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Zitterbewegung Modeling

David Hestenes

Abstract. Guidelines for constructing point particle models of the elec-
tron with zitterbewegung and other features of the Dirac theory are dis-
cussed. Such models may at least be useful approximations to the Dirac
theory, but the more exciting possibility is that this approach may lead to
a more fundamental reality.

1. INTRODUCTION

For many years I mulled over a variation of Schrodinger’s zitterbewegung concept to
account for some of the most perplexing features of quantum theory. I was reluctant to
publish my ideas, however, because the supporting arguments were mainly qualitative, and
physics tradition demands a quantitative formulation which can be subjected to experi-
mental test. Unfortunately, the road to a quantitative version appeared to be too long and
difficult to traverse without help from my colleagues. But how could I enlist their help
without publishing my qualitative arguments to get their attention?

The impetus to break this impasse came from the inspring example of Asim Barut.
Barut is unusual among theoretical physicists, not only for the rich variety of clever ideas
he generates, but also for publishing theoretical fragments which are sometimes mutually
incompatible. Though each of his papers is internally coherent, he is not afraid to contradict
himself from one paper to the next or try out alternative theoretical styles. He rapidly
explores one idea after another in print, searching, I suppose, for ever deeper insights.
Consequently, his papers are an exceptionally rich source of new ideas, arguments, and
viewpoints. It was Barut’s inspiring example that convinced me finally to publish my
qualitative analysis of the zitterbewegung in Ref. 1. Despite its defects, that publication
did, indeed, stimulate helpful interaction with my peers and led to a mathematically well-
grounded zitterbewegung interpretation of the Dirac theory [2] which is the starting point
for the present paper. In appreciation for his positive influence on these events, I dedicate
this paper to Asim Barut.

The main motivation for analyzing zitterbewegung (ZBW) models is to explain the elec-
tron’s spin S and magnetic moment 4 as generated by a local circulation of mass and charge.
Experimental evidence rules out the possibility that the electron is an extended body, for
the relativistic limitation on velocity implies that, to generate S and p, the dimensions
of the body cannot be less than a Compton wavelength (= 1073 m), whereas scattering
experiments show that the electron cannot be larger than 1076 m. This leaves open the
possibility that the electron can be regarded as a point charge which generates S and p by
an inherent local circular motion.

For a particle moving in a circle at the speed of light ¢, the radius of the circle A is related
to the circular frequency w by

Aw=c=1 (1.1)



If the particle is presumed to have mass m and generate the electron spin by this motion,
then
| S| =1n=mw)? (1.2)

Thus, radius (wavelength), mass, and frequency are all related by

h 1

A= 5 = o (1.3)
This may appear to be a hopelessly simple-minded explanation for electron spin, but (sur-
prise!!) it has been shown to be completely consistent with the mathematical structure of
the Dirac theory.(?) Thus, despite the appearance of electron mass in the Dirac equation,
the electron may indeed be moving with the speed of light. Contrary to long-standing
“classical” arguments, such motion can produce a gyromagnetic ratio of 2. Moreover, the
complex phase factor can be interpreted as a direct representation of the circular ZBW.

Thus, the phase factor
e~ /M = o=10/2 (1.4)

is associated with the frequency w = 6, where differentiation is with respect to the proper
time on the worldline of the center of curvature for the circular ZBW. Note that (1.4) is a
half-angle representation of the circle. Comparison of (1.4) with (1.3) gives

¢ =3hw=m (1.5)

showing that m must be a variable mass. It is equal to the electron rest mass mg only
for a free particle. This interpretation of the phase ¢ is derived from the standard energy-
momentum operator

pp = 1ih0, —eAy, (1.6)

Operating on the phase factor (1.4), we obtain the gauge-invariant energy-momentum vector
Pu = Oup — €Ay (L.7)

Contraction with the “Dirac velocity” v# (for the center of curvature) gives
pv=¢p—eA-v (1.8)

For m = p - v this differs from (1.5), an important point to be discussed later.

The compatibility of this ZBW interpretation with the details of the Dirac theory is
demonstrated in Ref. 2. Its very success, however, suggests the possibility of a deeper theory
of electrons. It suggest that the Dirac theory actually describes a statistical ensemble of
possible electron motions. If that is correct, it should be possible to find equations of motion
for a single electron history and then derive the Dirac theory by statistical arguments. That
possibility is explored in this paper, where definite equations of motion for a single point
particle with ZBW are written down and discussed. With the ZBW interpretation as a
guide, the equations are designed to capture the essential features of the Dirac equation.

Of course, such “working backward” from presumed statistical averages to underlying
dynamics is a guessing game, prone to error in its early stages. For that reason, this paper
makes no pretense of producing a definitive ZBW model. The objective, rather, is
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1) to motivate and describe both kinematical and dynamical aspects of the ZBW concept,

(
2) to formulate and implement basic design principles for ZBW modeling, and
3) to identify and sharpen issues that must be resolved to produce a fully viable theory.
This is not the place to discuss experimental tests of the ZBW.

If the resulting equations do not in fact describe a deeper reality, at least they may
constitute a useful approximation to the Dirac theory, a new version of “semiclassical”
approximations which have already proved their value.

