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The possibility that zitterbewegung opens a window to particle substructure in quantum mechanics
is explored by constructing a particle model with structural features inherent in the Dirac equation.
This paper develops a self-contained dynamical model of the electron as a lightlike particle with
helical zitterbewegung and electromagnetic interactions. The model admits periodic solutions with
quantized energy, and the correct magnetic moment is generated by charge circulation. It attributes
to the electron an electric dipole moment rotating with ultrahigh frequency, and the possibility of
observing this directly as a resonance in electron channeling is analyzed in detail. Correspondence
with the Dirac equation is discussed. A modification of the Dirac equation is suggested to incorporate
the rotating dipole moment.
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I. INTRODUCTION

This paper continues a research program investigating
implications of the Real Dirac Equation for the interpre-
tation and extension of quantum mechanics. Details of
the program have been reviewed elsewhere [1–3], so it
suffices here to state the main ideas and conclusions to
set the stage for the present study.

The program began with a reformulation of the Dirac
equation in terms of Spacetime Algebra (Section II),
which revealed geometric structure that is suppressed in
the standard matrix version. In particular, it revealed
that the generator of phase and electromagnetic gauge
transformations is a spacelike bivector specified by elec-
tron spin. In other words, spin and phase are inseparably
related — spin is not simply an add-on, but an essential
feature of quantum mechanics. However, physical impli-
cations of this fact depend critically on relations of the
Dirac wave function to physical observables, which are
not specified by the Dirac equation itself. That started
the present research program to investigate various pos-
sibilities.

A standard observable in Dirac theory is the Dirac cur-
rent, which doubles as a probability current and a charge
current. However, this does not account for the magnetic
moment of the electron, which many investigators con-
jecture is due to a circulation of charge. What, then, is
the nature of the charge circulation? High energy scat-
tering experiments limit the size of the electron to less
that 10−16 cm, [4] which rules out models of the elec-
tron as an extended body. After a lengthy analysis of
the Dirac equation Bohm and Hiley conclude [5]: “the
electron must still be regarded as a simple point parti-
cle whose only intrinsic property is its position.” Under
this assumption, spin and phase must be expressed in
the kinematics of electron motion. The charge circula-
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tion that generates the magnetic moment can then be
identified with the zitterbewegung of Schroedinger [6].

This raises the central question of the present research:
Is the zitterbewegung, so construed, a real physical phe-
nomenon, or is it merely a colorful metaphor? Although
this question was motivated by structural features of the
Dirac equation, it cannot be answered without attribut-
ing substructure to electron motion that is not specified
by standard Dirac theory.

The main purpose of this paper is to formulate and
study a well-defined particle model of the electron with
spin and zitterbewegung dynamics motivated by the Dirac
equation. Since the term zitterbewegung is quite a mouth-
ful, I often abbreviate it to zitter, especially when it is
used as an adjective.

We study the structure of the zitter particle model in
considerable detail with the aim of identifying new ex-
perimental implications. The main conclusion is that
the electron is the seat of a rapidly rotating electric
dipole moment fluctuating with the zitter frequency of
Schroedinger. As this frequency is so rapid, it is observ-
able only under resonance conditions. It is argued that
familiar quantum mechanical effects, such as quantized
states, may be attributable to zitter resonance. In partic-
ular, the Landau levels for electron motion in a magnetic
field correspond to exact periodic solutions. Moreover,
the possibility of observing zitter directly as a resonance
in electron channeling is analyzed and supported with
experimental evidence that has not been explained by
standard quantum mechanics.

The relation of the zitter particle model to the Dirac
equation is also studied. The main conclusion is that,
though zitter oscillations are inherent in the Dirac equa-
tion, they will not be manifested as an oscillating electric
dipole without altering the definition of charge current.
A simple modification of the Dirac equation to incorpo-
rate the altered definition is proposed.

In conclusion, the relation of the zitter particle model
to the Dirac equation can be considered from two differ-
ent perspectives. On the one hand, it can be regarded
as a “quasiclassical” approximation that embodies struc-
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tural features of the Dirac equation in a convenient form
for analysis. On the other hand, it can be regarded as for-
mulating fundamental properties of the electron that are
manifested in the Dirac equation in some kind of average
form. The choice of perspective is left to the reader.

II. SPACETIME ALGEBRA

Spacetime algebra is thoroughly expounded elsewhere
[1], so a brief description is sufficient here, mainly to de-
fine terms.

We represent Minkowski spacetime as a real 4-
dimensional vector space M4. The two properties of
scalar multiplication and vector addition in M4 provide
only a partial specification of spacetime geometry. To
complete the specification we introduce an associative ge-
ometric product among vectors a, b, c, . . . with the prop-
erty that the square of any vector is a (real) scalar. Thus
for any vector a we can write

a2 = aa = ε|a|2 , (1)

where ε is the signature of a and |a| is a (real) positive
scalar. As usual, we say that a is timelike, lightlike or
spacelike if its signature is positive (ε = 1), null (ε = 0),
or negative (ε = −1). We can specify the signature ofM4

as a whole, by adopting the axioms: (a) M4 contains at
least one timelike vector; and (b) every 2-plane in M4

contains at least one spacelike vector.
To facilitate applications of STA to physics a few def-

initions and theorems are needed. From the geometric
product uv of two vectors it is convenient to define two
other products. The inner product u · v is defined by

u · v = 1
2 (uv + vu) = v · u , (2)

while the outer product u ∧ v is defined by

u ∧ v = 1
2 (uv − vu) = −v ∧ u . (3)

The three products are therefore related by

uv = u · v + u ∧ v . (4)

This can be regarded as a decomposition of the product
uv into symmetric and skewsymmetric parts, or alterna-
tively, into scalar and bivector parts.

The inner and outer products can be generalized. One
way is to define the outer product along with the notion
of k-vector iteratively as follows: scalars are defined to
be 0-vectors, vectors are 1-vectors, and bivectors, such as
u ∧ v, are 2-vectors. For a given k-vector K, the integer
k is called the grade of K. For k ≥ 1, the outer product
of a vector v with a k-vector K is a (k+1)-vector defined
in terms of the geometric product by

v ∧K = 1
2 (vK + (−1)kKv) = (−1)kK ∧ v . (5)

The corresponding inner product is defined by

v · K = 1
2 (vK + (−1)k+1Kv) = (−1)k+1K · v , (6)

and it can be proved that the result is a (k − 1)-vector.
Adding (5) and (6) we obtain

vK = v · K + v ∧K , (7)

which obviously generalizes (4). The important thing
about (7), is that it decomposes vK into (k − 1)-vector
and (k + 1)-vector parts.

By continuing as above, STA as been developed into
a complete coordinate-free calculus for spacetime physics
[1]. However, to hasten comparison with standard Dirac
algebra, we interrupt that approach to introduce coor-
dinates and a basis for the algebra. Let {γµ; 0, 1, 2, 3}
be a right-handed orthonormal frame of vectors with γ0

in the forward light cone. In accordance with (2), the
components gµν of the metric tensor for this frame are
given by

gµν = γµ · γν = 1
2 (γµγν + γνγµ) . (8)

This will be recognized as isomorphic to a famous formula
of Dirac’s. The difference here is that the γµ are vectors
rather than matrices. A coframe {γµ} is defined by the
usual convention for raising and lowering indices: γµ =
gµνγν .

The unit pseudoscalar i for spacetime is related to the
frame {γν} by the equation

i = γ0γ1γ2γ3 = γ0 ∧ γ1 ∧ γ2 ∧ γ3 . (9)

It is readily verified from (9) that i2 = −1, and the geo-
metric product of i with any vector is anticommutative.

By multiplication the γµ generate a complete basis of
k-vectors for STA, consisting of the 24 = 16 linearly in-
dependent elements

1, γµ, γµ ∧ γν , γµi, i . (10)

Multivectors with even grade compose a subalgebra of
the STA generated by the bivectors {σk ≡ γkγ0; k =
1, 2, 3}, so that

σ1σ2σ3 = γ0γ1γ2γ3 = i. (11)

Any multivector can be expressed as a linear combination
of these elements.

For example, a bivector F has the expansion

F = 1
2Fµνγµ ∧ γν , (12)

with its “scalar components” Fµν given by

Fµν = γµ ·F ·γν = γν · (γµ ·F ) = (γν ∧γµ) ·F .(13)

Note that the two inner products in the middle term
can be performed in either order, so a parenthesis is not
needed; also, we use the usual convention for raising and
lowering indices.

Alternatively, one can decompose the bivector into

F = E + iB = F k0σk + 1
2F kjσjσk, (14)

corresponding to the split of an electromagnetic field
into“electric and magnetic parts.”
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The entire spacetime algebra is obtained from linear
combinations of basis k-vectors in (10). A generic ele-
ment M of the STA, called a multivector, can thus be
written in the expanded form

M = α + a + F + bi + βi =
4∑

k=0

〈M〉k , (15)

where α and β are scalars, a and b are vectors, and F
is a bivector. This is a decomposition of M into its k-
vector parts, with k = 0, 1, 2, 3, 4, where 〈. . .〉k means “k-
vector part.” Of course, 〈M〉0 = α, 〈M〉1 = a, 〈M〉2 = F ,
〈M〉3 = bi, 〈M〉4 = βi.

Obviously, we can decompose M into even and odd
parts given, respectively, by

〈M〉+ = α + F + βi, 〈M〉− = a + bi. (16)

Note that the even part commutes with the pseudoscalar
i, while the odd part anticommutes with it.

Computations are facilitated by the operation of rever-
sion. For M in the expanded form (15) the reverse M̃
can be defined by

M̃ = α + a− F − bi + βi . (17)

Note, in particular, the effect of reversion on the various
k-vector parts: α̃ = α, ã = a, F̃ = −F, ĩ = i .

It is not difficult to prove that

(MN)∼ = ÑM̃ , (18)

for arbitrary multivectors M and N . For scalar parts
〈M〉 ≡ 〈M〉0, we have

〈M̃〉 = 〈M〉 hence 〈MN〉 = 〈NM〉 . (19)

The scalar part in STA corresponds to the trace in Dirac’s
matrix representation of the algebra.

Besides the inner and outer products defined above,
many other products can be defined in terms of the ge-
ometric product. We will need the commutator product
M ×N , defined for any M and N by

M ×N ≡ 1
2 (MN −NM) = −N ×M . (20)

If M is a bivector, this product is grade preserving. Also,
the product is distributive on the geometric product,
with the form of a “derivation”:

M × (NP ) = (M ×N)P + N(M × P ) . (21)

If the geometric product is replaced by the commutator
product in this expression, it assumes the familiar form
of a Jacobi identity.

For bivectors S and F we can now expand the geomet-
ric product as follows:

SF = S · F + S × F + S ∧ F (22)

where S × F is a bivector and S ∧ F is a pseudoscalar.
Note how this differs from the expansion (7).

One great advantage of STA is that it provides
coordinate-free representations of both tensors and
spinors in the same system. Spinors can be represented as
even multivectors serving as algebraic operators. Using
reversion, it is easy to prove that every even multivector
ψ satisfies

ψψ̃ = ρei β . (23)

Hence, for ρ 6= 0, ψ can be written in the canonical form

ψ = (ρei β)
1
2 R, (24)

where

RR̃ = R̃R = 1 . (25)

Every such R determines a Lorentz rotation of a given
multivector M :

R : M → M ′ = RMR̃ , (26)

and every Lorentz rotation can be expressed in this
coordinate-free form. Construed as an operator in this
sense, the quantity R is called a rotor while ψ is called
a spinor. We shall describe particle kinematics and the
Dirac wave function by spinors in this sense.

The set of all rotors form a multiplicative group called
the rotor group or the spin group of spacetime. When
R = R(τ) represents a one parameter family of rotors
(hence of Lorentz rotations), “angular velocities” Ω and
Ω′ are defined by

Ṙ = 1
2ΩR = 1

2RΩ′ , (27)

or

Ω = 2ṘR̃ = R Ω′R̃ and Ω′ = 2R̃Ṙ , (28)

where the overdot indicates derivative. It follows from
(25) and (15) that Ω and Ω′ are bivectors.

We represent each spacetime point as a vector x =
xµγµ with rectangular coordinates xµ = γµ · x. The
vector derivative with respect to the point x is defined
by ∇ = ∂x = γµ∂xµ . As ∇ is a vectorial operator, we
can use (7) to decompose the derivative of a k-vector field
K = K(x) into

∇K = ∇ · K +∇∧K , (29)

where the terms on the right can be identified, respec-
tively, with the usual divergence and curl in tensor cal-
culus.

Besides the STA definitions and relations given above,
many others can be found in the references. We shall
introduce some of them as needed.
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III. CLASSICAL PARTICLES WITH SPIN

Classical models of the electron as a point particle with
spin were first formulated by Frenkel [7] and Thomas [8],
improved by Mathisson [9], and given a definitive form by
Weyssenhoff [10]. They have been revisited from time to
time by many investigators [11–13], including others to
be cited below. They are of interest mainly for the insight
they bring to the interpretation of quantum mechanics.
But they are also of practical value, for example, in the
study of spin precession [1, 14] and tunneling [15–17].

In Weyssenhoff’s analysis the models fall into distinct
classes, differentiated by the assumption that the elec-
tron’s spacetime history is timelike in one and lightlike
in the other. The timelike case has been studied by many
investigators, such as those cited above. Ironically, the
lightlike case, which Weyssenhoff regarded as far more
interesting, has been generally ignored. Without being
aware of his analysis, I arrived at similar conclusions
from my study of real Dirac theory. This paper revis-
its Weyssenhoff theory with new mathematical tools to
simplify and extend it.

Our first task is to reformulate Weyssenhoff theory in
the language of spacetime algebra (STA) and show how it
is simplified, clarified and extended. A decided advantage
of STA is its uniform use of spinors in both classical and
quantum theory. For one thing, this makes it easier to
relate classical models to solutions of the Dirac equation
[1]. Although we are most interested in the lightlike case,
we treat the timelike case in enough detail to compare
the two cases. Besides, the timelike models can be used
for other particles with spin besides electrons, including
atoms.

We consider a particle with spacetime history z = z(τ)
and proper velocity [1]

u ≡ ż =
dz

dτ
. (30)

For the time being, we allow u to be either timelike, with
constant u2 > 0, or lightlike, with constant u2 = 0, so in
either case

u̇ · u = 0 . (31)

For the time being, the time τ will be regarded as an
arbitrary affine parameter.

