3)
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where
M± = M 1

2 (1± σ3) (2.4)

are its component in the two orthogonal ideals. Since the entire algebra has 24 = 16 components,
each of the ideals has 8 components, exactly the number of real components in a Dirac spinor.
Therefore, we should be able to write the Dirac equation for a spinor Ψ = Ψ+ in one of the ideals.
The “imaginary problem” is handled by observing that the ideals are invariant under multiplication
not only on the left by any element of the algebra but also on the right by the pseudoscalar i = γ5,
since i commutes with σ3. To help clarify the correspondence with the Dirac theory, let me define
right multiplication by i as a linear operator i by writing

iΨ = Ψi . (2.5)

This operator commutes with any operator multiplying Ψ from the left, for

i(γµΨ) = (γµΨ)i = γµ(Ψi) = γµ(iΨ) , (2.6)

which justifies the operator equation iγµ = γµi. Note that this is mapping of the associative law
onto the commutative law.

Now the Dirac equation for a particle with mass m and charge e can be written in the form

Ψi− eAΨ = mΨ , (2.7)

where A = aµγ
µ is the electromagnetic vector potential. This looks just like the conventional Dirac

equation when it is written in the form

γµ(i∂µ − eAµ)Ψ = mΨ , (2.8)

but it employs the only real spacetime algebra R1,3 in which every element has a clear geometric-
physical meaning. As soon as I understood that (2.7) really is equivalent to the Dirac equation, I
salvaged what I could from my dissertation and quickly wrote a manuscript which was eventually
published as the book Space-Time Algebra [6].

I learned much later that already in 1962 Kähler [3] had proposed a form of the Dirac equation
with γ5 operating on the right which is essentially equivalent to (2.7). He employed complex scalars,
but the real and imaginary parts obey separate equations of the same form as long as the imaginary
unit does not appear explicitly in the equation.

One thing bothered me about the Dirac equation in the form (2.7): What is the physical signifi-
cance of the bivector σ3 which determines the ideal of the spinor? It took me nearly two years to
answer that question. As described in Ref. [7], I found the answer by factoring into

Ψ = ψU , (2.9)

where ψ is an element of the even subalgebra R+
1,3, and

U = 1
2 (1 + γ0)(1 + σ3) . (2.10)

Note that
γ0U = U (2.11)

and
iσ3U = Ui . (2.12)
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Also, it can be proved that any ψ in R+
1,3 for which ψψ̃ 6= 0 can be written in the canonical form

ψ = (ρeiβ)
1
2R , (2.13)

where ρ and β are scalars and RR̃ = 1. I should mention that the reverse M̃ of any multivector M
in R+

1,3 with k-vector parts Mk can be defined by

M̃ = M0 +M1 −M2 −M3 +M4 . (2.14)

Note that (2.11) enables us to regard ψ as even in (2.9), because if ψ had an odd part, that part
could be made even by multiplying it with γ0 without altering (2.9).

The even multivector ψ is a new representation of a Dirac spinor, for which the Dirac equation
takes the form

ψiσ3 − eAψ = mψγ0 , (2.15)

as can be verified by multiplying it on the right by U to get back (2.7). At first this may look more
complicated than the conventional form of the Dirac equation, but it gets much simpler as we learn
to understand it, Ironically, I derived (2.15) in my book and promptly forgot about it for two years
until I rederived it by a different method and discovered how ψ is related to the observables of the
Dirac theory. In spite of the similarity of (2.7) and (2.15) to the Dirac equation, some people doubt
that they are equivalent, so I should provide a proof. I will employ the complex Clifford algebra C4,
which we know is isomorphic to the Dirac matrix algebra C(4). A minimal ideal in C4 is generated
by

U ′ = 1
2 (1 + γ0)(1− i′iσ3) = 1

2 (1 + γ0)(1− i′γ5γ3) , (2.16)

where, as before, i′denotes the imaginary scalar and i = γ5 is the pseudoscalar. Note that U ′ has
the idempotent property (U ′)2 = 2U ′.