2. OBSERVABLES OF THE DIRAC THEORY

The present paper is a continuation of work published in this journal,(® so some famil-
iarity with that work can be presumed as background. In particular, spacetime algebra will
be employed as the essential mathematical tool. The rudiments of spacetime algebra are
explained in Ref. 2 and expanded in many references cited therein. A basic feature of the
algebra is that the four v, in the Dirac theory are not regarded as matrices but as vectors
constituting a fixed orthonormal frame for spacetime.

As a guide for the design of a ZBW model, the formulation of Dirac observables in terms
of spacetime algebra is reviewed here. The Dirac wave function for a electron can be written
in the form

¥ = (pe')/2R (2.1)

where p and ( are scalars, i = vyy17273 is the unit pseudoscalar, and R is a “unimodular”
spinor, that is, an even multivector satisfying

RR =1 (2.2)

The form (2.1 ) can be interpreted physically as a factorization of the electron wave function
into a statistical factor (pe’?)!/? and a kinematical factor R. Thus, the scalar modulus p
is interpreted as a probability density, although the interpretation of § raises problems to
be discussed later.

The kinematical factor R = R(x) determines an orthonormal frame of vectors e, = e, (z)
at each spacetime point x by

e, = Ry, R (2.3)
1 p

This frame describes the kinematics of electron motion. The Dirac current

J = yoh = peg (2.4)

has vanishing divergence, so it determines a family of electron streamlines with tangent
vector J
x
V= — = {L‘ = € 25
dr 0 (2:5)
The vector field v = v(x) can be interpreted statistically as a prediction of the electron
velocity at each spacetime point z. The electron spin (or polarization) vector is defined by

s = 1hes (2.6)
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However, the electron spin is more properly characterized as a bivector quantity S defined
by
S = Lhese; =isv (2.7)

The unimodularity condition (2.2) implies that the derivative of R in the direction 7,
can be written in the form

OuR=1Q.R (2.8)
where 2, is a bivector quantity. Consequently, the derivatives of (2.3) can be written
Oper = Q- ey (2.9)

showing that €, is to be interpreted as the rotational velocity of the frame {e,} when
displaced in the 7, direction.
A physical meaning is assigned to the €2, by comparing them to the spin S. Write

Q,5=Q,-S+Q, xS+Q, NS =P, +iq,+ 09,5 (2.10)
where
P,=P-v,=9Q,-5 (2.11)
QG =Y = —i(QuNS) = Q- (=i8) = Q- (sv)
=v+(0ys) = —s-(0,v) (2.12)
0uS =8, xS (2.13)

In the Dirac theory, the vector P in (2.11) is implicitly interpreted as the canonical (energy)
momentum, which is related to the kinetic (energy) momentum vector p by

P=p+eA (2.14)

where A = A+, is the electromagnetic vector potential and e is the electron charge. Thus,
Eq. (2.11) explicitly attributes the energy-momentum of the electron to the rotation rate
in the plane of the spin S. This is a key to the ZBW interpretation, and identifies (2.11)
as the full generalization of (1.7).

Along an electron streamline, the rotational velocity is

0 =vhQ, (2.15)
where v* = v - y*, so (2.8) yields .
R=1QR (2.16)

where the overdot indicates differentiation with respect to proper time along the streamline.
The “motion” of the e,, along a streamline is therefore described by

& =0Q-e, (2.17)

In particular,
v=Q v (2.18)
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becomes an equation of motion for the streamline when Q = Q(x) is specifled. And (2.13)
yields .
S=Qx8 (2.19)

which determines the spin precession along a streamline. Thus, the dynamics of electron
motion can be reduced to determining €2, a matter to be discussed later.
Along a streamline, (2.10) and (2.12) yield

QS =Q-S+QAxS+QAS=v-P+S+i(s-v) (2.20)

This summarizes the relation of 2 to observables. Indeed, it can be solved for Q by multi-
plication with S—1.
Furthermore, (2.11) and (2.14) yield

m=p-v=Q:-5—eA-v (2.21)

which defines a variable mass m for the electron in accordance with the remarks in the
introduction.

All the above relations are implicit in the standard Dirac theory and do not involve any
approximation, so they are equally applicable to the physical interpretation of any solution
of the Dirac equation. The zitterbewegung interpretation requires one further physical
assumption which, however, does not alter the mathematical structure of the Dirac theory.
To account for the spin S as generated by electron motion, the electron must have a
component of velocity in the spin plane. This is readily achieved by identifying the electron
velocity with the null vector

u=ey— e (2.22)

From (2.17) it follows that, for specified 2 = Q(x), it has the equation of motion
i=0Q-u (2.23)

Its solutions are always lightlike helixes winding around the electron streamlines with ve-
locity v = eg.

3. ZITTERBEWEGUNG KINEMATICS

Now we get to the main business of this article: to construct and analyze point par-
ticle models of the electron consistent with the features of the Dirac theory described in
the preceding section. The first step is to define the appropriate kinematic variables and
constraints.