Suppose the particle has proper momentum p = p(τ)
and intrinsic angular momentum (spin) represented by
a bivector S = S(τ). Equations of motion are obtained
from general conservation laws for momentum and an-
gular momentum. However, to formulate these laws cor-
rectly it is essential to note that just as p contributes
an orbital momentum, S contributes an intrinsic part to
the momentum, so we cannot make the usual assumption
p = mu. Instead, the relation between p and u depends
on the dynamics of motion. The same can be said about
the relation between S and u, although we shall assume
that it is restricted by the kinematical constraint

S · u = 0 . (32)

This reduces the degrees of freedom in S to three at most.
The noncollinearity of p and u raises a question about

how mass should be defined. Without prejudicing the
issue, it is convenient to introduce a dynamical mass de-
fined by

m ≡ p · u . (33)

This quantity is well defined for both timelike and light-
like particles, so lightlike particles can have mass in this
sense. However, the value of this mass obviously depends
on the choice of time parameter τ , which, so far, is not
well defined in the lightlike case. This is our first hint
that mass is intimately related to intrinsic time scaling
of electron histories.

Without presupposing a relation between momentum
and velocity, momentum conservation can be given the
general form

ṗ = f , (34)

where the proper force f describes transfer of momentum
through external interactions.

Angular momentum conservation is governed by

Ṡ = u ∧ p + Γ , (35)

where the proper torque Γ describes angular momentum
transfer through external interactions. To see where (35)
comes from, we introduce the orbital angular momentum
p ∧ z so the total angular momentum is

J ≡ p ∧ z + S . (36)

The angular momentum conservation then has the more
familiar form

J̇ = f ∧ z + Γ , (37)

where f ∧z is the orbital torque. The equivalence of (37)
with (35) follows immediately by differentiating (36).

Equation (37) tells us that J is a constant of motion for
a free particle with spin. Spin is not separately conserved.
According to (36), angular momentum can be exchanged
back and forth between orbital and spin parts.

To get well defined equations of motion from the con-
servation laws we need to specify the interactions. For
a particle with charge q and dipole moment M = M(τ),
we consider

f = qF · u +∇F · M (38)

where F = F (z) is an applied electromagnetic (bivector)
field [aptly called the Faraday ] and the vector derivative
∇ = γµ∂µ operates on F . The first term on the right of
(38) is the standard “Lorentz force,” while the second is a
force of “Stern-Gerlach” type. The latter is accompanied
by the torque

Γ = F ×M . (39)

The “interaction laws” (38) and (39) must be supple-
mented by a “constitutive equation” expressing M as a
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function of S and u. In general M can include both
electric and magnetic dipole moments. The general con-
stitutive constraint

M × S = 0 (40)

is satisfied by the standard constitutive equation M = gS
for a magnetic moment, but also by the more general
relation

M = gSeiβ . (41)

which is worth noting, because it appears in Dirac theory,
as we see later.

From the specific form of the interaction laws we can
prove that the magnitude of the spin is a conserved quan-
tity. First note that (32) implies

S ∧ S = 0 so S2 = S · S . (42)

This follows from the identity

(S ∧ S)u = (S ∧ S) · u = 2S ∧ (S · u) .

From (35) with (39) we get

1
2

d

dτ
S2 = S · Ṡ = S · (u ∧ p) + S · (M × F ) .

The first term on the right vanishes because

S · (u ∧ p) = (S · u) · p = 0 ,

and the second term vanishes by (40) and the identity

S · (F ×M) = 〈SFM〉 = F · (M × S) . (43)

Therefore

S2 = −|S|2 = constant . (44)

The negative sign appears because (32) implies that S
cannot be a timelike bivector, though it can be null.

Up to this point, our equations apply equally to time-
like and lightlike particles. To go further we must con-
sider each case separately. Three distinct possibilities
have been studied in the past. To make contact with
Dirac theory, most investigators have been attracted by
the possibility of choosing |S| = h̄/2 coupled with a time-
like velocity. This case has been most thoroughly stud-
ied by Corben [11]. However, that model suffers from an
ill-defined zitter radius, as we see below. The alternative
possibility, coupling spin to a lightlike velocity overcomes
that deficiency. I confess to struggling with that model
for many years before I realized that for a lightlike par-
ticle the spin must be a lightlike bivector. Shortly there-
after I learned that Weyssenhoff had figured that out long
before [10]. However, he was unable to generalize the free
particle case to include interactions. Before solving that
problem, let us see what can be learned from the free
particle case.

IV. FREE PARTICLE MOTION

We gain insight into the “kinematics of spin” from the
free particle solution. The solution has the same form
for both timelike and lightlike cases, though we shall see
that there there is a crucial difference in physical inter-
pretation.

For a free particle it follows from (34), (37) and (36)
that p and J = p ∧ z + S are constants of motion. Since
p2 = m2

e, where me is the experimentally measured elec-
tron mass, we can write

p = mev , (45)

with v2 = 1,
We seek a general solution with constant dynamical

mass m0 = p · u = p · ż. Integrating this relation, we
obtain

p · (z − z0) = m0τ , (46)

where z0 is the particle position at τ = 0. Conservation
of angular momentum (36) gives us

(z − z0) ∧ p = S(τ)− S0 , (47)

where S0 is the initial value of the spin. Adding these
equations and multiplying by p−1 = p/p2 we get an equa-
tion for the particle history :

z = [S(τ)− S0] p−1 + m0p
−1τ + z0 . (48)

We can write this in the form

z(τ) = r(τ) + x(τ) , (49)

where a center of motion is defined by

x =
m0

p
τ + z0 − S0 · p−1 , (50)

and a radius vector is defined by

r = S(τ) · p−1 . (51)

Differentiating (50), we get the constant vector

ẋ = m0p
−1 = γv where γ = u · v = m0/me .(52)

Thus, we identify τ as proper time in the “p frame”
scaled by a factor γ. In the timelike case we have u2 =
ż2 = 1, so τ is the particle’s proper time and γ is a
time dilation factor. In the lightlike case u2 = 0, but
γ = u · v = 1 defines a unique projection of time τ onto
the lightlike history.

Differentiating (51), we obtain

ṙ = Ṡ · p−1 = (u ∧ p) · p−1 = u− γv . (53)

It follows that ṙ ·r = 0, so r2 is a constant of motion, and
r = r(τ) must be a rotating vector. Hence (49) describes
a helix in spacetime centered on the timelike straight line
(50), and r is its vector radius of curvature.
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Consequently, we can write

ṙ = Ω · r = Ωr, . (54)

where Ω is a constant bivector. And, using (53), for
particle speed in terms of time t = γτ we obtain

γ−2|ṙ|2 = γ−2Ω2r2 = 1− γ−2u2 ≤ 1. (55)

In the timelike case u2 = 1, so the zitter speed |ṙ| can
have any value in the range 0 ≤ |ṙ| < γ. In the lightlike
case u2 = 0, so |ṙ| = 1 is fixed at the speed of light.

From this we conclude that, for all timelike and light-
like velocities ż, all aspects of the free particle motion are
determined by the scalar, vector and bivector constants
of motion, γ, p and Ω, with γ = p · ẋ/me, p2 = m2

e and
p · Ω = 0. Determination of Ω2 = −|Ω|2 requires further
assumptions about spin that will be introduced in the
next section. The result is

|Ω| = ωe ≡ 2mec
2

h̄
≈ 1.5527× 1021rad/sec, (56)

which is the zitter frequency of Schroedinger where me is
the electron rest mass.

The free particle solutions show that the zitter radius
has a unique value only in the lightlike model. If zitter
motion generates the fixed magnitude of the observed
electron magnetic moment, a fixed radius would seem to
be required. For that reason, the lightlike model seems
more promising physically. However, the timelike model
is more closely related to the Dirac equation, as we shall
see. So we proceed with analysis of both models.

V. LAGRANGIANS FOR A PARTICLE WITH
SPIN

In Section III we postulated equations of motion and
a number of relations among velocity, spin, momentum
and mass variables. To ensure that all this constitutes a
complete, coherent and self-consistent dynamical system
we show that it can be derived from a single Lagrangian.

Conventional Lagrangians cannot be used for lightlike
particles, owing to the absence of proper time as a natural
parameter. Weyssenhoff [18] addressed this problem by
deriving parameter invariant Lagrangians for both time-
like and lightlike particles. However, he encountered a
problem that limited his treatment to the free particle
case. Krüger [19] resolved the problem for a lightlike
particle by introducing a Lagrangian defined in terms of
particle path curvature (i.e. acceleration) instead of ve-
locity. However, his model does not have all the features
that we are looking for, so we employ a different approach
here.

Here we take full advantage of STA by using it to con-
struct a spinor-based Lagrangian. We see that spinors are
especially helpful for building lightlike constraints into
the Lagrangian. The resulting spinor equations provide
a superior dynamical model for a timelike or lightlike
particle with spin, mass and zitter. Thus, we are able to

complete Weyssenhoff’s program to construct dynamical
equations for a lightlike particle with spin and electro-
magnetic interactions.

Continuous “motion” of a particle in spacetime is rep-
resented by a curve z = z(τ) and its derivative ż = dz/dτ ,
where τ is an affine parameter for which the physical in-
terpretation is initially unspecified. The kinematic struc-
ture of this curve is described by a spinor ψ = ψ(τ) and
its derivative ψ̇.

The dynamics of motion in an external electromagnetic
field F (z) = ∇ ∧ A with vector potential A = A(z) is
determined by a Lagrangian L = L(z, ψ, P ) of the form

L =
〈
−h̄ψ̇γ2γ1ψ̃ + P (ż − ψγ0ψ̃)

+qAψγ0ψ̃ + µFψγ2γ1ψ̃
〉

, (57)

with units: c = 1, h̄ = mc = fixed reference mass. The
coupling constants are charge q and magnetic moment µ.
A vectorial Lagrange multiplier P relates the two kinds
of kinematic variable.

The Lagrangian (57) has been proposed by Doran and
Lasenby [20], but focussed on the case ψψ̃ = 1. We drop
that constraint for two reasons: First , because it does
not apply to the lightlike case where ψψ̃ = 0, and second,
because we want to understand the physical significance
of constraints on ψψ̃ in the timelike case.

The main innovation in (57) is the kinetic term〈
−h̄ψ̇γ2γ1ψ̃

〉
. As we see later, this term is derivable

by straightforward approximation from the Dirac La-
grangian, so it establishes a definite link to the Dirac
equation.

The constraint term
〈
P (ż − ψγ0ψ̃)

〉
was introduced

by Proca [21] who was the first to use Dirac spinors for
describing classical particles. Barut and Zanghi [22] used
the same approach to model electron zitter. Gull [23]
translated their model into STA and noted that it lacked
a magnetic moment. Therein lies a small surprise. The
last two terms in (57) are standard interaction terms in
Dirac theory, where the last is the so-called “Pauli term”
for a particle with anomalous magnetic moment µ. How-
ever, we shall see that simple consistency between charge
and momentum conservation implies a relation between
q and µ that gives the correct g-factor, which originally
emerged so mysteriously from the Dirac equation. Ev-
idently, one must look elsewhere for explanation of the
electron’s anomalous magnetic moment.

The method of multivector differentiation is the sim-
plest and most elegant way to derive equations of motion
[20, 24]. For a Lagrangian that is homogeneous of degree
one in derivatives, variation with respect to a multivec-
tor variable X = X(τ) yields the multivector Lagrange
equation

δXL ≡ ∂XL− ∂τ (∂ẊL) = 0, (58)

where Ẋ = ∂τX.
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Variation of the Lagrangian with respect to P obvi-
ously gives

ż = ψγ0ψ̃ ≡ ρu , (59)

which defines a particle velocity u and time scaling factor
ρ in terms of the spinor ψ.

The result of varying position vector z is the force law

ρ−1ṗ = qF · u +∇F ·M, (60)

with momentum vector p defined by the canonical ex-
pression

p ≡ P − qA, (61)

and electromagnetic moment bivector defined by

ρM ≡ µψγ2γ1ψ̃. (62)

Of course, the vector derivative ∇ in (60) operates only
on F and not on M .

The result of varying spinor ψ in the Lagrangian is the
dynamical spinor equation

h̄ψ̇γ2γ1 = −pψγ0 + µFψγ2γ1 . (63)

The reverse of this equation is

h̄γ2γ1
˙̃
ψ = −γ0ψ̃p + µγ2γ1ψ̃F. (64)

These combine to give us

ρ−1dτ (ρS) = u ∧ p + gF × S, (65)

where g = 2µ/h̄ and the spin bivector S is defined by

ρS ≡ h̄

2
ψγ2γ1ψ̃. (66)

Alternatively, one can cast (63) in the form

h̄ψ̇γ0 = pψγ2γ1 + µFψγ0, (67)

which, when combined with its reverse, gives the equation
of motion

ρ−1dτ (ρu) =
4
h̄2 p · S + gF · u, (68)

coupling particle acceleration to spin and momentum.
The Lagrangian has delivered a system of coupled

equations for particle velocity, spin and momentum.
Some simplifications are still needed to facilitate phys-
ical interpretation and analysis. First, note that a unit
vector e1 is implicitly defined by

ωe1 =
4
h̄2 p · S, (69)

with

ω = − 4
h̄2 p · S · e1 =

4
h̄2 S · (p ∧ e1), (70)

By this definition, p · e1 = 0 = u · e1. Accordingly, the
particle equation of motion (68) takes the form

h̄

2
ρ−1dτ (ρu) = ωe1 + gF · u. (71)

Evidently, the term ωe1 describes an intrinsic curvature
of the particle history.

As in the free particle case, it is convenient to define a
dynamical mass:

m = ż · p = ρu · p . (72)

From the three equations of motion (60), (68) and (66),
we easily derive

ṁ = gF · dτ (ρS) + gρ(ż · ∇F ) · S = gdτ (ρS · F ). (73)

Thus, we obtain a first integral of motion

m = m0 + gρS · F, (74)

where m0 = meγ, with the restrictions on γ noted in
connection with (55).

Finally, to complete this section on common features
of timelike and lightlike models, we consider rationale for
adopting the g-factor ratio g = q/me in agreement with
Dirac theory. First, note that both the particle equation
(68) and the spin equation (66) have the same coupling
constant g, so any anomalous g-factor (or mass) in one
necessarily applies to the other. Second, assuming that
the field F acts directly on the particle only, the term qF ·
u in the momentum equation (60) must refer to the same
interaction as gF · u in the particle equation. Therefore,
the mass me = q/g should refer to the same constant
mass me = (p2)1/2 obtained in the free particle limit.
Evidently, as in the Dirac equation, the anomalous µ
cannot be incorporated as a free parameter. Accordingly,
we henceforth regard charge q and mass me = q/g as the
basic coupling constants in the Lagrangian (57).

