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ZITTERBEWEGUNG IN RADIATIVE PROCESSES

David Hestenes

ABSTRACT. The zitterbewegung is a local circulatory motion of the electron
presumed to be the basis of the electron spin and magnetic moment. A refor-
mulation of the Dirac theory shows that this interpretation can be sustained
rigorously, with the complex phase factor in the wave function describing the
local frequency and phase of the circulatory motion directly. This reveals the
zitterbewegung as a mechanism for storing energy in a single electron, with many
implications for radiative processes.

1. INTRODUCTION

Schrödinger was never satisfied with quantum mechanics. He was especially
disturbed by the absence of a clear physical mechanism for radiative processes.
This issue is of renewed interest today, for powerful new experimental tech-
niques make it possible to investigate radiative processes with unprecedented
resolution and precision. Indeed, the discovery of multiphoton ionization and
related phenomena has already upset the conventional wisdom about the photo-
electric effect [1]. It seems though, that the initial confusion has been cleared up
to the satisfaction of most theorists in the field, and extensive theoretical work
has produced explanations for most of the new phenomena brought to light in
high intensity laser-atom interactions. All this has been accomplished without
any fundamental changes in theory, so some regard it as another triumph of
quantum electrodynamics. However there are good reasons to be doubtful.

Most explanations in quantum optics are phenomenological in the sense that
each is based on some ad hoc hamiltonian tailored to the problem at hand. A
truly fundamental explanation, of course, must be derived from the Dirac equa-
tion. To be sure, that is not always possible or practical. But it is essential if
anything truly new about radiating electrons is to be learned. Phenomenological
models for laser-electron interactions are incapable of distinguishing collective
activity from the radiative behavior of single electrons. Consequently, I believe,
opportunities for discovering fundamentally new knowledge about radiative pro-
cesses have been missed.

In this note I will argue that a generally overlooked feature of the Dirac the-
ory, the zitterbewegung (ZBW), is the key to understanding radiative processes,
and genuinely new physics is to be expected from studying its implications the-
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oretically and experimentally. The argument has three main steps. The first
step is a purely mathematical reformulation of thc Dirac theory, so it should be
uncontroversial. Nevertheless, the results are so surprising and unfamiliar that
most physicists are taken aback. Briefly, the reformulation eliminates superflu-
ous degrees of freedom and reveals a hidden geometric structure in the Dirac
theory he imaginary factor ih̄ in Dirac’s equation automatically becomes iden-
tified with the electron spin, and the electron wave function has a geometrical
interpretation wherein the spin is the angular momentum of a local circulatory
molion, that is, the ZBW. This raises serious questions about the interpretation
of quantum mechanics which are discussed in the second step of the argument.
The final step is concerned with a qualitative discussion of the ZBW in radiative
processes and the prospects for new physics.

The key to recognizing the geometric structure of the Dirac theory is reformu-
lating it in terms of spacetime algebra, a Clifford algebra providing the optimal
encoding of spacetime geometry in algebraic form. Only a “bare bones” account
of the spacetime algebra and the ZBW structure of the Dirac theory can be given
here. Much more is provided in [2] and the many references therein. Hopefully,
the present account can serve as an intelligible introduction to the other articles
in these proceedings which employ the spacetime algebra. However, there is
no getting around the fact that genuine insight into any mathematical system
requires a good deal of time and effort.

2. SPACETIME ALGEBRA.

The spacelime algebra (STA) is generated from spacetime vectors by introduc-
ing a suitable rule for multiplying vectors. We begin with the usual Minkowski
model of spacetime as a 4-dimensional vector space M4. In mathematical par-
lance, STA is the real Clifford algebra of the Minkowski metric on M4. More
specifically, STA is a real associative algebra generated from M4 by defining an
associative product on M4 with the special property that the square of every
vector is scalar-valued. I call this product the geometric product to emphasize
the fact that it has a definite geometric interpretation which fully characterizes
the geometrical properties of spacetime. The geometric product uv of vectors u
and v can be interpreted by decomposing it into symmetric and skewsymmetric
parts; thus,

uv = u · v + u ∧ v , (1)

where two new products have been introduced and defined by

u · v = 1
2 (uv + vu) = v · u , (2)

u ∧ v = 1
2 (uv − vu) = −v ∧ u . (3)

It follows from the definition of the geometric product that u · v is scalar-valued;
indeed, it is the usual inner product defined on Minkowski space. The quantity
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u∧ v is called a bivector and it represents a directed plane segment in the same
way that a vector represents a directed line segment.

In these proceedings, Ed Jaynes [3] confesses to a long-standing “hang-up”
over Eq. (1) which has prevented him from getting into STA. As I have the
greatest respect for Ed’s intellect and as other physicists may suffer the same
hang-up, I shall attempt a cure forthwith. But first, some further discussion will
be helpful in preparation.