Also
γ0U

′ = U ′ , (2.17)

and
iσ3U

′ = γ5γ3U
′ = i′U ′ . (2.18)

Now it is obvious that every spinor Ψ′ in the ideal generated by U ′ can be written in the form

Ψ′ = ψU ′ , (2.19)

where ψ is an even multivector exactly as before. For any odd part ψ in (2.19) can be eliminated
by using (2.17), and if i′ appears explicity in any part of ψ, (2.18) allows us to replace it with
iσ3. It is easy to find a matrix representation for U ′ which puts Ψ′ in the column matrix form
(1.16), so Ψ′ is clearly equivalent to a Dirac spinor. Thus, we have established that Ψ, ψ and Ψ′

are equivalent representations of a Dirac spinor. (See Appendix A of Ref. [8] for more details and
a slightly different proof.) Now the proof that (2.15) is equivalent to the Dirac equation is trivial.
We simply multiply it on the right by U ′ and use (2.17), (2.18) and (2.19) to get the conventional
form of the Dirac equation

γµ(i′∂µ − eAµ)Ψ = mΨ′ . (2.20)

The main import of this proof is that complex scalars do not play an essential role in the Dirac
theory. As (2.18) indicates, the unit imaginary i′ is replaced by a spacelike bivector iσ3 = γ2γ1,
when we go from the complex to the real representation. This implies that a geometrical meaning
for i′ is implicit in the Dirac theory, for the bivector iσ3 is manifestly a geometrical quantity. This
presents us with an important question to investigate: What is the physical significance of the fact
that the unit imaginary in the Dirac theory represents a spacelike bivector?
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To establish a physical interpretation for the spinor “wave functions” Ψ, ψ and Ψ′, we need to
relate them to “observables.” I will simply assert an interpretation at the beginning, but by the time
we are finished it will be clear that my interpretation agrees with the conventional interpretation of
the Dirac theory. I begin with the interpretation of ψ, because it is simplest and most direct. Using
ψ̃ = (ρeiβ)

1
2 R̃, the Dirac probability current is given by

J = ψγ0ψ̃ = ρRγ0R̃ = ρv . (2.21)

As shown in Ref. [6], R is the “spin representation” of a Lorentz transformation, so v = Rγ0R̃
describes a Lorentz transformation of the timelike vector γ0 into the “velocity vector” v. The factor
ρ is therefore to be interpreted as a probability density. Note that the factor eiβ disappears from
(2.21) because i anticommutes with γ0.

The spin (or polarization) vector of a Dirac particle is given by

ρs = ψγ3ψ̃ = ρRγ3R̃ . (2.22)

Strictly speaking the spin S is bivector quantity, but it is related to the vector s by

S = R(iσ3)R̃ = iRγ3R̃Rγ0R̃ = isv , (2.23)

so one determines the other.
The vectors γ0 and γ3 in (2.21) and (2.22) are not necessarily related to the reference frame of

any observer. They are singled out because they appear as constants in the Dirac equation. These
constants are not seen in the conventional form of the Dirac theory because they are buried in
an idempotent. Having exhumed them, we may attend to their physical meaning. The constant
iσ3 = iγ3γ0 = γ2γ1 is especially important because of its role as the imaginary unit. Equation
(2.23) shows that the wave function relates it to the spin.

Indeed, we could replace iσ3 by the spin S in the Dirac equation (2.15) by employing the identity

ψiσ3 = Sψ . (2.24)

This enables us to interpret a rotation generated by iσ3 as a rotation in the S-plane. The bivector iσ3

is also generator of electromagnetic gauge transformations. The Dirac equation (2.15) is invariant
under a gauge transformation of the wave function replacing ψ by

ψ′ = ψeiσ3χ = eSχψ (2.25)

while A is replaced by A′ = A−e−1 χ. This transformation also leaves the spin and velocity vectors
invariant, for ψ′γ0ψ̃

′
= ψγ0ψ̃ and ψ′γ0ψ̃

′
= ψγ3ψ̃. Indeed, we could define the electromagnetic gauge

transformation as a rotation which leaves the spin and velocity vectors invariant.
Now we can give a detailed physical interpretation of the spinor wave function ψ in its canonical

form (2.13). We can regard ψ as a function of 8 scalar paramenters. Six of the parameters are needed
to determine the factor R which represents a Lorentz transformation. Five of these determine the
velocity and spin directions in accordance with (2.21) and (2.22). The sixth determines the gauge
or phase of the wave function (in the S-plane). We have already noted that ρ is to be interpreted as
a probability density. The interpretation of the remaining parameter β presents problems which I
do not want to discuss today, although I will make some observations about it later. As you know,
this parameter is not even identified in the conventional formulation of the Dirac theory.