VI. OBSERVABLES AND GAUGE
TRANSFORMATIONS

Consider first the timelike case, for which, according
to (24), the spinor has the general form

ψ = (ρei β)
1
2 R , (75)

where ρ and β are scalars, and rotor R = R(τ) determines
a one parameter family of Lorentz rotations

eµ = eµ(τ) = RγµR̃ (76)

that transforms a fixed orthonormal frame of vectors into
an intrinsic comoving frame following the particle. The
comoving frame is coupled to the particle velocity by

ż = ψγ0ψ̃ = ρu , (77)
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Note that the duality factor ei β/2 has canceled in (77),
because ĩ = i and iγµ = −γµi. However, in the spin
bivector (66) it survives to give us

S =
h̄

2
ρRγ2R̃Rγ1R̃ei β =

h̄

2
ρei βe2e1 (78)

The strange duality factor appearing here occurs also in
the Dirac theory, where its physical significance has re-
mained obscure for a long time [2].

The time evolution of the frame eµ(τ) is determined
by a rotor equation of the form

Ṙ =
1
2
ΩR. (79)

By differentiating the normalization condition RR̃ = 1,
one can prove that Ω = Ω(τ) is a bivector-valued func-
tion. Specification of this function completely determines
the frame kinematics. For, using (79) to differentiate
(76), we get

ėµ = Ω · eµ. (80)

The single rotor equation (79) is much easier to solve
than this set of four differential equations. Accordingly,
determining an explicit functional form for Ω = Ω(τ) will
be central to our analysis of particle motion.

Now consider what (75) tells us when inserted in the
Lagrangian (57):

L = −h̄ρ
〈
eiβṘγ2γ1R̃

〉
+ P · (ż − ρRγ0R̃)

+ qρA · (Rγ0R̃) + µρF · (eiβRγ2γ1R̃). (81)

Note that the derivatives ρ̇ and β̇ have dropped out of
the first term, because they contribute a vanishing scalar
part. Thus, ρ = ρ(τ) is a positive scale factor that can be
removed from the Lagrangian with a change of the term
P · ż to P · z′, where z′ is the derivative with respect to
the new time variable.

The parameter β in (81) is not constrained by dynam-
ics, but it contributes an arbitrary duality rotation to
the definition of spin (78). We are free to eliminate that
arbitrariness by assuming

eiβ = ±1. (82)

Switch from the positive to negative sign with this fac-
tor expresses an important discrete symmetry of the La-
grangian when coupled with charge conjugation q → −q
and time reversal τ → −τ . The net effect on the La-
grangian is to reverse the signs of q and µ along with the
orientation of the spacetime history z(τ). In other words,
it is antiparticle conjugation. It thus conforms to Feyn-
man’s interpretation of antiparticles as “particles going
backward in time.” The relation of particle current ψγ0ψ̃
to particle velocity ż is not so obvious in Dirac theory,
because the Dirac Lagrangian lacks a term involving ż.

A. Gauge Invariance

The spin and velocity observables ψγ2γ1ψ̃ and ψγ0ψ̃
are invariant under the rotor gauge transformation

ψ → ψ′ = ψU, (83)

provided the rotor U commutes with γ2γ1 and γ0. Hence,
U must have the form

U = eγ2γ1χ/h̄, (84)

where χ = χ(τ) is an arbitrary scalar function. This is
identical in algebraic form to a gauge transform in the
Dirac equation. Applying it to the Lagrangian (57), we
see that the kinetic term becomes

−h̄
〈
ψ̇′γ2γ1ψ̃

′
〉

= −h̄
〈
ψ̇γ2γ1ψ̃

〉
+ χ̇

〈
ψψ̃

〉
. (85)

In the timelike case, the additional term must be canceled
by a transformation of the vector potential:

qA → qA′ = qA−∇χ. (86)

Thus, for
〈
ψψ̃

〉
= ρ and

〈
ψγ0ψ̃

〉
= ż, we have

ρχ̇ = ż · ∇χ. (87)

Evidently, gauge invariance requires ρ = 1, thereby fixing
the time scale on the particle history to the time variable
in spinor space.

This is an intriguing if not ironic result. Recall that
Weyl originally introduced gauge transformations as an
extension of General Relativity to incorporate length
scale invariance. Subsequently, he renounced that idea
and introduced the notion of gauge invariance that has
become standard in quantum mechanics. Here we have
come full circle to find electromagnetic gauge invariance
associated with time scale invariance. Perhaps Weyl had
the right idea in the first place.

Geometrically, a gauge transformation rotates the vec-
tors e1 and e2 while leaving the spin S = (h̄/2)e2e1 and
velocity u = e0 unchanged. This corresponds to a phase
shift in standard quantum mechanics. A unique gauge is
set by requiring the vector e1 defined by (69) to satisfy

e1 = Rγ1R̃ with p · e1 = 0. (88)

So, from (70)

ω = (2/h̄)(e2e1) · (p ∧ e1) = (2/h̄)p · e2. (89)

We stick with this choice henceforth. The same conclu-
sion obtains in the lightlike case, so we need not belabor
the point.
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B. Observables for the Lightlike Case

In the lightlike case, the null condition ψψ̃ = 0 can
be satisfied by multiplying an even multivector with the
form (75) on an idempotent such as

P± =
1
2
γ±γ0 =

1
2
(1 + γ2γ0), (90)

where γ± ≡ γ0 ± γ2. Note the properties of idempotence
and orthogonality

P 2
± = P±, P+P̃+ = P+P− = 0. (91)

Also note

γ2γ0γ± = ±γ± (92)

and iγ2γ0 = γ3γ1; whence

ρei βP± = e±γ3γ1βP± (93)

Thus, the null spinor has the general form:

ψ = ρ1/2RP+, (94)

where R is a rotor and no duality factor is needed, be-
cause (93) shows that it can be absorbed into R.

The particular form for P+ was chosen in relation to
γ0 so that

P+γ0P̃+ =
1
4
γ+γ0γ+ =

1
2
γ+. (95)

Hence

ψγ0ψ̃ =
ρ

2
Rγ+R̃ = e0 + e2 ≡ u = ż, (96)

and the normalization ρ = 2 has been chosen for simplic-
ity.

In a similar way, we can reduce the form for spin. Thus,

P+γ2γ1P̃+ =
1
2
γ+γ0γ2γ1 =

1
2
γ+γ1. (97)

Now we can define the spin bivector by

S = ψγ2γ1ψ̃ =
h̄

2
Rγ+γ1R̃ =

h̄

2
ue1. (98)

The simplifications (96) and (98) can be inserted into
(57) to put the Lagrangian for a lightlike particle in the
form

L =
〈
−h̄Ṙγ+γ1R̃ + P (ż −Rγ+R̃)

+qARγ+R̃ + µFRγ+γ1R̃
〉

, (99)

In this version of the Lagrangian, the relation of the light-
like model to the timelike model and the Dirac equation
is not so evident. Its form invariance under the gauge
transformations defined by (83), (84) and(86) with ψ = R
is readily verified. Unlike the timelike case, the velocity
is not gauge invariant in the lightlike case. Rather, it is
transformed to u′ = R′γ+R̃′ = R(γ0+Uγ2Ũ)R̃ = e0+e′2.
The gauge transformation singles out the e2e1 plane as
special. In the timelike case, that plane is associated with
spin S = e2e1h̄/2. But in the lightlike case S = ue1h̄/2,
and, as we shall see, e2e1 is special as a component of the
rotational velocity Ω.

VII. ROTOR EQUATION: TIMELIKE CASE

The basic features of our two models for a charged par-
ticle with spin are now fully specified, but further sim-
plification is possible by consolidating the equations of
motion into a single rotor equation. Although the light-
like case is more interesting, we focus first on the timelike
case as a basis for comparison.

Inserting the rotor derivative (79), the spinor equation
(63)now reads

h̄

2
ΩRγ2γ1 = −pRγ0 + µFRγ2γ1 . (100)

It follows immediately that

ΩS = −pu + gFS , (101)

with velocity

u = Rγ0R̃ = e0 = ż, (102)

and spin

S =
h̄

2
Rγ2γ1R̃ =

h̄

2
e2e1 = isu, (103)

where, using i = e0e1e2e3, a spin vector

s =
h̄

2
e3 (104)

has been defined in exact analogy to Dirac theory.
Inserting the expansion ΩS = Ω · S + Ω × S + Ω ∧ S

into (101) and separating parts of homogenous grade we
find:

Ω · S = −u · p + gF · S = −m0, (105)

Ω× S = u ∧ p + gF × S = Ṡ, (106)

Ω ∧ S = gF ∧ S. (107)

Here we see that the mass integral of motion m−gF ·S =
m0 = −Ω·S can be interpreted as constraining projection
of the spin onto the rotational velocity to be a constant
of motion.

Equation (101) is easily solved algebraically for any
one of the observables S, u, p. But the most significant
fact is that it can be solved for

Ω = ips−1 + gF = 2ṘR̃ , (108)

This gives us immediately

ėµ = (ips−1) · eµ + gF · eµ, (109)

which shows explicitly how the four equations of motion
for the eµ are coupled. Of course, it is simpler to solve
the single equation of motion for R, so we examine what
it takes to do that.

Note that the vanishing pseudoscalar part of (108) im-
plies

p · s−1 = 0. (110)
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Also, for a free particle,

Ω2 = p2s2 = −ω2
0 , (111)

as advertised in Section IV.
The zitter term ips−1 in (108) requires further analysis.

Since p ·e1 = p ·e2 = 0, the vector p lies in the e0e2 plane,
so

p = p · e0e0 − p · e2e2 = mu−m2e2, (112)

with

m2 = p · e2 = [m2 − p2]1/2 =
h̄

2
ω, (113)

where the last equality recalls the definition of ω in (89).
Now the zitter term can be written

ips−1 = p · (is−1) =
2
h̄

p · (e0e2)e1

=
2
h̄

[me2e1 −m2e0e1]. (114)

Inserting this into (108), we get the rotor equation of
motion in the form

Ṙ =
g

2
FR + R

[m

h̄
γ2γ1 − m2

h̄
γ0γ1

]
. (115)

Thus, we have reduced our problem to ascertaining the
temporal dependence of m and m2. That requires use of
the momentum equation.

From (108) we find

Ω · p = gF · p. (116)

Then the momentum equation (60) gives us

ṗ− gF · p = ṁe0 − ṁ2e2 = F · (qu− gp) + g∇F · S.

Dotting this with e0 and e2 gives us equations for ṁ and
ṁ2. We found and solved the equation for ṁ before. To
solve for ṁ2, we use u∧ p = m2e0e2 in the spin equation
(106) to get

e2 · F · (qu− gp) = g

(
m0 −m

m2

)
F · Ṡ.

Hence,

ṁ2 = g

(
m0 −m

m2

)
F · Ṡ + g(e2 · ∇F ) · S. (117)

We need not bother here with solving for m2 as a function
of R, as we will not be using the result.

The rotor equation (115) with the equations for ṁ and
ṁ2 compose a closed system of differential equations that
can be solved for the rotor R = R(τ). We defer discussing
methods of solution to the lightlike case.

VIII. ROTOR EQUATION: LIGHTLIKE CASE

For the lightlike case, we proceed in close analogy to
the timelike case and expand on its unique features.

From the Lagrangian (99), we derive the rotor equation

h̄Ṙγ+γ1 =
h̄

2
ΩRγ+γ1 = −pRγ+ + µFRγ+γ1 .(118)

It follows immediately that

ΩS = −pu + gFS , (119)

with lightlike velocity

u = Rγ+R̃ = e0 + e2 = ż, (120)

and lightlike spin

S =
h̄

2
Rγ+γ1R̃ =

h̄

2
ue1 = mereu = isu, (121)

where the spin vector s = h̄
2 e3 is defined as before. Also,

a zitter radius vector re has been defined by

re = −λee1, (122)

with zitter radius

λe = ω−1
e =

h̄

2me
= |re| . (123)

This makes the spin S = mere ∧ ż look like an orbital
angular momentum for a particle with momentum meż,
but moving at the speed of light. More about that below.

One other form for the spin has special significance:

S =
h̄

2
e0(e1 + ie3) = (mere + is)e0, (124)

Let’s call this the spin-zitter split of S for physical reasons
to be explained.

Equation (119) looks just like (101), and it can be ex-
panded in the same way to get expressions for Ω ·S, Ω∧S
and, in particular,

Ṡ = Ω× S = u ∧ p + gF × S. (125)

However, (119) cannot be solved for Ω, because S and u
do not have multiplicative inverses. The best we can do
is multiply (119) on the right by γ1 to get the particle
equation

u̇ = Ω · u = ωe1 + gF · u, (126)

with

m = p · u = h̄ω/2 (127)

determined by the gauge choice p·e1 = 0, as noted before.
One way to derive an expression for Ω is to use the

theorem:

Ω =
1
2
ėµeµ =

1
2

(ė0e0 − ė1e1 − ė2e2 − ė3e3) . (128)
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But this requires separate equations for the ėµ. To obtain
such equations, we first use u̇ = ė0 + ė2 to split (126) into

ė0 = gF · e0 + a, (129)

ė2 = gF · e2 − a + ωe1, (130)

where the vector a remains to be determined.
Now we invoke the momentum equation

ṗ = qF · u +∇Φ, (131)

where a spin-zitter potential for the gradient force is de-
fined by

Φ = gF · S = qF · (re ∧ u). (132)

Several alternative forms can be obtained from the var-
ious expressions for spin in (121) or (124). As we have
seen before, the gauge choice that gives us (127) implies
that p lies in the u ∧ e2 = e0e2 plane. Hence, we can
parametrize p in the form

p = m1e0 −m2e2 = m1u−me2, (133)

so m = p · u = m1 + m2 and

u ∧ p = me2e0. (134)

In the free particle limit m1 = me.
Now we insert (133) into (131) to get

m1ė0 −m2ė2 + ṁ1e0 − ṁ2e2 = qF · u +∇Φ. (135)

Then we eliminate ė0 and ė2 with (129) and (130) to
solve for

a =
(

me −m1

mem

)
qF · u +

q

me
F · e2 +

2m2

h̄
e1

+ m−1 (∇Φ + ṁ2e2 − ṁ1e0) , (136)

Equation (135) is also easily solved for

ṁ1 =
(

m2 + me

mem

)
qF · Ṡ + e0 · ∇Φ, (137)

ṁ2 =
(

m1 −me

mem

)
qF · Ṡ + e2 · ∇Φ. (138)

This gives us

ṁ = ṁ1 + ṁ2 =
q

me

(
F · Ṡ + S · Ḟ

)
= Φ̇. (139)

in agreement with our previous result (73).
Inserting the equations for ṁ1 and ṁ2 into (136), we

obtain an explicit expression for the vector a in terms of
the field F and its derivatives, so inserting this into (129)
and (130) gives the specific equations for ė0 and ė2 that
we sought.