Note that for orthogonal vectors (as defined by u · v = 0), Eq. (1) gives
uv = u ∧ v = −vu. Thus, the geometric relation of orthogonality is expressed
algebraically by an anticommutative geometric product. Similarly, collinearity
is expressed by a commutative geometric product. For in that case u ∧ v = 0,
Eqs. (1) and (2) give uv = u · v = vu. In general, (1) shows that the geometric
product represents the relative direction of any two vectors by a combination of
commutative and anticommutative parts.

To facilitate comparison with the Dirac matrix algebra, it is convenient to
characterize the structure of STA in terms of a basis. Let {γµ; µ = 0, 1, 2, 3} be
a righthanded orthononormal basis for M4 with timelike vector γ0 in the forward
(future) lightcone. In terms of this basis the spacetime metric is expressed by
the equations

γ2
0 = 1 = −γ2

k for k = 1, 2, 3 , (4)

and
γµ · γν = 0 for µ �= ν . (5)

Other basis elements of STA, each with a definite geometric interpretaton, can
be generated from γµ by multiplication. For example, γ2γ1 = γ2 ∧ γ1, is a
bivector of unit magnitude, as expressed by

(γ2γ1)
2 = −1 . (6)

Returning now to Ed’s hang-up, he believes that the validity of Eq. (1) requires
some new concept of addition. On the contrary, thc concept of additon in Eq. (1)
is identical to the one physicists are familiar with in complex numbers. Indeed,
Eq. (1) can be read as a separation of a complex number z = uv into real and
imaginary parts. To make that obvious, suppose that u and v are spacelike unit
vectors subtending an angle θ, so that u · v = − cos θ, where the minus sign is
due to the negative signature. The area of the parallelogram determined by u
and v is given by sin θ so we can write u∧v = i sin θ, where i is the unit bivector
for the spacelike plane containing u and v. If γ1 and γ2 compose an orthonormal
basis for that plane, then i = γ2γ1 and i2 = −1. Thus, Eq. (1) assumes the
familiar form

z = uv = − cos θ + i sin θ = e−iθ . (7)

Of course, this gives a much richer concept of complex numbers than the ordinary
one. The i has a twofold geometric meaning: It is the generator of rotations in
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the plane, as can be seen by solving (7) for v; thus,

v = −uz = ue−iθ . (8)

It is also the unit directed area element for the plane. Of great importance to us
later on will be the fact that all Lorentz rotations are generated by the bivectors
of STA. Although STA enriches the concept of complex number, it employs the
same old concept of addition.

Formally, addition is defined by the associative and commutative rules. When
adding complex numbers, these rules enable us to collect and concatenate real
and imaginary parts separately. The same is true when adding combinations of
scalars and vectors in STA. I suspect that the underlying cause of Ed’s hang-
up is the worry that scalars and vectors will get inextricably mixed-up under
addition. But addition doesn’t mixup real and imaginary parts of complex
numbers. Why? Because they are linearly independent! That, I believe, is the
concept that Ed overlooked in this context. Scalars and vectors don’t get mixed-
up under addition because they are linearly independent. Indeed, the addition
of scalars to vectors is equivalent to augmenting the vectors with an additional
component. But if scalars and vectors cannot be concatenated, why add them
at all? The answer is the same as for complex numbers: Because multiplication
intermixes them, creating valuable new entities such as the spin representations
of the rotation group.

There is a certain historical irony that a discussion like this should be necessary
in this day and age. The matter was already cleaned up more than a century
ago. More than 150 years ago, William Rowan Hamilton worried that a complex
number written as the sum of a real and imaginary parts can have no meaning,
because unlike things cannot be added. The concept of linear independence had
not been invented yet, but it was implicit in his resolution of the problem: He
showed that complex algebra is equivalent to a system of operations relating
pairs of real numbers. That insight helped gain general acceptance for complex
numbers. A decade later, when Hamilton invented the quaternions, the adding
of unlike things didn’t bother him any more. Our terms scalar and veclor were
coined by Hamilton to denote the two unlike parts of a quaternion (though
Hamilton’s vectors actually correspond to bivectors in STA). Thus, as originally
conceived, scalars and vectors were added. Most physicists became familiar with
quaternions from Maxwell’s great Treatise on Electricity and Magnetism (1873).
This included J. Williard Gibbs, who developed the standard vector calculus of
today primarily by dismantling quaternions into separate scalar and vector parts.
A few generations later the physics community had forgotten about quaternions,
and young physicists like Ed were inculcated with the dogmatic proscription
against adding scalars and vectors. Trained incapacity! Fortunately, the true
relation of vector algebra to quaternions (which Gibbs and everyone else at the
time had failed to see) is perfectly clear within the broader perspective of STA.
Indeed, as demonstrated in detail elsewhere, both these algebraic systems are
fully encompassed and integrated by STA.
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Now let us return to discussing the structure of STA. The unit pseudoscalar for
spacetime is so important that the special symbol i will be reserved to represent
it. Its generation by the vector basis is expressed by

i = γ0γ1γ2γ3 . (9)

Geometrically, it represents the unit oriented 4-volume element for spacetime.
Its algebraic properties

i2 = −1 (10)

γµi = −iγµ (11)

manipulate. Multiplication of (9) by γ0 yields the pseudovector

γ1γ2γ3 = γ0i . (12)

Geometrically, this is the (directed) unit 3-volume element for a hyperplane with
normal γ0.