Having related ψ to observables, it is easy to do the same for Ψ and Ψ′. From (2.9) and (2.10),
we find that ΨΨ̃ = 0, but

Ψγ0Ψ̃ = ψ(1 + γ0)ψ̃ = ρeiβ + J , (2.26)
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and
Ψiγ0Ψ̃ = ψiγ3(1 + γ0)ψ̃ = ρis(1 + veiβ) . (2.27)

On the other hand, if we introduce the definition ĩ′ = −i′ for the scalar imaginary, then (2.16) and
(2.19) give us

Ψ′γ0Ψ̃′ = Ψ′Ψ̃′ = ψU2ψ̃ = ψ2Uψ̃ = ρeiβ + J − i′ργ5s(1 + veiβ) . (2.28)

Equating corresponding k-vector parts of (2.26), (2.27) and (2.28) and calculating their components,
we get the following set of equivalent expressions for the so-called “bilinear covariants” of the Dirac
theory:

<Ψ̃′Ψ′> = <Ψγ0Ψ̃> = <ψψ̃> = ρ cosβ, (2.29a)

<Ψ̃′γµΨ′> = <γµΨγ0Ψ̃> = <γµψγ0ψ̃> = J · γµ, (2.29b)

i′<Ψ̃′γµ ∧ γνΨ′> = <γµ ∧ γνΨγ0Ψ̃> = (γµ ∧ γν) · (ρSeiβ), (2.29c)

i′<Ψ̃′γ5γµΨ′> = <iγµΨγ0Ψ̃> = <γµψγ3ψ̃> = ρs · γµ, (2.29d)

<Ψ̃′γ5Ψ′> = <iΨγ0Ψ̃> = <iψψ̃> = −ρ sinβ. (2.29e)

The angular brackets here mean scalar part, and I have used the theorem <AB > = <BA> to
put the terms on the left in the standard form of the Dirac theory. Equations (2.29b) and (2.29c)
justify our earlier identifications of the Dirac current and the spin in (2.21) and (2.22).

We have completed the reformulation of the Dirac theory in terms of the real spacetime algebra
R1,3. It should be evident that of the three different representations for a Dirac spinor, the repre-
sentation ψ is the easiest to interpret geometrically and physically. So I will work with ψ exclusively
from here on, with full confidence that its equation of motion (2.15) is 100% equivalent to the
conventional Dirac equation. I suggest that we refer to ψ as the operator representation of a Dirac
spinor, because it produces “ideal representations” by operating on idempotents and it produces
observables by operating on vectors as in (2.21) and (2.22).

The most important thing we have learned from the reformulation is that the imaginary i′ in
the Dirac equation has a definite geometrical and physical meaning. It represents the generator of
rotations in a spacelike plane associated with the spin. Indeed, we saw that i′ can be identified
with the spin bivector S. I want to emphasize that this interpretation of i′ is by no means a radical
speculation; it is a fact! The interpretation has been implicit in the Dirac theory all the time. All
we have done is make it explicit.

Clearly the identification of the imaginary i′ with the spin bivector has far-reaching implications
about the role of complex numbers in quantum mechanics. Note that it applies even to Schroedinger
theory [7] when the Schroedinger equation is derived as an approximation to the Dirac equation.
It implies that a degenerate representation of the spin direction by the unit imaginary has been
implicit in the Schroedinger equation all along.

This is is the kind of idea that can ruin a young scientist’s career. It appears to be too important
to keep quiet about. But if you try to explain it to most physicists, they are likely to dismiss
you as some kind of crackpot. The more theoretical physics they know the harder it is to explain,
because they already have fixed ideas about the mathematical formalism, and you can’t understand
this idea without re-analyzing such basic concepts as how to multiply vectors. They quickly become
impatient with any discussion of elementary concepts, so they employ the ultimate putdown: “What
are the new predictions of your theory.” If you can’t come up with a mass spectrum or branching
ratio, the conversation is finished. I learned early that you must be very careful when and where
and how you voice such a crackpot idea.