To clarify the structure of the vector a, we write aµ =
a · eµ and verify from (136) that a0 = a2 = 0, so

a = −a1e1 − a3e3. (140)

Furthermore,

ma1 = gF01(me −m1)
+ gF21(me + m2) + m2ω + ∂1Φ (141)

and

ma3 = gF03(me −m1) + gF23(me + m2) + ∂3Φ, (142)

where Fµν = F · (eµ ∧ eν) and ∂µ = eµ · ∇Φ.
These results are completely general. Note, however,

the simplification in the expressions for a1 and a2 if we
assume m1 = me with m2 = m − me. Of course that
propagates back to simplify (136) with ṁ1 = 0 in (137)
and ṁ2 = ṁ in (138). This guarantees the free particle
limit m = m1 = me. However, from (137) we see that,
for a uniform field F it implies F · Ṡ = F · (u ∧ p) = 0,
which is too restrictive for a general solution, though we
see below that it is an interesting special case.

Next, to derive separate equations of motion for the
spin vector e3 and the zitter vector e1, we write

2
h̄

S = e0(e1 + ie3) = e0Q (143)

to put (125) in the form

ė0Q + e0Q̇ = ωe2e0 + g [(F × e0)Q + e0(F ×Q)] .

Eliminating ė0 with (129) and using (140), we reduce it
to the form

Q̇− gF ×Q = −ωe2 − e0aQ. (144)

Then, separating vector and pseudovector parts, we get
the desired equations

ė1 = gF · e1 − ωe2 − a1u, (145)

ė3 = gF · e3 − a3u. (146)

Finally, we insert (129), (130), (145) and (146) into (128)
and use F = (F · eµ)eµ/2 to get

Ω = gF + ωe2e1 + au. (147)

This is the expression for Ω that we were looking for.
Let’s consider its physical interpretation.

Clearly the term ωe2e1 generates circular motion or
zitter in the zitter plane. This is confirmed by inserting
(147) into the equations for velocity(126) and spin (125),
where it contributes the terms (ωe2e1) · u = ωe1 and

(ωe2e1)× S =
h̄

2
ω(e2e1)× (ue1) = me2e0 = u ∧ p.

The bivector au does not contribute to either equation.
The integral of the zitter frequency ω determines a zit-

ter phase angle ϕ, as defined by

ω = ωe +
2
h̄

Φ = ϕ̇ =
dϕ

dτ
, (148)
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We shall see that this angle is completely analogous to
the phase angle in the Dirac equation and, á fortiori,
to the phase in Schroedinger’s wave function. Note that
the phase angle may depend on the electromagnetic vec-
tor potential, but the frequency shift is gauge invariant,
as it has the form of a dynamical flux integral on the
circulating particle history.

The first curvature κ1 of a particle history measures
the bending rate orthogonal to its velocity. In the particle
equation of motion (126) the direction of helical bending
is given by the zitter vector e1. Hence, the first curvature
is given by

κ1 ≡ −u̇ · e1 = ω − q

me
F · (ue1) = ωe = λ−1

e . (149)

We have seen that this quantity is rigorously constant!
However, it is composed of two parts: the first can be
regarded as an intrinsic curvature while the second is an
“extrinsic curvature” due to external forces. This tells
us that, in response to external forces, the intrinsic cur-
vature is adjusted to maintain an overall constant value.
Its inverse is the curve’s radius of curvature, which we
recognize as the free particle zitter radius.

The dynamical mass

m =
h̄

2
ω = me + Φ (150)

can be interpreted as energy stored in the zitter motion,
consisting of a ‘‘self-energy” me and an interaction en-
ergy Φ. Inserting the spin-zitter split (124) into (132),
we can express the spin-zitter interaction energy in the
form

Φ = 〈e0F (qre + igs)〉 . (151)

This separates Φ into a magnetic part and an electric
part. The timelike vector e0 can be regarded as specifying
an instantaneous rest system for the electron.

The magnetic part g 〈Fise0〉 will be recognized as the
usual Zeeman interaction with the same magnetic mo-
ment as specified by Dirac theory. When inserted into
the momentum equation (132), we see that it doubles as
a Stern-Gerlach force.

The electric part q re·(e0·F ) is a dipole interaction with
a rapidly rotating dipole moment vector qre = −qλee1.
Let’s call it the zitter interaction energy. This is a dis-
tinctively new feature of the zitter model, with testable
predictions that distinguish it from Dirac theory, as we
shall see.

Our analysis of the interaction term in (150) suggests
that the self energy me may be due to electromagnetic
interaction, but the interaction must be of magnetic type
mee2e1 to generate the observed free electron spin and
magnetic moment. Longstanding problems with infinite
electric self energy are thereby avoided. This suggestion
is more than unfounded speculation. Rather it serves
as a constraint to be satisfied by a solution to the self
interaction compatible with the zitter model. That is a
problem for the future.

We are now prepared to compare the zitter term
ωe2e1 + au in (147) with the corresponding term ips−1

in (108). Although the latter term may look more com-
pact and physically perspicuous, it needs further reduc-
tion to determine its temporal dependence, as explained
in the analysis leading to (115) and (117). In contrast,
the term in (147) is ready for direct integration. However,
note from (114) that the zitter rotation velocity ωe2e1 is
common to both timelike and lightlike velocities, so they
must have some predictions in common. In particular,
they have the same relation to phase angle in the Dirac
equation, though only the lightlike model agrees with the
Dirac free particle limit.

If the zitter terms in (147) and (108) are dropped al-
together, then in both models the rotational velocity Ω
reduces to

Ω = gF = 2ṘR̃ (152)

and (126) gives us

u̇ = gF · u, (153)

which is precisely the classical Lorentz force for u = ż.
So let us refer to (152) as the classical approximation.
However, note that (152) also implies

ṡ = gF · s, (154)

which gives spin precession with the same g-factor as the
Dirac equation. Thus, the classical approximation is not
simply the limit h̄ → 0 as often stated. Indeed, the spin
precession in (154) has been measured in high precision
experiments on single electrons [25], with a result close
to

g =
e

me

(
1 +

α

4π

)
, (155)

where α is the fine structure constant. Calculation of
the correction term is outside the purview of the present
model. It is mentioned here to set a definit limit on the
“classical approximation.” Conceivably, the anomalous
moment is a consequence of electron zitter, as omission
of zitter defines the classical approximation. Whether
that would be consistent with the accepted calculation
using QED remains to be seen.

IX. ZITTER CENTER, REST FRAME AND
MEAN VALUES

Zitter fluctuation in electron position is small (of order
λe ≈ 10−13m) and rapid (of order ωe = λ−1

e c ≈ 1021/s),
so some sort of mean position x(τ) = z̄(τ) must be de-
fined to separate fluctuations from the main trend. This
is akin to defining the “guiding center” of a helical or-
bit in plasma physics, or the “center of curvature” for a
geometric curve, or even a “center of mass,” though the
mass is not a distributed quantity in this case. Without
committing to one interpretation, let’s refer to x(τ) as



13

the zitter center. Among several possibilities, we con-
sider two alternative definitions.

First, the fact that λe is a constant of motion suggests
the rigid radius definition:

x = x(τ) ≡ z − re, (156)

where re = −λee1 is the zitter radius vector defined be-
fore.

Clearly x(τ) is a timelike curve, so we need to ascertain
how its proper time relates to the time variable τ . From

u = ż = ẋ + ṙe, (157)

we get u · (ẋ + ṙe) = u2 = 0, and (126) gives us

u · ẋ = −u · ṙe = −λeu̇ · e1 = 1. (158)

Therefore

ẋ2 = 1− ẋ · ṙe. (159)

This tells that τ oscillates about the proper time of the
zitter center with half the zitter period, except in the free
particle case where ẋ · ṙe = 0.

To relate ẋ to the particle dynamics, we use h̄/2 =
meλe to write (145) in the form

me2 = meṙe − qF · re + mea · reu. (160)

Inserting this into (133) with m1 = me, we get the mo-
mentum vector in the interesting form

p = meẋ + qF · re −mea · reu. (161)

For a free particle this reduces to the classical expression
p = meẋe, as required.

We could get an equation of motion for ẋ by inserting
(161) into the momentum equation (131), but a simpler
and exact approach is to write the particle equation (126)
in the form

z̈ = ẍ + r̈e =
2m

h̄
e1 +

q

me
F · (ẋ + ṙe).

Hence

meẍ− qF · ẋ = − (
mer̈e + mω2

ere

)
+ qF · ṙe, (162)

The right side shows explicitly how the zitter drives de-
viations from the Lorentz force law. To calculate those
deviations, we need a separate equation of motion for the
zitter. Unfortunately, the separation of zitter from the
Lorentz force is not as clean as it looks in (162), because
the field F = F (z) = F (x + re) acts at the location of
the particle.

The alternative approach is to define the zitter center
x = x(τ) indirectly by specifying its velocity

v = ẋ ≡ e0 = Rγ0R̃. (163)

This has both advantages and drawbacks. First

v2 = v · u = v · ż = 1 (164)

implies that we can regard τ as proper time on the his-
tory x(τ), and that projects to a unique time defined on
the particle history z(τ). Second, the definition (163)
is analogous to the spinor form of the Dirac current, so
it facilitates comparison with the Dirac equation. As
drawbacks, we note the the equation of motion (129)
for v lacks physical transparency, and the zitter radius
r ≡ z − x is only indirectly determined by integrating

ṙ = u− v = e2. (165)

However, the similarity of (159) and (164) suggests that
r = re may often be a good approximation. The issue
deserves to be examined systematically.

A. Zitter averages and approximations

As zitter fluctuations are so rapid, it is most conve-
nient to separate them from zitter means, which are more
directly observable. The velocity v = ẋ defines an instan-
taneous rest frame for the electron at each time τ , so we
define the zitter mean as an average over the free parti-
cle zitter period Te = 2π/ωe that keeps the zitter center
velocity v and the spin vector s = (h̄/2)e3 fixed. With
an overline to denote average value, basic zitter means
are specified by the expressions

v = ẋ = u = e0, e1 = 0 = e2, e3 = e3. (166)

Consequently, the mean of the spin bivector (121) is

S =
h̄

2
ue1 =

h̄

2
e2e1 = isv . (167)

This approximation ignores variations in zitter radius
and mass over a zitter period.

Since the electromagnetic field F (z) = F (x + r) acts
at the location of the particle, to get its effect on the
zitter center, we expand with respect to the zitter radius
vector. Accordingly, the average field at the zitter center
is given by

F (z) = F (x) + r ·∇F (x) +
1
2
(r ·∇)2F (x) + . . . . (168)

With r = 0, we have F = F (x) to first order.
Neglecting second order effects gives us the mean mass

m = me + Φ with Φ = gS · F (x) = gF · (isv).(169)

The mass shift Φ will be recognized as a generalization
of the Zeeman interaction in atomic physics.

To lowest order, momentum reduces to

p = mev + Φ e2, (170)

Consequently, the momentum equation (131) can serve
as an equation of motion for the zitter center.

Projecting out the effect of the mass derivative and
averaging, we obtain from (131) a mean equation

mev̇ = qF · v + v · (v ∧∇)Φ. (171)
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This is recognized as the classical equation for a charged
particle with intrinsic spin, so it can be regarded as the
classical limit of the zitter model. With F = F (x), the
first term on the right is the classical Lorentz force, while
the second is the Stern-Gerlach force.

For slowly varying electromagnetic fields there is not
much difference between equations (131) and (170), save
that replacement of the Lorentz force qF · v by qF · u
produces a wobble of v about its mean value. The big
difference in the equations comes with electromagnetic
fields oscillating with a frequency close to the zitter fre-
quency, for then resonance can occur, as we shall see.

Our model is not complete without an equation of mo-
tion for the spin. From (170) we get u ∧ p = u∧p, so the
spin equation (125) reduces to

Ṡ = gF × S. (172)

This is just the classical approximation mentioned be-
fore, but augmented by the Stern-Gerlach force in (170).
We leave consideration of higher order approximations to
another time.

B. Spin-Zitter Split

Aside from the identification v = ẋ, a special role for
v = e0 is indicated by the way it splits the complete spin
in (124) into a slowly precessing component

S = (S ∧ v))v = isv. (173)

and a rapidly varying zitter component

mere = − h̄

2
e1 = S · v. (174)

Altogether,

S = Sv2 = (S · v + S ∧ v)v = (mere + is)v. (175)

This is called a spacetime split of S with respect to v [1].
The specification of spin vector here is algebraically

identical to the one in Dirac theory [1]. The rapidly
rotating unit vector r̂ = −e1 is also inherent in Dirac
theory, but its physical significance has been overlooked.
In Dirac theory, identification of the radius vector and
the spin vector as parts of a null bivector S has not been
made heretofore. The implication is that the spin observ-
able in Dirac theory is only the zitter average S of the full
spin S. Nevertheless, zitter is still present in the Dirac
equation as a rotating phase factor in the wave function,
and we shall see that there are indeed possibilities to de-
tect it experimentally.

The “v-split” of the spin in (175) entails a v-split of
the electromagnetic dipole moment into electric and mag-
netic parts:

q

me
S = dv + iµv with

dv = qrev, µv =
q

me
sv = −i

q

me
S . (176)

Note that the electric dipole has constant magnitude
|dv| = qλe = qh̄/2me, so it only rotates. A correspond-
ing v-split of the external electromagnetic field has the
form F = Ev + iBv, where electric and magnetic parts
are given by

Ev =
1
2
(F − vFv), iBv =

1
2
(F + vFv). (177)

Of course, these are electric and magnetic fields as “seen”
in the instantaneous rest frame of the zitter center, not
to be confused with fields in a “lab frame.”

The induced mass shift can now be expressed in the
physically perspicuous form

Φ =
q

me
S · F = dv · Ev − µv · Bv. (178)

This is a general result, holding exactly in every applica-
tion of the zitter model. As dv is a rotating vector, this
result is consistent with the well established experimen-
tal fact that the electron does not have a static electric
dipole moment. Of course, if the Ev field is slowly vary-
ing, the effective shift is reduced to the Zeeman interac-
tion Φ = −µv · Bv.

However, the spin split described here has a draw-
back, namely, that the reference direction v is constantly
changing with time, so it is difficult to compare spin di-
rections at different times. We show next how that draw-
back can be eliminated by examining the spin split more
thoroughly from a different point of view that is closely
related to the way that spin precession is analyzed in
relativistic quantum mechanics.