By forming all distinct products of the γµ we obtain a complete basis for STA
consisting of the 24 = 16 linearly independent elements

1, γµ, γµ ∧ γν , γµi, i . (13)

It follows that a generic element M in STA, called a multivector, can be written
in the expanded form

M = α + a + B + bi + βi , (14)

where α and β are scalars, a and b are vectors and (with summation over repeated
indices)

B = 1
2B

µνγµ ∧ γν (15)

is a bivector with scalar components Bµν . Ed should note that (13) implies that
the STA is a 16-dimensional linear space, so (14) is equivalent, with respect to
addition, to a vector with 16 components. But multiplication is a different story.

The multivector M in (14) can be decomposed into an even part M+ and an
odd part M−, as expressed by

M = M+ + M− , (16a)

M+ = α + B + βi , (16b)

M− = a + bi . (16c)

A multivector is said to be even (odd) if its odd (even) part vanishes.
For M in the expanded form (14), the operation of reversion in STA is defined

by
M̃ = α + a−B − bi + βi . (17)
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It follows that for any multivectors M and N ,

(MN)˜ = ÑM̃ . (18)

Essentially, reversion amounts to reversing the order of geometric products.
The relation of STA to the Dirac algebra is now easy to state. The Dirac

matrices, commonly denoted by the symbols γµ can be put into one-to-one cor-
respondence with the basis vectors denoted by the same symbols above. Then
the algebra generated by the Dirac matrices over the reals is isomorphic to STA.
It follows that the geometric meaning attributed to the vectors γµ and their
products above is inherent in the Dirac algebra, though it is scarcely recognized
in the literature. This isomorphism completely defines the geometric content of
the Dirac algebra with respect to spacetime. It suggests also that the represen-
tation of the γµ by matrices is irrelevant to their function in physical theory.
This suggestion is confirmed in the next Section by casting the Dirac theory in
terms of STA with no reference at all to matrices.

The full Dirac algebra is generated by the γµ over a complex instead of a real
number field. The fact that the real field suffices to express the full geometric
content of the algebra suggests that the 16 additional degrees of freedom in-
troduced by employing a complex field instead are physically irrelevant. This
suggestion is also confirmed in the next Section by formulating the Dirac theory
without them. Elimination of the irrelevant

√−1 in the complex number field
opens up the possibility of discovering a geometric meaning for the

√−1 which
occurs so prominently in the equations of quantum mechanics. Indeed, equa-
tions (4), (6) and (8) show that STA contains many different roots of minus one,
including three geometrically different types. Each type plays a different role in
the Dirac theory.

3. GEOMETRY OF THE DIRAC THEORY.

In the language of STA, the Dirac equation can be written in the form

ψih̄− e

c
Aψ = mψγ0 , (19)

where
= γµ∂µ , (20)

A = Aµγ
µ is the usual electromagnetic vector potential, and i is the unit bivector

i = γ2γ1 = iγ3γ0 (21)

The Dirac wave function ψ = ψ(x) at each spacetime point x = xµγµ is an even
multivector with the invariant canonical form

ψ = (ρeiβ)
1
2R , (22)
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where i is the unit pseudoscalar, ρ and β are scalars and R satisfies

RR̃ = R̃R = 1 . (23)

A brief proof that the above STA representation of the Dirac equation and wave
function is mathematically equivalent to the conventional matrix representation
is given in the appendix to Gull’s article [4].

Equation (19) is Lorentz invariant, despite the explicit appearance of the con-
stants γ0 and i = γ2γ1 in it. These constants are arbitrarily specified by writing
(19). They need not be identified with the vectors of a particular coordinate
system, though it is often convenient to do so. The only requirement is that γ0

be a fixed timelike unit vector, while i is a spacelike unit bivector which com-
mutes with γ0. Of course, the γ0 and i = γ2γ1 in (19) are the same constants
that appear in the expressions (25) and (27) below for the Dirac current and the
spin.

The most striking thing about (19) is that the role of the unit imaginary in the
matrix version of the Dirac equation has been taken over by the unit bivector
i, and this reveals that it has a geometric meaning. Indeed, equations (27) and
(28) below show that ih̄ is to be identified with the spin.

Equation (19) may look more complicated than the conventional matrix form
of the Dirac equation, but it actually simplifies and enriches the analysis of solu-
tions by making their geometric structure manifest, as is shown in the detailed
calculations of Krüger [5]. The key result of the STA formulation is the invariant
decomposition (22) of the Dirac wave function. Its geometrical and physical sig-
nificance is determined by its relation to observables of the Dirac theory, which
we specify next.