Since I first publlshed the real spinor formulation of the Dirac theory in 1967, the only people
(besides my students) who took it seriously enough to use it for something were the Frenchmen
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Casanova [9], Boudet [10] and Quilichini [11]. I suppose that is partly because they are not conven-
tional physicists. They found out some interesting things about the solutions of the Dirac equation
for the hydrogen atom. But most physicists would be more concerned about how the formalism
applies to quantum electrodynamics (QED). There they would encounter difficulties at once, which
I suppose has induced some to dismiss the entire formalism. Conventional QED calculations involve
multiplications with a commuting imaginary all over the place, but the real formalism does not
contain such an entity. It appears at first that one cannot even define the conventional commuting
momentum and spin projection operators without it. I must admit that I was perplexed by this
difficulty for a long time myself. However, it has a simple solution: One merely handles right mul-
tiplications by defining them as operators acting from the left, as I did in defining i by (2.5). Let
me illustrate this by defining projection operators for the real spinor Ψ. The momentum projection
operators are just the usual idempotents

P± =
1

2m
(1± p) , (2.30)

where p2 = m2. The spin projection operators are defined by

Σ± = 1
2 (1± iγ5s) , (2.31)

where s is a spacelike unit vector satisfying p · s = 0. Operating on Ψ this gives

Σ±Ψ = 1
2 (1± iγ5s)Ψ = 1

2 (Ψ± isΨi) . (2.32)

Note that Σ± is not an idempotent of the algebra R1,3; nevertheless, it has the idempotent property
(Σ±)2 = Σ± of a projection operator. Also, the operators P± and Σ± commute, like they do in the
conventional theory.

One can apply the same trick to carry out conventional QED calculations with the spinor Ψ.
However, the use of Ψ suggests new methods of calculation without projection operators which may
prove to be superior to conventional methods. But that is a long story itself which I cannot get into
today.

Now that we have settled the relation of the real spinor formalism to the conventional complex
spinor formalism (I hope), we are prepared to discuss implications for the interpretation of quantum
mechanics. First let me point out some negative implications. The complex probability amplitudes
that appear in physics have led some to propose that quantum mechanics entails some new kind
of “quantum logic” which is essentially different from the logic of classical thoery. However, the
association of the unit imaginary with the spin shows that complex amplitudes arise from some
physical reason, so the quantum logic idea appears to be on the wrong track.

Another negative implication of our reformulation concerns the interpretation of operators in
quantum mechanics. It is widely believed by physicists that the Pauli and Dirac matrices have some
special quantum mechanical significance, so their commutation relations have bearing on questions
about quantum mechanical measurement. But the reformulation in terms of spacetime algebra
shows that these commutation relations express geometrical relations which are no more quantum
mechanical than classical. Therefore, we can dismiss most of that stuff as arrant nonsense. It has
validity only to the extent that it is merely an expression of geometrical relations. For example, the
γµ are often said to be velocity operators in the Dirac theory. But we see them merely as ordinary
vectors, which are velocity operators only in the sense that they pick out velocity components from
the wave function by the ordinary inner product, as, in fact, they do in (2.29b). To attribute more
meaning than that to the γµ is to generate nonsense. There is, indeed, an extensive literature on
such nonsense. We should not be surprised that this literature is muddled and barren.

Turning now to the positive implications of the real reformulation, we have seen that it reveals
geometrical features of the Dirac theory which are hidden in the conventional matrix formulation.
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Of course, it cannot per se produce any new predictions, because the reformulated Dirac theory is
isomorphic to the original formulation. We will get new physics only if the new geometrical insights
guide us to significant modifications or extensions of the Dirac theory. I want to tell you next about
some promising possibilities along this line.

3. CLASSICAL SOLUTIONS OF THE DIRAC EQUATION

The relation of the Dirac theory to classical relativistic electrodynamics is not well understood. I
aim to show you that it is more intimate than generally suspected. The classical limit is ordinarily
obtained as an “eikonal approximation” to the Dirac equation. To express that, in our language,
the wave function is put in the form

ψ = ψ0e
iσ3χ , (3.1)

and the “amplitude” ψ0 is assumed to be slowly varying compared to the “phase” χ, so it is a good
approximation to neglect derivatives of ψ0 in the Dirac equation. Thus, inserting (3.1) into the
Dirac equation (2.15), multiplying by ψ̃ on the right, and using the canonical form (2.13) for ψ, we
obtain

χ+ eA = −mveiβ . (3.2)