C. Zitter and Spin in the electron rest frame

Transformation of the time dependent instantaneous
rest frame specified by velocity v = v(τ) to an inertial
rest frame specified by a constant vector γ0 is a boost,
specified by

v = Lγ0L̃ = L2γ0 or
L2 = vγ0 = v0(1 + v), (179)

where v0 = v · γ0 is the relativistic time dilation factor
relating particle proper time τ to inertial time t, that is,

v0 ≡ v · γ0 =
1

(1 + v2)
1
2

=
dt

dτ
, v =

dx
dt

(180)

is the relative velocity of the particle in the inertial ref-
erence frame. Let us refer to this frame as the electron
rest frame.

We can solve (179) to get an explicit expression for the
rotor L that generates the boost [1]:

L = (vγ0)
1
2 =

1 + vγ0

[2(1 + v0)]
1
2

=
1 + v0 + v0v

[2(1 + v0)]
1
2

. (181)

However, it is usually easier to work with the simpler
form for L2 in (179).
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The deboost of the v-split for spin S in (175) to a split
in the electron rest frame is now given by

S = LS0L̃ where S0 = −mer + is, (182)

with electric and magnetic moments defined by

q

me
S0 = −qr + i

q

me
s ≡ d + iµ. (183)

The deboost of the particle velocity has the form

uv = L(1 + u)L̃. (184)

Since spin and velocity are related by Su = 0, from (182)
and (184) we obtain

S0(1 + u) = (mer + is)(1 + u) = 0. (185)

Separating parts of homogeneous grade, we ascertain

r · u = 0, s · u = 0 (186)

and

s = imeru = −mer × u. (187)

This makes spin look like a classical orbital angular mo-
mentum, but with the wrong sign. However, the velocity
u = ż is not generally the derivative of the radius vector
r, as we shall see.

It is often useful to express the relation of spin to zitter
in terms of a rotating orthonormal frame:

ek ≡ L̃ekvL = UσkŨ , (188)

where e1 = −r̂, e2 = u and e3 = ŝ. However, it is
physically more enlightening to first study the dynamics
of spin and zitter more directly.

To treat interaction with external fields in the electron
rest frame, we need the deboost of an electromagnetic
field:

F0 ≡ L̃FL = E0 + iB0, (189)

where

F = E + iB = LF0L̃ (190)

expresses the field in terms of electric and magnetic fields
defined in the lab frame.

Note that

< SF >=< LS0L̃F >=< S0L̃FL >

= < S0F0 >=< (d + iµ)(E0 + iB0) > . (191)

Whence the spin potential (= mass shift) assumes the
form

Φ =
q

me
S · F =

q

me
S0 · F0 = d · E0 − µ · B0. (192)

However, this is not the final form required for physical
interpretation.

We still need explicit expressions for the deboosted
fields E0 and B0 in terms of lab fields E and B. Us-
ing (179) we have, with obvious notation,

F0 = L̃FL = F‖ + F⊥L2 (193)

where

F‖v = vF‖, F⊥v = −vF⊥. (194)

Whence

E0 = E‖ + v0E⊥ + v0v × B, (195)

where

E‖ = (E · v̂)v̂, E⊥ = E−E‖. (196)

Similarly,

B0 = B‖ + v0B⊥ − v0v × E. (197)

Insertion into (192) gives explicit expressions for the in-
teraction of the electron’s electric and magnetic dipoles
with external fields.

Physical interpretation of spin dynamics is facilitated
by transforming the spin equation of motion (125) to the
instantaneous rest frame. Thus,

Ṡ = L(Ṡ0 + Ω0 × S0)L̃ = L(me2 +
q

me
F0 × S0)L̃, (198)

where the rotational velocity Ω0 is determined by differ-
entiating the boost (181), with the result [1]:

LΩ0L̃ = Ωv ≡ 2L̇L̃ =
v̇ ∧ (v + γ0)

1 + v0

= v0v̇ +
v̇0v

1 + v0
+ i

v2
0v̇ × v
1 + v0

. (199)

As is evident in equation (179), this quantity acts like an
effective electromagnetic field induced by acceleration of
the rest frame. The magneticlike term at the right side
of the equation is responsible for the classical Thomas
precession of the spin.

Inserting the split (182) with (183) into (198), we have

Ṡ0 = meṙ + iṡ

= me2 + (F0 − me

q
Ω0)× (d + iµ). (200)

Now we introduce the split

a + ib ≡ F0 − me

q
Ω0 = L̃(F − me

q
Ωv)L, (201)

noting that expressions for a and b can be obtained from
(199) by the deboost (193). Using

(a + ib)× (d + iµ)
= a ∧ d− b ∧ µ + i(a ∧ µ + b ∧ d) (202)
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with a ∧ d = i(a × d), we split (200) into coupled equa-
tions of motion for zitter and spin:

meṙ = me2 + µ × a + d × b, (203)

ṡ = a × d + µ × b. (204)

These equations are helpful for analyzing the dynamical
behavior of spin and zitter vectors.

The spin equation (204) is most familiar. Its last term
µ × b is recognized as the usual spin precession torque,
including the Thomas precession, as already noted. The
term a × d is something new. First note that

ṡ · s = (a × d) · s = (d × s) · a = 0 = e2 · a. (205)

To prove that this quantity does indeed vanish, we use
(193):

ma · e2 =< LaL̃u ∧ p >=< (F − me

q
Ωv)u ∧ p >

=
mem

q
[u̇ · v + v̇ · u] = 0. (206)

It follows from this constraint that we can write

a × d = ŝ × d (ŝ · a). (207)

This torque has several interesting properties. First, it
rotates s toward the vector e2, which is the direction of
zitter circulation in the rest frame. Second, the torque
decreases in magnitude until it vanishes at s · a = 0.
Third, its zitter average is zero if a is slowly varying.
These properties suggest that the term is a good candi-
date for a spin polarization torque.

The zitter equation (203) has similar properties, of
course, with the additional term me2 expressing the high
frequency zitter rotation. We only note that the µ × a
torque ensures that r rotates toward e2 along with s.

X. ZITTER SOLUTIONS AND QUANTIZATION

We now consider a general strategy for solving the ro-
tor equation of motion (147), which, using eµ = RγµR̃,
can be written in the form

Ṙ =
g

2
FR +

1
2
R(ωγ2γ1 + a′γ+), (208)

where

ω = ωe + gF · (ue1)

= ωe +
〈
gFRγ+γ1R̃

〉
=

2m

h̄
= ϕ̇, (209)

and, from (136),

a′ = R̃aR = −a1γ1 − a3γ3, (210)

with rotation angles ϕ̇1 = −a1 and ϕ̇3 = −a3 determined
by (141) and (142). Note that equation (209) gives ϕ̇ as

a function of R. The same is true for for the functional
dependence of ϕ̇1 and ϕ̇3. Hence, these three scalar equa-
tions are coupled to the rotor equation (208), and a closed
solution is not to be expected in most cases.

The terms on the right side of the equation (208) have
an obvious physical interpretation. The first term de-
scribes the “external” interaction with an electromag-
netic field F , while the second term has two parts de-
scribing the “internal” dynamics of the zitter. The first
part describes rotation in the “zitter plane” with zitter
frequency ω, while the second maintains orientation with
respect to the zitter center and feeds energy in and out
through the gradient force.

An obvious strategy for solving the rotor equation of
motion is to separate external and internal dynamics as
follows: For a given electromagnetic field F , the rotor
R = R(τ) can be factored into

R = LU, (211)

where rotor L satisfies the equation

L̇ =
g

2
FL, (212)

and rotor U satisfies

U̇ =
1
2
U(ωγ2γ1 + a′γ+). (213)

One advantage of this separation is that, by itself, (212)
is the rotor equation for the classical approximation,
and exact solutions have already been found for several
kinds of electromagnetic field [1, 26]. Unfortunately, they
all presume that motion is along a timelike curve x(τ),
whereas, in the present case F = F (z) = F (x + r) is
given along the lightlike curve z(τ), so a problem arises
in relating z(τ) to the zitter center x(τ). A good way to
solve that problem is with a zitter average of the field as
given in (168). Then the equation for U can be solved
separately.

Every method of solving the rotor equations must ex-
ploit properties of the given field F , which, as specified in
(190) can always be expressed in terms of an electric and
magnetic field in the “lab frame” F = E + iB. Alterna-
tively, every non-null field has an intrinsic decomposition
of the form

F = αf3f0 + βf2f1 = (α + iβ)f3f0, (214)

where the fµ are eigenvectors of the stress energy tensor

T (fµ) ≡ −1
2
FfµF, (215)

with eigenvalues determined by the invariant

F 2 = E2 −B2 + iE ·B = α2 − β2 + 2iαβ. (216)

An interesting class of rotor solutions is specified by the
conditions

eµ(τ) = fµ(z(τ)). (217)

An example is given below.
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A. Periodic solutions in a uniform field

The analysis of zitter motion is greatly simplified when
F is uniformly constant, for then (212) has the simple
solution

L = exp
(g

2
Fτ

)
. (218)

Since FL = LF in this case, (209) reduces to

ω = ωe + g
〈
FUγ+γ1Ũ

〉
. (219)

The analysis is thus reduced to solving (213) for the
spinor U . However, it is more instructive to solve the
particle equation of motion directly.

Equations (137) and (138) show that even for a uniform
field the dynamical mass will oscillate unless F · Ṡ =
mF · (e2e0) = 0. We restrict our analysis to the case of
constant mass. That is most simply achieved by imposing
the condition F · e0 = 0. Then we can adopt (217) to
conclude from (214) and (216) that F is a “magneticlike”
field that can be put in the form

F = βe1e2, with β = (E2 −B2)1/2, E ·B = 0. (220)

Now, we look for solutions of (162) that decouple the
orbital motion on the left from the zitter motion on the
right to give us

meẍ− qF · ẋ = 0, (221)

and

mer̈e + mω2
ere − qF · ṙe = 0. (222)

The zitter equation can be solved by assuming that
ṙe = Ωe · re = Ωere where Ωe = ωee2e1, so the last
two terms are combined by using the constant of motion
m− qβ/ωe = me. Thus, the zitter equation is reduced to
a harmonic oscillator with natural frequency ωe.

The orbital equation (221)is more interesting. It has a
familiar form, so we can integrate it immediately to get

ẋ = v0 + ṙ, (223)

where v0 is a constant with v0 · F = 0, and

ṙ = gF · r = gβ(e1e2)r (224)

is the equation for a radius vector r rotating in the e1e2

plane. It is identical in form to equation (54) for the
zitter of a timelike particle. The crucial point is that
the time scale is determined by the condition ẋ2 = γ2.
Hence, for t = τ/γ as the proper time for the particle
center, the center circulates with orbital frequency

ωt =
γ|ṙ|
|r| = γgβ = γ(ω − ωe), (225)

where (219) has been applied. The factor γ is thus a
free parameter determining the frequency and hence the
radius of the orbit.

Now consider the possibility of fixing the orbital fre-
quency so it is commensurate with the frequency shift
ω − ωe. In other words, we impose the condition

γ =
ωt

gβ
= n, (226)

where n is a positive integer. According to (220), β is the
magnitude of the effective magnetic field, so ωL = gβ =
qβ/me is the familiar Lamor frequency for precession in
a magnetic field.

This possibility is very interesting! It shows that zitter
provides a criterion for quantizing periodic orbits; in this
case, so the quantum condition is identical to the one for
quantized Landau levels for the Schroedinger equation,
except for absence of a zero point energy. It is noteworthy
that this energy spectrum has been observed in the quan-
tum Hall effect [27] (also without a zero point energy).
This example suffices to show that the zitter model has
the potential to explain quantization of electron states
and its experimental manifestations. Of course, much
more work remains to see how far this possibility can be
pushed.

Three more points: First, Quantum Hall devices in-
clude a constant electric field E orthogonal to the mag-
netic field B to drive a flow of electrons. That is already
incorporated in (220), which also says that the presence
of the electric field shifts the magnitude of the quantiz-
ing magnetic field. That shift may be a new and testable
experimental prediction, as I have not seen it mentioned
in the literature, though I am no expert in the field.

Second, The above analysis carries through if the con-
dition F · e0 = 0 is replaced by the weaker condition
F · (e0e1) = 0. The result again allows a a quantized
solution, but it is uniformly accelerated by a constant
“electriclike” field αe3e0.

Third, and potentially most important, the quantum
condition (226) may generalize to a resonance between
the frequency shift ω−ωe and the orbital frequency ωt for
any bound state. Perhaps this can fulfill Schroedinger’s
original expectation that stationary atomic states can be
explained as resonances, specifically, as resonances of the
electron’s orbital motion with its internal clock.

XI. AN EXPERIMENTAL TEST OF THE
ZITTER MODEL

The formulation and structural analysis of the zitter
model is now complete and ready for confrontation with
experiment. The Zitter Model describes the dynamics
of a charged electron moving along a helical spacetime
history at the speed of light. We have seen that such
a particle must have a lightlike spin bivector that gen-
erates a slowly varying spacelike spin and magnetic mo-
ment along with a rapidly rotating electric dipole. Prop-
erties of the spacelike spin in the model are in agreement
with standard quantum mechanics. However, the “zit-
ter frequency” of the rotating dipole is so high that the
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only prospects for experimental test are in resonant inter-
actions. In this section we see how the zitter model can
explain a resonance in an electron channeling experiment
that has not predicted by standard quantum mechanics.
Whether quantum mechanics can account for this res-
onance without modification remains to be seen, but I
doubt it.

A. Zitter model for a static potential

The interaction of atoms and crystals with an electron
is usually modeled with a static potential. For that pur-
pose we introduce a static vector potential defined in the
inertial frame of γ0 at each time t and position x by

qA = V γ0 where V = V (x). (227)

This determines an electromagnetic field

qF = ∇V ∧ γ0 = −γ0∇V = −γ0 ∧∇V ≡ −∇V. (228)

This, in turn, determines an electromagnetic force on the
particle

qF · u = ∇V u · γ0 − γ0V̇ , where V̇ = u ·∇V. (229)

Inserting this into the momentum equation (131) we ob-
tain

d

dτ
(p + V γ0) = −∇(V u · γ0 + Φ). (230)

Next, we introduce the space-time split [1] pγ0 = p · γ0 +
p∧ γ0 ≡ p0 + p and separate spatial and temporal parts.
This yields a conserved energy :

E = p0 + V (231)

and, after factoring out v0 ≈ u · γ0, a momentum force
law

dp
dt

= −∇(V + v−1
0 Φ), (232)

where vγ0 = v0(1 + v) with v = dx/dt and p = mv0v.
We still need an explicit form for the spin potential.