At each point x, the function R = R(x) in (22) determines a Lorentz rotation
(i.e. a proper, orthochronous Lorentz transformation) of a given fixed frame of
vectors {γµ} into a frame {eµ = eµ(x)} given by

eµ = RγµR̃ . (24)

In other words, R determines a unique frame field on spacetime. This frame
field has a physical interpretation.

First, the vector field
ψ γ0ψ̃ = ρe0 = ρv , (25)

is the Dirac current, which according to the Born interpretation, is to be inter-
preted as a probability current. Accordingly, at each point x, the timelike vector
v = v(x) = e0(x) is interpreted as the probable (proper) velocity of the electron,
and ρ = ρ(x) is the relative probability (i.e. proper probability density) that the
electron actually is at x.

Second, the vector field

h̄

2
ψ γ3ψ̃ = ρ

h̄

2
e3 = ρs (26)
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is the spin (or polarization) vector density. The spin angular momentum S =
S(x) is actually a bivector quantity, related to the spin vector s by

S = isv =
h̄

2
i e3e0 =

h̄

2
e2e1 =

h̄

2
Rγ2γ1R̃ . (27)

Multiplying this on the right by (22) and using (23), one easily obtains

Sψ = 1
2ψγ2γ1h̄ , (28)

which relates the spin S to the bivector γ2γ1h̄.
In general, six parameters are needed to specify an arbitrary Lorentz rotation.

Five of the parameters in the Lorentz rotation (24) are needed to specify the
direction of the electron velocity v and spin s. This also determines the plane
containing e1 and e2, as shown in (27). The remaining parameter φ determines
the orientation of e1 and e2 in the e2e1 plane. This can be expressed by factoring
R into the form

R = R0e
iφ , (29)

where R0 is determined by the first 5 parameters just mentioned. The parameter
φ is the phase of the wave function, and here we have a geometrical interpretation
of the phase. The vectors e1 and e2 are not given a physical interpretation in
the conventional formulation of the Dirac theory, because the matrix formalism
suppresses them completely. But they will be given a kinematical interpretation
when the ZBW interpretation is introduced below.

The factorization (22) of the wave function ψ can now be seen as a decom-
position into a 6-parameter kinematical factor R and a 2-parameter statistical
factor (eiβ)

1
2 . The parameter ρ is clearly a probability density. The physical

interpretation of β raises problems which are yet to be fully resolved. Impor-
tant insights into this issue are supplied by other articles in these Proceedings.
Boudet [6] describes formal properties of β in the geometry of the Dirac theory.
Krüger [5] finds new solutions for the hydrogen atom with β = 0, in sharp con-
trast to the strange properties of β in the Darwin solution. Gull [4] discusses the
essential role of β and its relation to spin in matching boundary conditions at a
potential step, including the Klein paradox. My own expectation is that a full
understanding of β will come only from elaborating the statistical interpretation
of the the Dirac theory discussed below. That is why I have relegated β to the
statistical factor in the wave function.

The physics (in contrast to the statistics) in the wave function appears to be
in the kinematical factor R. Support for this assertion comes from examining
the “free particle” solutions of the Dirac equation. There are two distinct types
of plane wave solutions with momentum p = mcv, an electron solution and a
positron solution. The electron solution has the form

ψ = ρ
1
2R0e

iφ , (30)
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where ρ and R0 are constant, but the phase φ has the spacetime dependence

h̄φ = p · x = mcv · x = mc2τ . (31)

Here τ is the proper time along “streamlines” of the Dirac current, which are
straight lines with tangent v orthogonal to the 1-pararneter family of hyperplanes
with constant phase constituting a moving plane wave. According to (25) and
(26) the electron velocity v and spin s are constant everywhere. But along a
streamline φ increases uniformly, so the phase factor in (30) rotates e1 and e2 in
the plane of the spin S with the circular zitterbewegung frequency

ω0 = 2mc2/h̄ = 1.6 × 1021s−1 . (32)

A similar rotation takes place along the streamlines of every solution of the Dirac
equation, though, in general, with a variable frequency. Indeed, the decompo-
sition (29) tells us that generally the phase φ = φ(x) at each spacetime point
x determines a well-defined rotation, not just in some abstract complex plane,
but in a definite physical plane, the plane of the spin S at x.

Jaynes [3] tells us that when he looks at the standard Dirac wave function
he doesn’t see anything that could rotate. This is a striking illustration of how
crucially the interpretation of a theory depends on the form of its mathematical
representation. The STA formulation makes the rotation inherent in the wave
function absolutely explicit. But, as physicists, we are not satisfied with a “mere”
mathematical rotation. With Jaynes, we demand to know “What physically is
rotating?” Here again the plane wave solution helps gain a vital insight.