This implies that eiβ = ±1, because the trivector part on the right must vanish. These two signs can
be absorbed in the sign of the charge e on the left. That tells us that the parameter β distinguishes
between particle and antiparticle solutions of the Dirac equation. Assuming β = 0, by squaring
(3.2) we obtain

( χ+ eA)2 = m2 . (3.3)

This is exactly the classical relativistic Hamilton-Jacobi equation for a charge particle. On the other
hand, the curl of (3.2) gives us

−m ∧ v = ∧A = eF , (3.4)

where F = ∧ A is the electromagnetic field. Now we use the general identity v · ( ∧ v) =
v · v − 1

2 v2. Since v2 = 1 here, this implies that v · ( ∧ v) = v · v = v̇, where the overdot
indicates a derivative along the streamlines (integral curves) of the vector field v = v(x). Let me
remind you that the probability conservation law · J = · (ρv) = 0 implies that these curves are
well-defined. Thus, by dotting (3.4) with v, we obtain the equation of motion for any streamline of
the Dirac current,

mv̇ = eF · v . (3.5)

You will recognize this as the classical equation of motion for a point charge.
All this is supposed to be an approximation to the Dirac theory. But I want to point out that it

holds exactly for solutions of the Dirac eauation when

ψ0 = 0 , (3.6)

in which case our assumption that derivatives of ψ0 are negligible is unnecessary. Members of this
audience will recognize (3.6) as a generalization of the Cauchy-Riemann equations to spacetime, so
we can expect it to have a rich variety of solutions. The problem is to pick out those solutions with
physical significance. To see how that can be done, we write ψ0 = ρ

1
2R with v = Rγ0R̃, from which

we obtain vψ0 = ψ0γ0. Differentiating, we have

(vψ0) = ( v)ψ0 − v( ψ0) + 2v · ψ0 = ψ0γ0 .

Then using (3.6) and · (ρv) = ρ · v + v · ρ = 0, we obtain an equation of motion for the
spinor R along a streamline.

Ṙ = − 1
2 ( ∧ v)R . (3.7)
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When (3.4) is used to eliminate ∧ v, this becomes

Ṙ =
e

2m
FR , (3.8)

which, as we saw in my first lecture, can regarded as a classical equation of motion. And from
the first lecture we know that besides implying the classical Lorentz force (3.5), it determines the
precession of the spin vector along a streamline.

Our derivation shows that equations (3.6) and (3.8) are related by the probability conservation
law. Any solution of the Dirac equation which satisfies these equations can fairly be called a classical
solution. Let me tell you that exact classical solutions of the Dirac equation actually exist, though
I do not have time to spell out the details here. The so-called Volkov solution for an electron in
an electromagnetic plane wave field is one. It may be that there are solutions of this type for any
electromagnetic field. However, the standard solution for the hydrogen atom is not one of them,
for the parameter β in that case is a nonvanishing, nontrivial function of position. Nevertheless, it
must have a definite relation to the known classical solution of (3.8) for the hydrogen atom. More
work is needed along this line.

The intimate relation between streamlines of the Dirac theory and trajectories of the classical
theory which we have just uncovered provides a much more detailed correspondence between the
classical and quantum theories than the conventional approach using expectation values and Ehren-
fest’s theorem. Let me remark in passing that it also suggests a relativistic generalization of the
Feynmann path integral including spin, where one integrates the entire classical spinor R along each
path instead of just the gauge factor exp (iσ3χ), where χ is the classical action. But what I want to
emphasize most is that the basic idea which we have been exploiting provldes a general geometrical
approach to the interpretation of the Dirac theory as follows: Any solution ψ = ψ(x) of the Dirac
equation (2.15) with the form (2.13) determines a field of orthonomal frames eµ = eµ(x) defined by

ψγµψ̃ = ρeµ, where eµ = RγµR̃ , (3.9)

with e0 = v and e3 = s as before. Through each spacetime point there is a streamline x = x(τ) with
tangent v = v(x(τ)), and we can regard eµ = eµ(x(τ)) as a “comoving frame” on the streamline with
vectors e1 and e2 rotating about the “spin axis” e3 = s. For the classical solutions discussed above,
the general precession of the comoving frame is determined by (3.8), while an additional rotation
of e1 and e2 is determined by the “gauge factor” in (3.1). It should be of genuine physical interest
to identify and analyze any deviations from this classical rotation which quantum mechanics might
imply.