From (229) we get

Φ = λeqF · (ue1) = u · γ0 e1 ·∇V − γ0 · e1 V̇ . (233)

However, it is better to use (195) and (196) in (192) to
get the form

Φ = qλe[e · (E‖ + v0E⊥) + ŝ · (v0v × E)]
with qE = −∇V, (234)

where e denotes the unit zitter vector. This has the ad-
vantage of clearly separating the high frequency zitter
from the low frequency spin contributions, and it ex-
hibits the zitter radius λe as governing the strength of
the interaction.

These results can be applied to experimental search for
observable effects of electron zitter. As the energy conser-
vation law (231) is identical to the usual one, zitter will

be manifested only in momentum fluctuations, which are
so small and rapid that they are observable only in res-
onances. Consider Mott scattering by a Coulomb field,
for example. In low and high energy ranges the cross
section will not be significantly affected by the very high
frequency zitter rotation, so the standard result should
be obtained [28]. However, in an intermediate range
where the impact parameter is on the order of a zitter
wavelength, the zitter structure of the particle trajectory
should have a significant effect on the scattering. How
big an effect awaits calculation!

In the mean time, a new possibility for amplifying zit-
ter resonances in crystals has recently appeared in elec-
tron channeling experiments, to which we now turn.

B. Zitter resonance in electron channeling

When a beam of electrons is channeled along a crystal
axis, each electron is subject to periodic impulses from
atoms along the axis. When the energy of the beam is
adjusted so the crystal period matches the period of the
electron’s zitter dipole, a resonant interaction may be ex-
pected to alter the distribution of transmitted electrons.
Indeed, a pioneering experiment in search of such a res-
onance has already been performed, but without knowl-
edge of the dipole interaction mechanism described here.
The anticipated resonance was observed at close to the
de Broglie frequency, which is precisely half the zitter
frequency [29]. Our purpose here is to show how this re-
sult can be explained quantitatively by the zitter model.
This confluence of theory and experiment provides ample
grounds for repeating the experiment with greater accu-
racy to confirm the results and look for details suggested
by the theory.

C. Experimental specifications

The anticipated resonant energy is easily calculated
from the de Broglie’s (circular) frequency ωB = mec

2/h̄.
One of de Broglie’s original insights was that the fre-
quency of a moving electron observed in a laboratory
will be ωL = ωB/γ, where γ = v0 is the relativistic time
dilation factor. The distance traversed during a clock
period is d = 2πcβ/ωL = hp/(mec)2. For the silicon
crystal used in the experiment, the interatomic distance
along the < 110 > direction is d = 3.84 Å, which implies
a resonant momentum p = 80.874 MeV/c.

In channeling the maximum crystal potential is a few
hundred electron volts at most, so in the 80 MeV region
of interest to us, the effective electron mass M ≡ γme =
E/c2 is constant to an accuracy of 10−5, and γ = 158.

In axial channeling electrons are trapped in orbits spi-
raling around a crystal axis. To a first approximation,
the crystal potential can be modeled as the potential for
a chain of atoms, so it has the form

V (x) = V (r, z) = U(r)P (2πz/d), (235)
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where x(t) = r + zσz is the particle position from the
first atom in the chain, with r = |r|. The longitudinal
potential P (2πz/d) = P (ω0t) is periodic with a tunable
frequency ω0 = 2πż/d that varies with the energy E.
Note that at the expected resonance ż = d/TL, so ω0 =
2π/TL = ωB/γ corresponds to the de Broglie frequency.

Our problem is to calculate perturbations on the trans-
verse component of the momentum vector, as that can
remove electrons from stable orbits in the beam. The
transverse component of equation (232) has the familiar
form of a nonrelativistic equation:

M r̈ = −r̂(P∂rU + γ−1∂rΦ), (236)

while the longitudinal component has the form

Mz̈ = −(U∂zP + γ−1∂zΦ), (237)

where now the overdot indicates differentiation with re-
spect to “lab time” t. In the energy range of interest, it
is easy to show that oscillations in the transverse veloc-
ity can be ignored, so we regard ż as a constant tunable
velocity close to the speed of light as already assumed
above.

D. Crystal potential

To proceed further, we need an explicit model of the
crystal potential. For analytic simplicity, we approximate
the potential by the first two terms in a Fourier expansion
with respect to the reciprocal lattice vector. So write
(235) in the more specific form

V = U(r)(1 + cos ω0t), (238)

where the coefficient of the second term is set to make
the potential vanish between atoms. The first term is
the potential for a uniformly charged string, which (in
its simplest version) has Lindhard’s form [30, 31]:

U(r) = −k ln[1 + (Ca/r)2], (239)

where Ca = 0.329Å, and (with Z = 14 for silicon)
the coupling constant k = Ze2/d = 52.5 eV is the
product of electron charge with charge per unit length
of the string. The constant a = 0.885Z−1/3a0 =
(0.885)(14)−1/3(0.529Å) = .190Å is the Fermi-Thomas
screening radius, and the constant C2 = 3 is a fairly
accurate fit over the range of interest.

The string potential is defined as an average over
atomic potentials; thus,

U(r) =
∫ ∞

−∞
Vatom[(r2 + z2)1/2]

dz

d
, (240)

where the screened atomic potential is given by

Vatom(R) = −Ze2

R
ϕ(R/a). (241)

To get (239), Lindhard used the screening function

ϕ(R/a) = 1− [1 + (Ca/R)2]−1/2. (242)

Actually, the experiment is not very sensitive to the
shape of the potential, so long as it is sufficient to bind
the electron to an orbit around the crystal axis. In the
first approximation V = U(r) the projection of the elec-
tron orbit onto a transverse plane looks like a precessing
ellipse or rosette. The second term U cosω0t is ignored
in most channeling calculations, as it merely produces
small harmonic oscillations on the radius of the precess-
ing ellipse. However, the periodicity of the second term
is essential for resonance in the zitter perturbation of in-
terest here.

E. Classical channeling orbits

Ignoring the zitter perturbation in (236) for the time
being, we seek to ascertain the effect of the periodic factor
P (ω0t) = 1 + cos ω0t on the orbital motion. With an
obvious change of notation, we can represent the radius
vector in the complex form r = reiθ, where the imaginary
i is the bivector generator of rotations in the transverse
plane. Then equation (236) assumes the complex form

M r̈ = −U ′Peiθ = −U ′

r
(1 + cos ω0t)r, (243)

with U ′ ≡ ∂rU .
We are interested only in radial oscillations, so we use

conservation of angular momentum L = Mr2θ̇ to sepa-
rate out the rotational motion. With the periodic driving
factor omitted, equation (243) admits the energy integral

E⊥ =
1
2
Mṙ2 + W (r)

where W (r) =
L2

2Mr2
+ U(r). (244)

Let us expand this around a circular orbit of radius r0,
and for quantitative estimates take r0 = 0.50Å as a rep-
resentative intermediate radius. For r0 = reiθ0 , equation
(243) gives us

θ̇0
2

=
U ′

0

Mr0
=

L2

M2r4
0

, (245)

where U ′
0 = U ′(r0). In terms of x = r − r0, expansion of

(244) gives us

E⊥ =
1
2
Mẋ2 + W0 +

1
2
W ′′

0 x2, (246)

where

W0 = U0 + r0U
′
0/2, W ′

0 = U ′
0 − U ′

0 = 0,

W ′′
0 = U ′′

0 + 3U ′
0/r0, (247)

with U0 = −18.9 eV,

U ′ = ∂rU =
2k

r

[
(Ca/r)2

1 + (Ca/r)2

]
, (248)
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with r0U
′
0 = 31.7 eV, and

U ′′ = −U ′

r

[
3 + (Ca/r)2

1 + (Ca/r)2

]
, (249)

with r2
0U

′′
0 = −76.0 eV.

Differentiating (246) and reinserting the periodic driv-
ing factor, we obtain the desired equation for radial os-
cillations:

ẍ + Ω2
0(1 + cos ω0t)x = 0, (250)

where, for mass M at the expected resonance,

Ω2
0 ≡

W ′′
0

M
=

3U ′
0 + r0U

′′
0

Mr0

=
3× 31.7− 76.0

80.9× 106

(
c2

r2
0

)
, (251)

so Ω0 = 4.21 × 1015 s−1. This should be compared with
the θ̇0 = 4.75 × 1015 s−1 from (245) and the expected
resonant frequency ω0 = ωB/γ = 4.91 × 1018 s−1. We
note that the distance traveled in one orbital revolution
is dr = 2πc/θ̇0 = 3.97 × 103Å = 0.397µm. Thus, the
orbit makes 2.52 revolutions in passing through the one
micron crystal, so the orbital revolutions are only weakly
coupled to the high frequency radial oscillations.

Equation (250) is a special case of Mathieu’s equation:

ẍ + q(1 + h cosωt)x = 0. (252)

According to Floquet’s Theorem, this equation has solu-
tions of the general form [32, 33]

x(t) = est
∞∑

n=−∞
anei n ωt. (253)

Substitution into (252) yields a three term recursion rela-
tion that can be solved for s and ratios of the Fourier co-
efficients an. In general, the Floquet exponent s = s(q, h)
is a complex constant, so it determines whether solutions
are unstable or periodic.

Since Ω0 << ω0 in equation (250), its Floquet expo-
nent s = iΩ is pure imaginary, and its recursion relations
give

Ω2 =
3
2
Ω2

0, and

an

an−1
=

a−n

a−n+1
=

Ω2
0

2n2ω2
0

forn ≥ 1. (254)

Therefore, the solution is dominated by the first order
term, with the particular form

x(t) = a(cosΩt) cos ω0t =
a

2
(cos ω+t + cos ω−t),

ω± = ω0 ± Ω. (255)

As might have been anticipated, this describes a har-
monic oscillator with high frequency ω0 and a slowly
varying amplitude with frequency Ω, which is equivalent

to a sum of two oscillators with frequencies ω± separated
by ω+ − ω− = 2Ω.

We shall see that, at the resonant frequency ω0 =
ωB/γ, the frequency shift Ω = (0.857 × 10−3)ω0 is the
right order of magnitude to contribute to experimental
effects. Moreover, this quantity has been estimated at
the particular radius r = 0.50Å, and it may be larger by
an order of magnitude for smaller radii of experimental
relevance. Accordingly, a distribution of Ω values will
contribute to the experiment.

A limit on the maximum radius of a channeled elec-
tron is set by the requirement that W (r) in (244) must
be negative for a bound orbit. A sharper limit is set by
neighboring atoms. The total crystal potential can be
modeled as a sum of chain potentials isomorphic to the
one for the channeling axis. For larger radii perturbation
from other chains can induce transition to a neighbor-
ing chain, with the result that channeled electrons jump
randomly from chain to chain. We are interested in this
effect only to the extent that it affects the distribution
of electrons transmitted by a single channel. However,
a quantitative estimate of such transitions will not be
attempted here.

In silicon, the closest chain to a < 110 > channel is
at a distance of 1.36Å with atoms located at positions
zn+1/2 = (n + 1/2)d alternating with the positions zn =
nd along the channel. Considering the slow precession of
a channeled orbit at the resonant frequency, this chain
will resonate with it for hundreds of atomic steps. In
fact, the interaction might lock onto the orbit to prevent
precession during resonance. This may indeed have a
substantial effect on channeled electrons, but we will not
investigate it further here.

F. Zitter perturbations

Now we are prepared to consider the effect of zitter
perturbations on the orbit. To evaluate the zitter poten-
tial Φ, we use equation (234) with E‖ = (E · v̂)v̂ and
v̂ ≈ σz = ∇z, and we ignore the spin term (because it
vanishes on averaging over spin directions). By the way,
we don’t need to use the spin equation of motion in our
calculations; we only need the fact that it implies that
the unit zitter vector e rotates rapidly in a plane that
precesses slowly with the spin s.

Inserting the electric potential into (234), we get

Φ = −λe[γe · r̂U ′P + e · σzUP ′]. (256)

Since r̂ is effectively constant over a zitter period, we can
make the zitter oscillations explicit by writing e · r̂ =
cos(ωZt/γ + δ) and e · σz = sin(ωZt/γ + δ′), where ωZ is
the zitter frequency. Thus,

Φ = −λe[γU ′P cos(ωZt/γ + δ)
+ UP ′ sin(ωZt/γ + δ′)], (257)

where the smaller second term can be neglected.
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The spin potential has a twofold effect on electron mo-
tion: first, as a shift in zitter frequency according to equa-
tion (148); second, as a perturbation of the momentum
in equation (236). For the frequency shift we get the
explicit expression

ωZ = ωe − γU ′

mec
cos(ωet/γ + δ). (258)

The modulus of the oscillating term has the esti-
mated mean value γU ′c/mec

2 = (158)(31.7eV/0.5Å)(3×
1018Ås−1/(0.511 × 106eV) = 1.96 × 1016s−1. Compared
to ωe = 1.55×1021s−1, this quantity is too small by 10−3

to play a role in the present experiment. However, the
value of U ′, estimated here at a radius of r0 = 0.5Å,
may be regarded as lower bound, as the logarithmic po-
tential is a very soft approximation to a realistic po-
tential, which is much sharper at the screening radius
a = 0.190Å where the logarithmic potential is invalid.
We shall see that close resonant encounters with atomic
nuclei play a dominant role in the experiment, so the os-
cillating term might indeed contribute a mean frequency
shift on the order of 10−2ωe, which could show up in ex-
perimental data. Replacement of the soft periodic mod-
ulus P (ω0t) = (1 + cos ω0t) by one that is more sharply
peaked at the atomic sites may strengthen this conclu-
sion. That being said, for the rest of our analysis, it
suffices to assume ωZ = ωe.

Inserting (257) into (236), we get an explicit expression
for the zitter perturbation term:

−γ−1(∇Φ)⊥ = −γ−1r̂ ∂rΦ
= λer̂U ′′P cos(ωZt/γ + δ). (259)

G. Zitter resonance

The task remains to show that this interaction can
produce a resonant amplification of the electron’s orbit.
Inserting it into equation (236) with a convenient choice
of phase and writing ω = ωZ/γ, we get the equation of
motion

M
d2r
dt2

= −r
U ′

r
(1 + cos ω0t)(1 +

λe

R
cosωt), (260)

where R ≡ −U ′/U ′′ = r[1 + (Ca/r)2]/[3 + (Ca/r)2] is
an effective (screened) radius. Ignoring the amplitude
modulation as determined in (255), we can reduce this
to a radial equation

ẍ + ω2
0(1 +

λe

R
cosωt)x = 0. (261)

Of course, we can replace ω0 in this equation by ω± to
get two separate resonant peaks.