The kinematical factor in (29) can be written in the form

R = e
1
2ΩτR0 , (33)

where Ω is the constant bivector

Ω = mc2S−1 =
2mc2

h̄
e1e2 , (34)

with e1e2 = Rγ1γ2R̃ = −R0iR̃0. Accordingly, Ω is the angular velocity of the
frame {eµ = eµ(x(τ))} as it moves along a streamline. Both e0 = v and e3 = ŝ
are constants of the motion, but

e1(τ) = eΩτe1(0) = e1(0) cosω0τ + e2(0) sinω0τ

e2(τ) = eΩτe2(0) = e2(0) cosω0τ − e1(0) sinω0τ
(35)

where ω0 = |Ω | is the ZBW frequency. These equations describe the rotation
of the frame explicitly.

Now, it has often been suggested on heuristic grounds the electron spin and
magnetic moment may be generated by some kind of local circular motion of
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the electron. This idea cannot be maintained if the electron velocity is identified
with the streamline velocity v of the Dirac current, because v is orthogonal to
the spin. If the idea is physically correct, the true electron velocity must have
a component in the spin plane. Our geometrical representation of the electron
plane wave presents us with an obvious choice. We suppose that the velocity of
the electron can be identified with the null vector

u = e0 − e2 . (36)

Of course, this means that the electron moves with the speed of light, as in
Schrödinger’s original ZBW model. This hypothesis defines what I call the
zitterbewegung interpretation of the Dirac theory [2]. It is more general than
Schrödinger’s idea of the ZBW, for (36) is obviously applicable to any solution
of the Dirac equation. In the plane wave case, however, it is easy to integrate.

With the time dependence of e2 given by (35) and u = c−1ż, Eq. (36) is easily
integrated to get the history z = z(τ) of the electron; thus,

z(τ) = vcτ + (eΩτ − 1)r0 + z0 (37)

This is a parametric equation for a lightlike helix z(τ) = x(τ) + r(τ) centered
on the streamline x(τ) = vcτ + z0 − r0 with radius vector

r(τ) = eΩτr0 = − c

ω0
e1 = − c

ω2
0

u̇ (38)

The radius of the helix is half the electron Compton wavelength

λ̄0 = c/ω0 = h̄/2mc = 1.9 × 10−13m . (39)

The Dirac current describes the mean velocity over a ZBW period:

u = e0 = v , (40)

so the Compton wavelength is the diameter of ZBW fluctuations about this
mean.

From (34) and (38), which imply ṙ = Ωr, we find

S = mc2Ω−1 = mr2Ω = mṙr . (41)

Thus, the spin angular momentum can be regarded as the angular momentum
of ZBW fluctuations.

With τ expressed as a function of spacetime position by (31), Eq. (37) de-
scribes a spacetime-filling congruence of lightlike helixes centered on Dirac stream-
lines, with exactly one helix through each spacetime point. In accord with the
statistical interpretation of the Dirac wave function, each helix is a possible
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worldline for the electron, and the modulus of the wave function determines the
probability that the electron traverses any particular helix. All these conclusions
about the geometry of the plane wave solutions apply generally to every solu-
tion of the Dirac equation, though, of course, in the presence of external fields
the helixes are bent and distorted. Jaynes [3] has described this view of Dirac
solutions aptly as a “tangle of all the different possible trajectories of a point
particle,” and he exclaimed “I would never in 1,000 years have thought of looking
at the Dirac equation in that way!” Never without the STA formulation! Mark
again how crucial the mathematical representation is to physical interpretation!
The tangled geometry of helixes has been inherent in the Dirac theory all the
time; only a suitable representation and definition was necessary to reveal it.
Mark that the ZBW interpretation attributes a purely kinematical meaning to
the phase factor, so the entire factor R in (29) and (22) has a purely kinemat-
ical interpretation. This gives the interpretation of the Dirac wave function a
maximum degree of coherence.

Berry [7] has given the quantum phase factor a general geometrical interpre-
tation. According to the ZBW interpretation, the phase factor is more literally
geometrical than anyone had imagined.

IV. WHAT IS AN ELECTRON, REALLY?

Is the electron a particle always, sometimes, or never? Theorists have come
down on every side of this question. A definitive answer is essential to any sort
of objectivity attributed to quantum mechanics. I am pleased that Ed Jaynes
[3] has come down on the side opposite mine, for the comparison of contrasting
interpretations helps highlight the critical issues. I am equally pleased that he
has placed Willis Lamb on my side.

The contrasting interpretations that Ed and I defend should not be regarded
as dogmatic stances, nor should it overshadow the great extent to which we
agree. The participants at this conference know that Ed is well established as
one of the world’s leading practitioners of quantum mechanics, especially in the
domain of quantum optics. All the while, though, he has been one of the most
astute critics of quantum mechanics. His criticism has always been based, not
on sterile philosophical speculation or mathematical formalism, but on cogent
physical reasoning born of his intimate knowledge of both classical and quantum
electrodynamics and how they relate to real experimental data. The criticism
he presents in these proceedings is only part of the extensive critical evaluation
he has presented on other occasions. I find myself in whole-hearted agreement
with the entire body of his criticism, and I commend it to any serious student
of the foundations of quantum electrodynamics. Ed and I agree that there is
great truth in standard quantum mechanics, but the problem is to separate the
truth from the fiction. We also agree that the interpretation of the electron wave

11



   

function is a critical issue. We part company on what to do about it. Though
I am sure that Ed agrees that the Dirac theory is somehow more fundamental,
like most other theorists in quantum optics, he is content to base his analysis on
the Klein-Gordon and Schrödinger approximations to it. I regard that as a grave
mistake, for the ZBW structure of the Dirac theory could never be discovered in
these approximate theories, even though it is inherent in the phase factor of the
wave function, and they thereby inherit a ZBW interpretation from the Dirac
theory. With this understood, let us return to the particle issue.