The Dirac theory provides a beautiful mathematical theory of spinning frames on the spacetime
manifold. But a spinning frame is not a spinning thing, and physicists want to know if the Dirac
theory can be interpreted as a mathematical model for some physically spinning thing. I am afraid
that question cannot be answered without becoming embroiled in speculations. But the question is
too important to be avoided for that. Some physicists have attempted to model the electron as a
small spinning ball. But that introduces all kinds of theoretical complications and, as far as I have
been able to see, no significant insights. Along with Asim Barut and others, I think a much more
promising possibility is the idea that the electron is a particle executing a minute helical motion,
called the zitterbewegung, which is manifested in the electron spin and magnetic moment. As I have
recently published a speculative article on that idea [12], I will not go into details here. I only want
to mention a key idea of that article, namely, that the Coulomb field ordinarily attributed to an
electron is actually the time average of a more basic periodic electromagnetic field oscillating with
the de Broglie frequency ω = mc2/h̄ ≈ 1021s−1 of the electron. This is a new version of wave-particle
duality, where the electron is a particle to which this high frequency electromagnetic field (or wave)
is permanently attached. As the article points out, this gives us a mechanism for explaining the
most perplexing features of quantum mechanics from diffraction to the Pauli principle. What I
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want to add here is that this version of wave-particle duality may be viable even without the literal
electron zitterbewegung. In particular, it may fit into the gauge theory which I turn to next.

4. GAUCE STRUCTURE OF THE DIRAC THEORY

One thing that bothered me for a long time after I discovered the underlying geometrical structure
of the Dirac theory is the question: How does the concept of probability fit in with all this geometry?
I now have an answer which I find fairly satisfying. To get a spacetime invariant generalization of
the concept of a continuous probability density in 3-space, we need to introduce the concept of a
probability current J obeying the conservation law · J = 0. Now, it should be evident from our
earlier discussion that every timelike vector field J = J(x) can be written in the form

J = ψγ0ψ̃ , (4.1)

where ψ = ψ(x) is an even spinor field. This theorem automatically relates the probability current
to a spinor field and all the geometry that goes with it. You will notice that the bilinear relation
between the spinor field ψ and the vector field J is perfectly natural in this language, and it is as
applicable to classical theory as to quantum mechanics. This removes much of the mystery from
the bilinear relation of the wave function to observables in quantum mechanics. It shows that the
bilinearity has a geometrical origin, which certainly has nothing to do with any sort of quantum
logic.

The relation of vector J to spinor ψ in (4.1) cannot be unique, because only four scalar parameters
are required to specify J uniquely, while eight are required to specify ψ. Indeed, the same J results
from (4.1) if ψ is replaced by

ψ′ = ψS (4.2)

where
Sγ0S̃ = γ0 . (4.3)

This is a gauge transformation of the wave function ψ, so the set of all such transformations is the
gauge group of the Dirac probability current, that is, the group of gauge transformations leaving
the Dirac current invariant. We can identify the structure of this group by decomposing S into

S = eiαU , (4.4)

where α is a scalar parameter and UŨ = 1. The set of all S = U satisfying (4.3) is the spin “little
group” of Lorentz transformations leaving the timelike vector γ0 invariant; it has the SU(2) group
structure. It follows from (4.4), therefore, that the gauge group of the Dirac current has the SU(2)
⊗ U(1) group structure. Note that this is a 4-parameter group, so it accounts completely for the
difference in the number of parameters needed to specify J and ψ. You will notice also that it has
the same structure as electroweak gauge group in the Weinberg-Salam (W-S) model of weak and
electromagnetic interactions. I want to make the stronger claim that the electroweak gauge group
should be identified with the gauge group of the Dirac current. This, of course, is to claim that
the electroweak gauge group has been inherent in the Dirac theory all the time, though one could
not see it without the reformulation in terms of spacetime algebra. It is a strong claim, because
it relates the electroweak gauge group to spacetime geometry of the wavefunction. That requires
some justification.