For h = λe/R constant, (261) is Mathieu’s equation
(252), so let us solve it using h = λe/R0 = 1.931 ×
10−3/0.208 = 9.283 × 10−3 as an approximation. For
small values of h such as this, equation (261) has a first
order resonance at ω = 2ω0. An easy way to see that is to

regard (261) as an equation for a driven harmonic oscil-
lator with driving force proportional to its amplitude. In
the experiment, the “natural frequency” ω0 was adjusted
by continuously varying the initial energy of the electron
until a resonance was found. As for a periodically driven
harmonic oscillator, resonance occurs when the driving
frequency equals the natural frequency. In this case, that
means ω−ω0 = ω0 or ω0 = ω/2 = ωZ/2γ, which explains
why the resonance occurs at half the zitter frequency —
a surprising result until contemplation shows that it is
an obvious feature of parametric resonance!

More generally, it can be shown that (261) has reso-
nances at 2ω0 = nω, for n = 1, 2, . . .. We demonstrate
that explicitly for the first order resonance by truncating
the series in (253) to the form [34]

x = est[a cos
ωt

2
+ b sin

ωt

2
]. (262)

For a resonant solution, the Floquet exponent s must
be real and positive. [Actually, to get this form from
(253) we should use the Floquet coefficient s− iω/2 and
incorporate its imaginary part in the series. Thus, there
is some ambiguity in the definition of Floquet exponent.]

To validate the trial solution and evaluate its param-
eters, we insert it into the differential equation. Using
trigonometric identities such as 2 cos A cos 2A = cos A +
cos 3A to reduce products to sums and dropping higher
order terms, we obtain

sωb + [ss + ω2
0 − (ω/2)2 + (h/2)ω2

0 ]a = 0,

sωa− [ss + ω2
0 − (ω/2)2 − (h/2)ω2

0 ]b = 0.

For a near resonance solution we write ω = 2ω0 + ε and
neglect second order terms to get

sb− 1
2
[ε− 1

2
hω0]a = 0,

sa +
1
2
[ε +

1
2
hω0]b = 0.

These equations can be solved for the coefficients pro-
vided

s2 =
1
4
[(

1
2
hω0)2 − ε2] > 0. (263)

Thus, we have a resonance with width

∆ω = 2ε = hω0 = 9.283× 10−3ω0, (264)

or

∆p = h(80.9 MeV/c) = 0.751MeV/c. (265)

And for the amplification factor at resonance we have

st =
1
4
hω0t =

π

2
hn = 1.46× 10−2n, (266)

where n is the number of atoms traversed in a resonant
state. Since ln 2 = 0.693, this implies that the amplitude
is doubled in traversing about 50 atoms.

Now note that the value of h = λe/R0 used in (264)
and (266) applies to only the subclass of orbits for which
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r0 = 0.50Å. For smaller radii the values can be much
larger. In principle, to get the width of the ensemble
of orbits we should replace h in (264) by its average h
over the ensemble. However, the result will probably not
differ much from the typical value we have chosen.

Similarly, the amplitude factor in (266) will have a
distribution of values, and the doubling factor will be
reached much faster for orbits with smaller radii. Pre-
sumably, random perturbations (such as thermal fluctua-
tions of the nuclei) will limit the resonant state coherence
length to some mean value n. Consequently, states with
smaller r0 will be preferentially ejected from the beam.

Even more to the point, the perturbation parameter
h = λe/R is not constant as we tentatively supposed but
increases rapidly as the electron approaches a nucleus.
In resonance the value of h close to each nucleus domi-
nates the perturbation, so its effective mean value is much
smaller than the estimate for constant r0. Evidently, res-
onant interaction may eject electrons with small r0 in just
a few atomic steps.

H. Experimental implications

The predicted resonance width in (265) is in fair agree-
ment with the width in the channeling experiment data
[29], considering uncertainties in the value of h and such
factors as thermal vibrations that may contribute to
damping. Damping can only widen the width and de-
stroy the resonance if it is too severe.

We need to explain how the orbital resonance is man-
ifested in the experimental measurements. Two scintil-
lators, SC2 and SC3, were employed to detect the trans-
mitted electrons. The larger detector SC3, with a radius
about 3 times that of SC2, served as a monitor while the
smaller detector served as a counter for a central por-
tion of the beam. The measured quantity was the ratio
of SC2 to SC3 counts as momentum was varied in small
steps (0.083%) over a 2% range centered at the expected
resonance momentum 80.9 MeV. An 8% dip was observed
at 81.1 MeV. Orbital resonances may contribute to this
effect in at least two ways: first, and perhaps most impor-
tant, by increasing the probability of close encounter with
a nucleus that will scatter the electron out of the beam;
second, by increasing the duration of eccentric orbits out-
side the central region. Overall, resonant interactions will
be strongest on electrons confined to the central region.
These observations suffice for a qualitative explanation
of the observed dip. A quantitative calculation will not
be attempted here.

The most problematic feature of the experiment is the
0.226MeV/c difference between observed and predicted
resonance energies. If estimation of the experimental er-
ror was overly pessimistic, that indicates a physical fre-
quency shift. The most likely origin for such a shift is the
frequency split in (255). The experiment was not suffi-
ciently accurate to resolve separate peaks for the two
frequencies, so the peaks would merge to broaden the

measured resonance width. However, the peak for ω+ is
likely to be higher than the peak for ω− owing to greater
probability for ejection from the beam. Hence, the center
of the merged distribution will be displaced to a higher
frequency. If this explanation is correct, then an increase
in experimental resolution will separate the two peaks,
and their relative heights will measure the relative prob-
ability of ejection at the two frequencies.

Though the string approximation to the crystal po-
tential (239) is useful for semiquantitative analysis of
zitter resonance, as we have seen, it breaks down com-
pletely at radii near the screening radius a = 0.190Å;
for then, as Lindhard [31] has shown, the electron’s colli-
sion time with a nucleus is comparable to the travel time
between atoms. In picturesque terms, the electron be-
gins to “feel” individual atoms rather than a continuous
string. Within this domain, our analysis of electron mo-
tion remains qualitatively the same, but a more realistic
crystal potential is needed for accurate quantitative esti-
mates. A hard lower limit on the radius is determined by
the mean radius of nuclear zeropoint vibrations, which
Debye theory estimates as 0.05Å [30].

If the idea of zitter resonance is taken seriously, there
are many opportunities for new theoretical and experi-
mental investigations. Increasing the resolution by three
orders of magnitude will open the door to refined studies
of frequency shifts, line splitting, spin effects and Zee-
man splitting, all of which are inherent in zitter theory
[35]. As has been noted, the most straightforward pre-
diction of the zitter model is a second order resonance
near 161.7MeV/c. In a first approximation, it can be an-
alyzed in much the same way as here, though removal of
electrons from the center of the beam may be enhanced
by such processes as pair creation.

A more detailed analysis of zitter resonance in channel-
ing requires close attention to experimental conditions, so
that will be addressed elsewhere. Classical particle mod-
els have long been used for channeling calculations with
considerable success. Besides being simpler and more
transparent than quantum mechanical models, they often
give better results at high energies. For present purposes,
the zitter model differs from the usual classical model
only by the zitter dipole interaction. As we see below,
though zitter is inherent in the Dirac electron theory, it is
unlikely that the channeling resonance effect can be de-
rived from the Dirac equation without some modification
such as projection into a Majorana state.

XII. ZITTERBEWEGUNG IN DIRAC THEORY

This section describes the intimate relation of the zitter
model to the Dirac equation. The relation should not be
surprising, as it was study of Dirac theory that led to
the zitter model in the first place. Conversely, we shall
see that the zitter model suggests modification of Dirac
theory to incorporate deeper zitter substructure with new
physical implications.



23

Our first task is to match up variables and dynami-
cal equations in the zitter model with observables and
dynamics in Dirac theory. An exact match is not to be
expected, as the particle based zitter model can only be
related to the Dirac field theory by some sort of averag-
ing or projection process. Nevertheless, the comparison
reveals specific similarities and differences that must be
addressed in establishing a firm connection between zit-
ter model and Dirac theory. This leads to suggestions
for modifying the Dirac theory and further research to
resolve outstanding issues.

In the language of STA, the real Dirac equation has
the form

γµ∂µ(ψγ2γ1h̄− qAµψ) = meψγ0,

or ∇ψiσ3h̄− qAψ = meψγ0 , (267)

where the Dirac wave function is a real spinor field

ψ = ψ(x) = (ρeiβ)1/2R. (268)

This version of the Dirac equation is fully equivalent to
the standard matrix version [1], but it has great advan-
tages for analyzing the structure of the Dirac theory as
shown in the following.

The Dirac wave function determines a frame field of
local observables

ψγµψ̃ = ρeµ, where eµ = RγµR̃ = eµ(x) (269)

and ρ = ρ(x) is interpreted as a scalar probability density,
in accordance with the interpretation of the Dirac current
ψγ0ψ̃ = ρe0 as a probability current. The vector fields

v ≡ e0 = Rγ0R̃ = v(x), (270)

and

s ≡ 1
2
e3 = 1

2 h̄Rγ3R̃ = s(x) (271)

are interpreted as local velocity and spin observables for
the electron. Note that these quantities are algebraically
identical to the expressions for velocity and spin in the
zitter model. Likewise for the other observables

u ≡ e0 + e2 = Rγ+R̃ = u(x), (272)

and

S ≡ isv = 1
2Riσ3h̄R̃ = S(x). (273)

The difference is that the observables here are vector and
bivector fields, whereas in the zitter model they are de-
fined on a particle history. Our next task is to compare
them dynamically.

A. Zitterbewegung along Dirac histories

The mass term in the Dirac equation (267) can be writ-
ten in the form

meψγ0 = me(ρeiβ)1/2Rγ0R̃R = meve−iβψ. (274)

Whence, the Dirac equation can be reformulated in the
compact form

Dψ ≡ γµDµψ = 0, (275)

where a gauge invariant coderivative is defined by

Dµ = ∂µ + 1
2Ωµ, (276)

with the bivector-valued connexion

Ωµ ≡ 2
h̄

(mevµe−iβ + qAµ)e2e1. (277)

The purpose of introducing this coderivative is not to re-
duce the Dirac equation to the maximally compact form
(275), but to reveal that all the essential physics is con-
tained in the connexion Ωµ.

Our aim is to compare zitter dynamics along the
history of a zitter center with Dirac dynamics along
“streamlines” of the Dirac current. To that end, we eval-
uate the directional coderivative along a Dirac history as
follows. From

Dψγ0 = D(ve−iβψ) = [D(vψ)− i(∇β)vψ]e−iβ = 0

we obtain

D(vψ) = 2v · Dψ + (Dv)ψ = i(∇β)vψ. (278)

This separates into the familiar conservation law for the
Dirac current and a dynamical equation for rotations
along a Dirac streamline:

ρ̇ + ρD · v = D · (ρv) = ∇ · (ρv) = 0, (279)

v · DR = Ṙ + 1
2Ω(v)R = − 1

2 [D ∧ v + i(v ∧∇β)]R. (280)

The overdot indicates the directional derivative v ·∇ and
(277) gives us

Ω(v) = (ωe cosβ +
2q

h̄
A · v)e2e1 + (ωe sin β)e0e3 (281)

D ∧ v = ∇∧ v + (ωe sin β)e3e0. (282)

When these are inserted into (280), the boosts in the e0e3

plane cancel to give us

Ṙ = 1
2 [(ωe cosβ+

2q

h̄
A ·v)e1e2−∇∧v−i(v∧∇β)]R.(283)

This is an exact result. It does indeed exhibit the familiar
zitter rotation in the e2e1-plane, though the frequency
seems to be different.

We still need to evaluate the curl of the velocity field to
appreciate its effect on the dynamics. A general expres-
sion has been derived elsewhere [2, 3], but our purpose
here is served by the eikonal approximation, expressed
by

∇ψγ2γ1h̄ = ∇(ψ0e
−γ2γ1φ/h̄γ2γ1h̄) = (∇φ)ψ. (284)

Inserting this into the Dirac equation (267), we obtain

∇φ = meve−iβ − qA. (285)
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This implies eiβ = ±1, where the choice of sign depends
on the chosen sign of charge. We adopt that approxi-
mation only in this equation, as the parameter β is too
important to ignore completely [2]. Then the curl of (285)
gives us

−me∇∧ v = q∇∧A = qF. (286)

This is equivalent to the Lorentz force equation for a fluid
of charge with uniform density, as seen by “dotting” with
v, to get

v · (∇∧ v) = v ·∇v = − q

me
v · F =

q

me
F · v. (287)

More generally, we insert (286) into (280) and use (282)
to get the spinor equation of motion

Ṙ = 1
2 [ωve1e2 +

q

me
F − i(v ∧∇β)]R, (288)

with ωv ≡ ωe cosβ + (2q/h̄)A · v. This equation must be
compared with the analogous expression (208) for rota-
tional velocity in the zitter model. The general form is
very similar, but we are not equipped to account for the
differences for reasons to be discussed.

The zitter frequencies in the two equations are not
equivalent, but they do have the same free particle limit
ωe. The bivector i(v ∧ ∇β) also contributes to the rota-
tion rate, as implied by

v · [i(v ∧∇β)] = −i(v ∧ v ∧∇β) = 0.

However, the physical significance of this term remains
obscure. The apparent absence of a Stern-Gerlach force
in the Dirac version (288) is noteworthy, but we cannot
be sure that it is not buried in terms that we do not
understand.

Another way to compare the zitter model with the
Dirac theory is through their Lagrangians. The Dirac
equation (267) is derivable from the Lagrangian

L =
〈
h̄∇ψiγ3ψ̃ + qAψγ0ψ̃ + meψψ̃

〉
. (289)

Inserting (268) and using iγ3 = γ2γ1γ0 with (274), we
see that the “kinetic term” can be written

〈
h̄v∇ψγ2γ1ψ̃e−iβ

〉
. (290)

Restricting the derivative to streamlines we have v∇ψ =
v · ∇ψ = ψ̇, and comparison with the Lagrangian (57)
is straightforward. Note that the additional factor in
(290) cancels the corresponding factor in (81). However,
this does not resolve the puzzling role of β in the Dirac
equation [2].

It might be thought that the Dirac equation is more
fundamental than the zitter model because interaction
comes from the vector potential A alone and interaction
with the field F arises only indirectly, for example in the
manner described above. A famous consequence of this
is the derivation of the gyromagnetic ratio g = 2. In con-
trast, the Lagrangian (57) for the zitter model appears

to presume the electron magnetic moment with separate
coupling constants for A and F interactions. Note, how-
ever, that precisely two independent constants are pre-
sumed in both models. The rest mass is presumed in
the Dirac equation, but that is replaced by the charge
to mass ratio in the zitter model. It remains to be seen
which is more fundamental.