Ed Jaynes, like Asim Barut [8], wants to interpret the electron wave function
as describing a real physical entity, rather than just a state of knowledge about
the electron as I wist. While I believe that that viewpoint faces insuperable
difficulties, I applaud Ed’s objective to bring the matter to decisive experimental
test, and I agree that this is feasible. I note that the main reason for Ed’s stance
is that he believes, along with most other physicists, that electron diffraction
can only be explained as due to “interference of the electron with itself,” so
with admirable consistency, Ed maintains that the electron must be extended in
space like the wave function. This issue of how to explain diffraction is one of
the great bugaboos of quantum mechanics, so I will address it from the particle
perspective below.

Ed seems to have a hang-up about point particles as well as STA. Let me
attempt some therapy. The question “Is the electron a particle?” can and must
be addressed at different levels, where different physical issues are at stake.
Let me call the first level the interpretation level. Here the question is “Does
the Dirac theory admit to a coherent particle interpretation which is superior
to alternative interpretations?” My answer to this question is, of course, yes!
Indeed, I maintain that the ZBW interpretation is lhe only one which comes
close to giving a coherent account of all details of the Dirac theory. It is not
maintained at this level that the electron really is a point particle, but only that
the Dirac theory says it is, in the sense that it ascribes to the electron no internal
structure and no finite dimensions. The electron spin and magnetic moment are
features of electron kinematics rather than internal structure.

In the spirit of Jaynes, it might be suggested that the electron is an extended
body and the helixes are world lines of its component parts. This suggestion faces
difficulties which seem to rule it out. First, there is an absence of evidence for any
interaction among the parts which would be needed to make the body cohere.
Second, the dimensions of the body would have to be on the order of a Compton
wavelength (∼ 10−13m). But this is much too big! Scattering experiments limit
the size of the electron (i.e. the size of the domain in which momentum transfer
takes place) to less than ∼ 10−18m [9]. Only the particle interpretation appears
to be consistent with this experimental evidence. Additional evidence for the
particle interpretation ([2], [10]) is less direct. For example, the explanation for
Van der Waals forces requires that atoms are fluctuating dipoles, which they
certainly are if electrons are particles orbiting the nucleus rather than laynesian
amoebas enveloping the nucleus in static charge clouds. Moreover, the time
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dilatation in the decay of µ− particles captured in atomic s-states indicates that
they really are moving with the Bohr velocity in those states [11]. So must
electrons move also.

It seems to me that the Born statistical interpretation is essential for under-
standing scattering data, and this demands the particle interpretation. How
then do we explain the structure in a diffraction pattern? “Interference” is the
standard answer! But there is a lesser known alternative which has been pro-
pounded vigorously by David Bohm [12] and others for years. This puts Bohm
firmly on my side, though Jaynes cites him as a precursor to his amoebic view-
point. Bohm maintains that the electron is a particle with a definite trajectory
and that the wave function determines a family of possible trajectories, just as
I do in my ZBW interpretation. On this point, we differ only in details of how
the trajectories are determined by the wave function. Bohm uses Schrödinger
theory rather than Dirac theory. The trajectories have actually been calculated
from the Schrödinger equation for the double slit experiment [13], and the Dirac
equation would surely yield essentially the same result. The trajectories flow
uniformly through both slits, but thereafter they spread out, bunching up at
diffraction maxima and thinning out at minima. When a single electron has
been detected on the “diffraction screen,” one can (in principle to any desired
precision) determine which of the trajectories it actually followed and trace the
trajectory backwards to determine where the electron passed through one of the
slits. In this sense, quantum mechanics allows us to measure definite electron
trajectories.