The gauge group of the Dirac current has a subgroup which also leaves the spin vector ρs = ψγ3ψ̃
invariant, namely, the 2-parameter group of elements with the form

S = eiαeiσ3χ . (4.5)
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We recognize the last factor as an electromagnetic gauge transformation, which, as we have seen,
leaves the Dirac equation as well as the spin and velocity vectors invariant. Now, the main idea of the
W-S model is to generalize the electromagnetic gauge group of the Dirac theory to account for weak
interactions. Since we have proved that the generator of electromagnetic gauge transformations is
a bivector iσ3 associated with the spin, we should not be satisfied with a generalization which does
not supply an associated geometric interpretation for the generators of weak gauge transformations.
But we have just what is needed in the gauge group of the Dirac current. This appears to be ample
justification for identifying that group with the electroweak gauge group. Of course, that requires
a modification of the Dirac equation to accommodate the larger gauge group. As I have shown
elsewhere [13] how that can be done to conform perfectly to the W-S model, I will not go into such
details here. But I want to add some observations about the general structure of the theory.

An important feature of the W-S model is the separation of “right-handed” and “left-handed”
components of the wave functions. To show how the conventional expressions for these components
should be translated into our geometrical language, it is convenient to introduce the imaginary
operator i defined by

iψ = ψiσ3 . (4.6)

Now the projections onto left- and right-handed components ψ+ and ψ− are defined by

1
2 (1± iγ5)ψ = 1

2 (ψ ± iψiσ3) = ψ 1
2 (1∓ σ3) = ψ∓ . (4.7)

Thus, we are back to spinors in ideals again, but now we have a physical interpretation for the
ideals.

In my formulation of the W-S model in terms of spacetime algebra [13], the two ideals are
interpreted as electron and neutrino eigenstates of the lepton wave function. Equation (4.7) shows
that there is a relation between the representation of different particles by the two ideals and the
decomposition of the wave function for one particle into left- and right-handed components. This is
a relation between two features introduced as independent assumptions in the original W-S model.
Moreover, from (4.5) we see that the quantities

iQ± = 1
2 (1± σ3)i (4.8)

are generators of the “spin invariance group” (4.5). This relates the electromagnetic gauge group
to the “chiral projection operators” in (4.7). All this suggests possibilities for a deeper geometrical
justification of the phenomenological W-S model. I should mention that the full W-S model involves
a spinor with both even and odd parts, whereas (4.7) is an even spinor only. That must be taken
into account in relating (4.7) to the W-S model.

For the purpose of physical interpretation we need to relate the decomposition (4.7) to observables.
Since (1 + σ3)γ0(1− σ3) = 0, the ideals are orthogonal in the sense that

ψ+γ0ψ̃− = ψ−γ0ψ̃+ = 0 . (4.9)

This implies that the Dirac current separates into uncoupled left and right handed currents J±.
Thus, using ψ = ψ+ + ψ−, we find

J = ψγ0ψ̃ = J+ + J− ., (4.10)

where
J± = ψ±γ0ψ̃± = ψ 1

2 (γ0 ± γ3)ψ̃ . (4.11)

The expression on the right of (4.11) follows from

1
2 (1± σ3)γ0

1
2 (1∓ σ3) = 1

2 (1± γ3γ0)γ0 = 1
2 (γ0 ± γ3) .

15



The corresponding decomposition of the spin vector is given by

ρs = ψγ3ψ̃ = ρ(s+ + s−) , (4.12)

where
ρs± = ψ±γ3ψ̃± = ψ 1

2 (γ3 ± γ0)ψ̃ = J± . (4.13)

The separation (4.10) into uncoupled currents suggest that the two spin components ψ± might be
identified with different particles, or coupled differently to gauge fields, as, in fact, they are in the
W-S theory. Equation (4.11) shows that the currents J± are null vectors, as required for massless
particles. And (4.12) shows that spin vectors ρs± are, respectively, parallel or antiparallel to their
associated currents J±. I believe these elementary observations will be important for understanding
and assessing the geometric structure of the W-S model.