B. Zitterbewegung substructure

In preceding sections we saw that a rotating electric
dipole is the hallmark of zitterbewegung, so one wonders
why it has attracted so little attention in accounts of
Dirac theory. In the original paper introducing his equa-
tion [36], Dirac concluded that the electron has both a
magnetic and an electric moment, the magnetic moment
being the same as in the Pauli model. However, he said,
“The electric moment, being a pure imaginary, we should
not expect to appear in the model. It is doubtful whether
the electric moment has any physical meaning.”

It is worth translating Dirac’s argument into STA, es-
pecially since its mathematical content has been retained
in the current literature. One simply “squares” the op-
erator on the wave function in (267) to get

(−h̄2∇2 + q2A2)ψ − 2q(A ·∇+ 1
2F )ψiσ3h̄ = m2

eψ ,(291)

where F = ∇A = ∇ ∧ A with the Lorenz condition
∇ · A = 0. This is the Klein-Gordon equation with an
extra term that explicitly shows the action of bivector
F “rotating” the wave function. The interaction energy
density associated with this term is proportional to

1
2 < Fψiσ3h̄ψ̃ >=< FSρeiβ >

= −ρ(Bv · s cos β + Ev · s sin β), (292)

where the v-split introduced in (177) has been used on
the right hand side. The Bv ·s cos β term is recognized as
the Pauli term except for the strange cosβ factor. The
Ev · s sinβ term is what Dirac identified as an imagi-
nary dipole moment. He never mentioned the electric
dipole again. In his influential textbook [37] he simply
suppressed the offending term by a subterfuge advertised
as a change in representation. Then he killed the term
with an approximation that amounts to sinβ = 0 and
never looked back. We find an alternative resolution of
this “dipole problem” below.

Dirac was soon convinced by Schroedinger [6] that zit-
terbewegung is foundational to electron theory and he
argued the case vigorously in his textbook [37]. As his
argument is still widely accepted [38], it deserves com-
ment here.

Dirac introduces a position operator by identifying a
velocity operator as its time derivative, and he followed
Schroedinger in integrating the equation for the free par-
ticle case. He identifies his αk matrices as velocity op-
erators and claims that their eigenvalues ±1 correspond
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to measured values of electron velocity, asserting: “we
can conclude that a measurement of a component of the
velocity of a free electron is certain to lead to the re-
sult ±c.” (Dirac’s italics) From the STA point of view
this argument and its implications are bogus, for reasons
explained elsewhere [1]. However, we agree with the as-
sumption that the electron moves with the speed of light.
We differ in identifying the local electron velocity with
the null vector u = Rγ+R̃ introduced above.

We also agree with Dirac in associating spin with zit-
ter circulation. Dirac concludes: “Our argument is valid
only provided the position of the particle is an observ-
able. If this assumption holds, the particle must have a
spin angular momentum of half a quantum.” However,
Dirac’s analysis of zitter and spin never went beyond the
free particle case. He overlooked (or dismissed) the infer-
ence that his account of spin arising from charged parti-
cle circulation implies a rapidly rotating electric dipole.
Though zitter obviously arose from wave function phase
oscillations in Schroedinger’s free particle analysis, Dirac
never considered a general connection of zitter circulation
to wave function phase. The present study can be re-
garded as an extension of Dirac’s analysis to incorporate
these features in a general theory of zitter in quantum
mechanics.

As the Dirac equation has an unsurpassed record of
success in QM and QED applications, it is imperative to
reconcile it with any proposals about zitter. If the zitter
model describes substructure in electron motion that is
not captured by the Dirac equation, it must at least be
related to the Dirac wave function by some sort of aver-
aging process. Without attempting a definitive reconcil-
iation, let us note some issues that must be addressed.

We know that the conserved Dirac current ρv deter-
mines a congruence of curves (or streamlines) for every
solution of the Dirac equation. As Bohm and Hiley have
argued at length [5], each of these curves x = x(τ) can
be regarded as a possible path for the electron weighted
by a relative probability ρ = ρ(x) that the electron ac-
tually followed that path. This is a viable particle inter-
pretation of quantum mechanics. However, a refinement
is necessary to account for zitterbewegung, which sug-
gests that the actual particle paths are lightlike helices
with tangent vector u = u(x) at each spacetime point.
The simplest refinement would have each of these light-
like paths winding around a Dirac streamline, but this
possibility is questionable without deriving it from the
zitter model, at least approximately, by a well defined
averaging process (yet to be determined)!

A crucial problem is to justify the weighting of paths
by the probability density ρ = ρ(x). A new possibility
is suggested by the fact that the analogous quantity in
our zitter particle model is a timescale factor ρ = ρ(τ).
Thus, the putative probability density in the Dirac equa-
tion might be derivable as a time scale weighting on a
congruence of particle paths! In any case, time scaling in
the zitter model must be reconciled with the probability
interpretation in the Dirac theory.

It may be that a suitable averaging process relat-
ing particle histories to the Dirac equation will involve
time averaging as well as ensemble averaging with con-
straints. Analogy with the zitter model already suggests
that Dirac observables for velocity v and spin S corre-
spond to zitter time averages, but the phase of the Dirac
wave function is directly comparable to the zitter phase.

The Schroedinger equation is a nonrelativistic approx-
imation to the Dirac equation that freezes spin but pre-
serves zitter oscillations in the phase of the wave function
and in coupling of phase to amplitude, as specified, sur-
prisingly, by the mysterious parameter β [26, 39]. As
shown in these references, assuming β = 0 completely
decouples phase from amplitude and so eliminates all
QM effects. Clearly, therefore, the role of β must be
accounted for in any averaging process.

The fact that the kinematic state of a particle with
zitter is described by a rotor while the Dirac wavefunc-
tion is also a spinor suggests that the QM superposition
principle can be construed as an average over particle
rotor states. Indeed, it is easy to prove that the sum of
two rotors R1 and R2 necessarily has the form (268) for
a spinor:

R1 + R2 = (ρiβ)1/2R. (293)

The undeniable success of the Schroedinger equation sug-
gests that, approximately at least, the superposition is an
average over phase factors, such as Feynman’s sum over
paths. This certainly produces the coupling of phase to
amplitude so characteristic of QM. Note that an average
over rotors blurs any average over paths, because path
velocity is a bilinear function of the path rotor. Finally,
it should be mentioned that gauge invariance provides a
strong constraint on assembly of phases for distinct par-
ticle paths into a coherent ensemble.

Clearly, deriving the Dirac equation from zitter sub-
structure is a nontrivial problem. Happily, we don’t have
to wait for a solution to make progress in studying the zit-
terbewegung. Here is a promising alternative approach:

C. Putting zitterbewegung into the Dirac equation

We have seen that physical interpretation of the Dirac
equation is crucially dependent on identification of a par-
ticle velocity observable, which requires theoretical as-
sumptions beyond the Dirac equation itself. Historically,
the mass term in the Dirac equation led to the conserva-
tion law for the Dirac current and its interpretation as a
probability current, with an implicit identification of par-
ticle velocity. In the STA version of the Dirac equation
(267), explicit appearance of the vector γ0 shows that
the velocity vector v = Rγ0R̃ is inherent in the structure
of the equation. However, we have identified the vector
u = Rγ+R̃ as a better candidate for electron velocity.
This suggests a slight modification of the Dirac equation
to replace v by u. Accordingly, we change the mass term



26

meψγ0 to

meψ
1
2 (γ0 + γ2) = meψ+γ0, (294)

where

ψ+ ≡ ψ 1
2 (1 + σ2). (295)

In common parlance, this is a projection of a 4-
component spinor ψ into a 2-component spinor ψ+. As
only these components are now relevant to the electron
velocity, we should perform the same projection on the
other components of the Dirac equation. That requires
modification of the vector potential term to achieve a 2-
component equation. One of several possibilities gives us
the modified Dirac equation

∇ψ+iσ3h̄− qAψ+σ3 = meψ+γ0 . (296)

Let’s refer to this as the zitter Dirac equation. Note that
it has the essential property of invariance under projec-
tion from the right by 1

2 (1− σ2).
To be assured that this modification of the Dirac equa-

tion has not damaged its essential physical meaning, we
note that the zitter free particle solution for a congruence
of histories with ωeτ/2 = p · x/h̄ is also a solution of the
Dirac equation, which, when substituted into (296) with
arbitrary initial conditions, yields the algebraic relation

pu = me(1− e2e0). (297)

This is identical to the relation between momentum and
velocity found in (127) and (134) for the zitter model. In
contrast to the prosaic relation p = mee0 from the free
particle solution to the ordinary Dirac equation, this rela-
tion includes zitter in the vector e2, as it rotates with the
zitter phase. Thus, the form of the zitter Dirac equation
brings the null velocity observable to the fore.

It is also readily shown that the zitter Dirac equation
has the same electromagnetic gauge invariance as the or-
dinary Dirac equation. Moreover, the gauge group can
be generalized to incorporate electroweak interactions, as
explained in [35]

Now check the observables. With respect to the pro-
jected wave function, the observables (272), (273) become

ψ+γ+ψ̃+ = 2ψ+γ0ψ̃+ = ψγ+ψ̃ = ρu, (298)

and

ψ+iσ3h̄ψ̃+ = ψ 1
2 (1 + σ2)iσ3h̄ψ

=
h̄

2
ψγ+γ1ψ = ρ

h̄

2
ue−iβe1 = ρS. (299)

Thus we get the same zitter velocity u, but the spin bivec-
tor S is replaced by a null spin bivector S, which is iden-
tical in form to the spin (78) in the point particle model,
and, as in (121), the duality factor can be absorbed into
a rotation of the vector e1. We see immediately that the
interaction energy density (292) is replaced by

g

2
< Fψ+iσ3h̄ψ̃+ >= g < FρS >

= ρ(Ev · d−Bv · µ), (300)

in perfect accord with equation (178) of the zitter model.
Thus, the change in observables by projection on the
wave function appears to eliminate the parameter β and
its problems of physical interpretation.

Further insight comes from the following Lagrangian
for the zitter Dirac equation:

LzD = 2
〈
[−h̄∇ψ+iγ0

+qAψ+γ0 + meψ+σ3]ψ̃+

〉
. (301)

Note that the interaction term has the usual form A ·
J =< AJ >, but now the charge current is a null vector
field

J = 2qψ+γ0ψ̃+ = qψγ+ψ̃ = qρu, (302)

as expected. It follows from the zitter Dirac equation
that this current is conserved, though it is not conserved
in standard Dirac theory.

The usual Dirac current is not obtainable as a bilinear
observable of the wave function ψ+. However, as noted
before, it can be obtained as a zitter average v = u of the
zitter velocity. This suggests that one should try to derive
the zitter Dirac equation, rather than the Dirac equation
itself, from the zitter model. But that possibility will not
be explored here.

The zitter Dirac equation offers a new perspective on
the significance of negative energy in Dirac theory. Re-
call that negative energy solutions were first regarded
as a serious defect of the Dirac equation. Schroedinger
showed that they are essential for a general solution even
in the free particle case when he “discovered zitterbe-
wegung” as interference between positive and negative
components of a wave packet. In an audacious effort
to save the theory, Dirac identified the negative energy
states with an “anti-electron” and invoked the Pauli prin-
ciple to suppress them (hole theory). Miraculously, the
positron was discovered shortly thereafter, so the defect
was transmuted to a spectacular triumph!

A standard conclusion from all this is expressed by the
following quotations [38]: “The zitterbewegung demon-
strates in a real sense a single particle theory is not possi-
ble.” “The difficulties with the negative energy states of
the Dirac equation almost of necessity demand a many-
body theory.” “Hole theory is a many-body theory de-
scribing particles with positive and negative charge. The
simple probability interpretations of the wave functions
acclaimed in a single-particle theory cannot be true any
longer, because the creation and annihilation of electron-
positron pairs must be taken in account in the wave func-
tion.” In other words, quantum field theory is needed to
explain zitterbewegung!

For a different perspective on negative energy we note
that ψC ≡ ψσ2 is the charge conjugate solution of the
real Dirac equation [1]. Hence we can cast the zitter wave
function (295) in the form

ψ+ ≡ 1
2 (ψ + ψC). (303)
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This expresses Dirac’s negative energy solution as an es-
sential component of the zitter rather than an antiparti-
cle. It is an alternative splitting of Dirac’s 4-component
wave function into a pair of 2-component wave functions
for different particle states. The physical issue is this:
Which components of the Dirac wave function should be
identified with the electron? The zitter component ψ+

describes an electron with zitter motion. Standard quan-
tum field theory splits the zitter into positive and neg-
ative energy components and then reassembles it later
from pair creation and annihilation. In most calcula-
tions the end result will be the same, because both ap-
proaches start from the same Dirac equation. Contrary
to the standard Dirac equation (267), the zitter Dirac
equation (296) is consistent with a single particle model
of zitter without the strenuous expedient of field quan-
tization. This is not to deny that some version of quan-
tum field theory is necessary to account for creation and
annihilation of particles. The problem is to devise ex-
periments that identify the basic particle states. The
channeling resonance already discussed may be one such
experiment.

The zitter wave function ψ+ has only four degrees of
freedom, whereas it is commonly believed that all eight
degrees of freedom in the Dirac wave function are needed
to describe an electron. However, note that three de-
grees of freedom suffice to specify the null velocity u = ż,
and additional degrees are not needed to describe spin
and phase, because they are intrinsic properties of the
null history. This leaves one scalar variable to serve as a
probability density or time scale factor.

Standard theory suggests that the remaining four com-
ponents should represent positron states through second
quantization. However, zitter theory opens the possibil-
ity of identifying them with the electron neutrino and
thereby relating zitter to electroweak theory. Than op-
tion has been discussed elsewhere [35].

XIII. CONCLUSIONS

The zitterbewegung, if it turns out to be physically
real, is belated confirmation of de Broglie’s original hy-
pothesis [40] that the electron has an internal clock with
period precisely equal to twice the zitter period, precisely
the relation between the period of a rotor and that of a
vector it rotates.

As we have seen, the physical signature of zitter is a
rotating electric dipole with ultra high frequency. If this
exists, its implications for quantum mechanics will be
far-reaching. Evidently it can be incorporated in Dirac
theory by subtle changes in the specification of observ-
ables and the structure of the Dirac equation.

Experimental confirmation of the zitter should stim-
ulate research on its proposed incorporation into elec-
troweak theory. Then study of zitter self-interaction
should look for excitations explaining the three lepton
families. Finally, the strong analogy between electroweak
interactions of leptons and quarks suggests that one
should investigate modifications of zitter structure to
model quarks and strong interactions. All this should
go hand-in-hand with development of zitter field theory
and reconciliation of it with quantum field theory.
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