This description of electron diffraction is a self-consistent interpretation of the
equations of quantum mechanics. It has the great advantage of preserving a con-
sistent particle interpretation, allowing us to maintain that every electron has a
continuous (albeit indirectly observable) trajectory. But physicists want more.
They want an explanation of diffraction, not just a description. They want to
identify a causal mechanism underlying diffraction. I don’t believe that standard
quantum mechanics has achieved that, but I suggest below where the missing
mechanism might be found. On the contrary, standard quantum mechanics pur-
ports to explain diffraction as a consequence of interference. The possibility of
such an explanation is a mathematical consequence of the fact that the QM
wave equation is linear, so it can be argued in the double slit experiment that
the diffraction pattem is caused by interference in the superposition of partic-
ular solutions with each slit as source. Accepting this mathematical possibility
as physical reality has the strange consequence that the electron must some-
how pass through both slits in order to interfere with itself. I maintain that
this interpretation buys nothing but trouble, since it is obviously inconsistent
with the factually grounded particle interpretation, but it has no greater pre-
dictive power. It is as awkward as it is unnecessary. There is actually only one
valid solution of the wave equation which matches the boundary conditions in a
diffraction experiment, and only that solution is used in the above particle in-
terpretation of the experiment. The subdivision of that solution into interfering
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particular solutions which separately do not satisfy the boundary conditions can
therefore be safely dismissed as a mere mathematical artifice. Accordingly, the
interference explanation of particle diffraction can be dismissed as an artifice
introduced in an attempt to manufacture an explanation out of a description.

Now let us address the particle question at a second, more fundamental level.
At this level, I agree with Einstein, Rosen and Cooperstock [14] that the electron,
as a particle, must not be treated independently of the electromagnetic field
but as part of it. The electron in the Dirac theory is an emasculated charged
particle, stripped of its own electromagnetic field, like a classical test charge.
The central problem of quantum electrodynamics, as recognized by Barut [8]
and many others, is to restore the electron’s field and deduce the consequences.
This is the self-interaction problem. Whether, in the ultimate solution to this
problem the electron will emerge as a true singularity in the field or some kind
of soliton [14] is anybody’s guess. One thing is certain, though, the problem is
nonlinear. And if quantization is a consequence of this nonlinearity, as I have
suggested elsewhere [10], then the self-interaction problem can never be solved
with standard quantum mechanics; a more fundamental starting point must be
found.

Though the Dirac theory omits the electron’s field, it appears to contain ves-
tiges of self-interaction which are valuable clues to a deeper theory. It is widely
believed that the electron mass and spin are consequences of self-interaction.
But these are properties of the ZBW, so the ZBW itself must derive from self-
interaction. Already this suggests [2] that the electron self-field is of magnetic
type to produce the spin, and the electron mass comes from a kind of self-
inductance of the circular motion.

Interpreted literally, the ZBW motion should be reflected in the electron’s
electromagnetic field. Specifically, the electron should be the seat of a nonradi-
ating field that oscillates with the ZBW frequency. Call it the ZBW field. The
usual Coulomb and magnetic dipole fields of the electron are then averages of
the ZBW field over a ZBW period. The ZBW frequency is much too high to
detect experimentally. However, it has been suggested [10] that many familiar
quantum phenomena might be explained as consequences of ZBW resonances.
Here are three examples:

(1) Electron Diffraction. The ZBW field broadcasts the electron’s deBroglie
frequency and wavelength to the environment. I submit that in diffraction it is
the ZBW field, rather than the electron itself, that feels out the topology of the
target and by feedback produces a shift in the phase of the ZBW motion which
alters the electron’s trajectory. In crystal diffraction, the Bragg angles must
then be conditions for resonance between the broadcasted ZBW wave and the
feedback wave scattered off the crystal. They are thus conditions for resonant
momentum transfer between the electron and the crystal. An attractive feature
of this explanation is that it includes a mechanism for momentum transfer which
is missing from conventional explanations of diffraction.

(2) Atomic States. An electron bound in an atom is in a ZBW resonant state,
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wherein the frequency of the orbital motion is a harmonic of the ZBW frequency.
The principal quantum number indexes the harmonics. Now, if the above expla-
nation of diffraction is correct, the electron must be broadcasting a ZBW wave
which is scattered resonantly off the nucleus and back to the electron. An atomic
state is thus a state of resonant momentum exchange between the electron and
itself. This is to say that an electron accelerated by the field of the nucleus is
always radiating continuously, but it is also continuously absorbing its own radi-
ation. In the ground state, all the radiated energy must be absorbed, since the
state is stable. However, in an excited state the radiation rate must exceed the
absorption rate so the state decays. It should therefore be possible to calculate
the lifetime of the state from the mismatch between these two rates, thus to ex-
plain spontaneous emission. All this is just another example of diffraction, with
atomic states corresponding to diffraction peaks and “quantum conditions” cor-
responding to the Bragg law. The main difference between transient diffraction
by a crystal and continuous diffraction within an atom is that the momentum
transfer is between two different objects in the first case but between an object
and itself in the second.

(3) Pauli Principle. Two electrons in the same atomic state will certainly
have resonant ZBW frequencies, so momentum exchange via their ZBW fields
is to be expected. Thus we have here a natural mechanism for explaining the
Pauli principle, Evidently, then, if the electrons have antiparallel spins the ZBW
interaction produces a stable two electron state, while if the spins are parallel
the state is unstable and so never seen.

Though suggested by the Dirac theory, all this goes well beyond it. It is
conceivable that, besides spontaneous emission, the ZBW is responsible for other
phenomena, such as the Lamb shift and the anomalous magnetic moment, which
are attributed to quantization of the electromagnetic field. Clearly the ZBW idea
is pregnant with possibilities for new physics.