5. CONCLUSION

My objective in this talk has been to explicate the geometric structure of the Dirac theory and
its physical significance. My approach may seem radical at first sight, but I hope you have come
to recognize it as ultimately conservative. It is conservative in the sense that, by restricting my
mathematical language to the spacetime algebra, I allow nothing in my formulations of physical
theory without an interpretation in terms of spacetime geometry. I am not opposed to investigating
the possibilities for unifying physical theory by extending spacetime geometry to higher dimensions,
and I believe geometric algebra is the ideal tool for that. But we still have a lot to learn about the
physical implications of conventional spacetime structure, so I have focused my attention on that.
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APPENDIX: The Kähler Algebra

Since the Dirac-Kähler equation has been a topic for much discussion at this conference, I will
provide a dictionary here to show how easy it is to translate the Clifford algebra employed in this
paper into Kähler’s representation in terms of differential forms. We consider only algebras of
spacetime; the generalization to algebras of higher dimension is trivial.

Let Ψ be any element of a Clifford algebra (real or complex) generated by an orthonormal frame
of spacetime vectors γµ as in the text above. The expansion of Ψ into k-vector parts Ψk is given by

Ψ =
4∑
k=0

Ψk . (A.1)

For k > 0, the expansion of Ψk with respect to a basis can be written

Ψk =
1
k!
φµ1...µkγ

µ1 ∧ . . . ∧ γµk

=
1
k!
φµ1...µkγµ1 ∧ . . . ∧ γµk , (A.2)

where the coefficients may be real or complex, and {γµ} is the frame reciprocal to {γµ}, as defined
by the equation γµ · γν = δµν . Let us write

γµ ∧Ψ =
∑
k

γµ ∧Ψk , γµ ·Ψ =
∑
k

γµ ·Ψk , (A.3)
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so
∧Ψ =

∑
k

∧Ψk , ·Ψ =
∑
k

·Ψk , (A.4)

and
Ψ = ·Ψ + ∧Ψ (A.5)

We can map all this into differential forms by introducing a multivector differential of mixed grade
defined by

D =
∑
k=0

Dk , (A.6)

where D0 = 1 and for k > 0,

Dk = dx1 ∧ . . . ∧ dxk =
1
k!

dxµ1 . . .dxµkγµ1 ∧ . . . ∧ γµk . (A.7)

To every k-vector Ψk there corresponds a differential k-form Φk given by

Φk = <D̃Ψk> = D̃k ·Ψk =
1
k!

Φµ1...µkdx
µ1 ∧ . . . ∧ dxµk . (A.8)

More generally, to every multivector Ψ there corresponds a differential “multiform” Φ given by

Φ = <D̃Ψ> = <ΨD̃> =
4∑
k=0

Φk . (A.9)

This generalizes the mapping of multivectors into forms which I considered in my first lecture.
Now the exterior product of a l-form dxµ = γµ · dx with the form Φ can be defined by

dxµ ∧ Φ = <(γµ ∧Ψ)D̃> , (A.10)

and the contraction of Φ with the vector γµ can be defined by

γµ Φ = <(γµ ·Ψ)D̃> . (A.11)

Kähler defined a “vee product” for differential forms by writing

dxµ ∨ Φ = dxµ ∧ Φ + γµ Φ . (A.12)

But (A.10) and (A.11) imply that this is equivalent to

dxµ ∨ Φ = <γµΨD̃> , (A.13)

which defines the vee product by a linear mapping of the geometric product into forms. Thus, we
have established a one-to-one mapping of Clifford algebra onto differential forms. This representation
of Clifford algebra by an algebra of differential forms is called the Kähler algebra.

The induced mapping of the curl into the differential forms gives us the exterior derivative, as
expressed by

dΦ = <D̃ ∧Ψ> . (A.14)
This divergence maps to

−δΦ = <D̃ ·Ψ> . (A.15)
Therefore, the vector derivative maps to

(d− δ)Φ = <D̃ Ψ> = dxµ ∨ <D̃∂µΨ> . (A.16)

Now the Dirac equation in any of the forms we discussed above can easily be mapped into an
equivalent Dirac-Kähler equation in the Kähler algebra. Of course, ideals in the Clifford algebra
map into corresponding ideals in the Dirac algebra. I should mention, though, that for ideal spinors
on curved manifolds the Kähler derivative defined by (A.16) differs from the derivative in the usual
form of the Dirac equation. In particular, it couples minimal left ideals. This point is discussed
by Benn and others in their lectures. I want to point out, however, that no such coupling occurs
if one employs the operator representation of a Dirac spinor, and there is more than one possible
way to define a covariant derivative for spinors. Unfortunately, there appears to be no hope of
distinguishing between the various possibilities by any sort of experimental test.
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