V. RADIATIVE PROCESSES.

Ed Jaynes is quite right to assert that if the electron really is a particle but
quantum mechanics describes only the behavior of an ensemble, then it must
be possible to extract the particle from the ensemble and study it all by itself.
The problem with such an extraction, of course, is to ascertain suitable equa-
tions of motion for the particle alone because they might differ significantly from
equations for the particle behavior within the ensemble. Nevertheless, as a first
approach to the problem, I propose to extract a single ZBW worldline from the
Dirac theory and interpret it literally as the worldline of an individual electron.
Even without equations of motion, we can reason qualitatively about the elec-
tron’s behavior from what we know about solutions of the Dirac equation. Such
reasoning can be quite provocative. Even if it cannot be refined by calculations
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from exact equations of motion, it may prove useful in guiding the solving and
interpreting of the Dirac equatlon.

When an electron is placed in an external field, energy can be absorbed by the
ZBW field, producing an increase in ZBW frequency and hence a decrease in the
ZBW radius. We know that from solutions of the Dirac equation where binding
energies appear in the complex phase factor. Indeed, the Minimal Coupling
Ansatz can be interpreted as specifying that external fields produce shifts in the
ZBW frequency. As Steve Gull puts it, the electron is a parametric oscillator
with frequency modulated by external fields. A shift in the ZBW frequency ω,
is also a shift in electron mass m, because h̄ω = mc2 holds generally. The so-
called electron rest mass is therefore only a lower bound to the electron mass.
The electron mass is actually variable and changing all the time in interactions.
However, if no external field is present to induce radiation, it may be that the
electron can retain a mass greater than its empirical rest mass. In other words,
it may be that energy can be stored in the ZBW of a single free electron. This
possibility can surely be put to experimental test. Indeed, the basic mechanism
may have been probed already by recent experiments in quantum optics.

For example, the ZBW mechanism can be deployed to explain multiphoton
ionization [1]. When a bound atomic electron is irradiated by an intense laser
field, the ZBW may absorb a harmonic of the laser frequency, with an attendant
increase of electron mass and shrinking of its atomic orbit. Evidently this excited
ZBW state is metastable and may persist for some time after the laser field is
off. Then the stored energy is liberated either by reradiation or ionization. The
phenomenon of above threshold ionization [1] shows that the electron (ZBW)
may absorb much more than the minimum necessary for ionization. If, indeed,
the ZBW is the mechanism for multiphoton and above-threshold ionization, then
it must be possible to demonstrate these phenomena in experiments with single
atoms. According to the standard explanations, such experiments should not
work. It may be added that final state interactions in ionization should be
significantly affected by ZBW mass shifts.

This ZBW explanation for the new photoelectric phenomena may appear to
be incompatible with conventional explanations. An excellent and accessible
explanation grounded in standard quantum electrodynamics is given by André
Bandrauk [15]. The idea is that embedding a molecule in a laser alters the effec-
tive electronic potential to create a new set of bound states which can be observed
with electron probes. This is not necessarily inconsistent with the ZBW explana-
tion, but the putative physical mechanism is quite different. Other experiments
will probably be necessary to distinguish between the two possibilities.

Evidence that irradiated single free electrons can absorb harmonics of the
laser frequency exists already in the pioneering “stimulated bremsstrahlung”
experiments of Tony Weingartshofer [16]. These experiments have been regarded
as anomalous in the high intensity laser field, because they cannot be explained
by standard arguments. However, I submit that they are just further examples
of the ZBW mechanism at work.
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To establish unequivocally that energy can be stored in the ZBW of a single
free electron, we need cleaner experiments on single electrons. The prediction
is that an electron can absorb an nth order harmonic to put it in a metastable
state with mass m given by mc2 = m0c

2 + nh̄ω�, where m0 is the rest mass and
ω� is the laser frequency. Then, under suitable conditions, the electron can be
released in this excited state to transport the additional energy until the electron
is induced to release it by a collision or some other means. This phenomenon
may actually have been observed already in the infamous Schwartz-Hora effect
described briefly by Jaynes [3]. I hold with Jaynes that this effect is probably
real and the possibility deserves to be investigated thoroughly. Our explanations
for the effect may appear to be quite different, but remember, I attribute the
standard QM phase factor to the ZBW, and the phase factor plays the key role
in Jaynes’ argument. The main difference is that Jaynes sees the effect as due
to coherent action of parts of the electron spread out over a wave packet. The
issues are clear. The truth will be found out.

Acknowledgement. The idea that energy can be stored in the ZBW of a single
free electron was developed jointly with Heinz Krüger in several conversations.
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(1977) Direct Observation of Multiphoton Processes in Laser-Induced Free-
Free Transition Phys. Rev. Let., 39, 269–270. A. Weingartshofer, J. K.
Holmes, J. Sabbagh & S. L. Chin (1983), Electron scattering in intense
laser fields, J. Phys. B 16, 1805–1817.

18