The electron is presumed to have a lightlike history z = z(7) in spacetime with velocity

U

d
:d_j:z, so u?=0 (3.1)

A proper time cannot be defined on such a curve, so an additional condition is needed
below to specify the parameter 7 uniquely.



The electron motion is assumed to possess an intrinsic angular momentum, or spin,
S = S(7), a spacelike bivector with constant magnitude specified by

h2

2 _
5_4

(3.2)

The velocity u can be decomposed into a component v orthogonal to S and a component
7 in the S-plane defined by
v=(unS)S! (3.3)

= (u-8)S™1 (34)

Note that v and 7 are merely auxiliary variables defined by these equations for purposes of
analysis. This determines the decomposition

uU=v+7r (3.5)
with

ver =0 (3.6)
and, by (3.1),

v = —? (3.7)

A scaling for the parameter 7 is determined by assuming that

(unS)?
U2:’U”LL:T:1 (38)
It will be seen later, though, that this is a mere convention, and not really a physical
constraint on the model.
Equation (3.5) suggests the decomposition

z2(1) = x(7) + r(7) (3.9)

with
v=2a (3.10)

This expresses the electron history z(7) as a circulating motion with radius vector r(7),
angular momentum S, and a center of curvature with a timelike history = = z(7).

All these features of our particle model correspond exactly to kinematic features of the
Dirac theory. Indeed, (3.5) is the same as (2.22) with v = e¢p and 7 = —es. It follows
that the definition of a comoving frame by (2.3) and the spinor equation of motion (2.8),
with their sundry implications (2.17), (2.18), (2.19), and (2.22), apply also to the particle
model, the sole difference being that all quantities are defined only on the particle history
z(7) rather than as fields distributed over spacetime. As in the Dirac theory, the dynamics
in those equations are entirely determined by specifying the rotational velocity Q = Q(z(7)),
a matter to be discussed in the next section.

The situation is different, however, for momentum and mass. We define the momentum
p in a standard way by writing

p = mu = mv + mr (3.11)
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This cannot be identified with the momentum p defined in the Dirac theory by (2.11) and
(2.14), because it has the rapidly fluctuating component mr. Rather, it will be argued later
that the Dirac momentum corresponds to the average of (3.11) over a ZBW period.

The mass m in (3.11) remains to be defned. In accordance with the ZBW concept, we
assume that it has the same origin as the spin, following (2.21) in defining it in relation to
(3.11) by

m=Q-S=p-v=—p-r (3.12)

This may differ from (2.21), however, due to averaging over a ZBW period. The essential
kinematic specifications for our model are now complete, but it will be convenient to relate
mass and momentum to spin by writing

S=mrAr (3.13)

This amounts to a definition of the vector radius of curvature. Substitution into (3.12)
yields
Q-(rAr)=1 (3.14)

This generalizes Eq. (1.1), where
w=0-8§=20-5 (3.15)

is the ZBW (circular) frequency.

The mass m, the scalar radius of curvature A = | r |, and the ZBW frequency w all covary
with changes in Q. To deduce how thay are interrelated, note that by (2.17), 7 = —eq
implies that

r=Q-7r (3.16)
which, in turn, implies
rer=0 (3.17)
Also, 2 = —|r |2 = A% implies that
Fer = —AA (3.18)

From (3.13) and (2.19), we obtain
S=mirAr+miAr=Qx8=m(Q-7)Ar+mrA(Q-r)

Whence,
mr Ar=mrA(Q-r) (3.19)

Multiplying this by 7 A r and using

hQ

. 2
(T/\T) ——w

(3.20)

obtained from (3.2), we find

m<i§>:quﬂwa¢:mﬁ
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Therefore,

—h? 1 d [ dN?
mo_ 4 () (3.21)
8 m3 dr \4m? dr
Setting the integration constant to zero, we thus obtain
mX\ = $h (3.22)

exactly as specified by (1.3). Here, however, it is clear that m and A can be variable, with
derivatives related by

mo 2 (3.23)

It should be evident that we have a new concept of mass here, through, to a certain
extent, it was already implicit in the Dirac theory. The vague concept of mass as some kind
of material stuff is completely gone. No longer is vanishing mass a distinguishing feature
of particles moving with the speed of light, because p?> = m2u? = 0 here.

The relation m = p-v expresses the inertial property of mass as a relation between
momentum and velocity. This relation conforms to the relativistic concept of mass as a
measure of energy content, but that just means that mass and energy are essentially one and
the same. The complementary relation m = Q-5 = %hw asserts that mass is a frequency
measure. This conforms to de Broglie’s original idea that the electron contains an internal
clock with frequency determined by its mass, though for a free particle the ZBW frequency
differs from the de Broglie frequency by a factor of 2, and the mass varies with interactions
in the present model. Moreover, the relation mA = %h says that this frequency measures
the radius of curvature of the electron worldline, so it is a thoroughly geometrical quantity.
All this suggests that the mass relates our externally imposed time scale to a time scale
intrinsic to the electron.

Considerations in the next section suggest that mass is a measure of self-interaction. In
other words, mass measures the coupling strength of the electron to its own field. This,
then, is the source of the inertial property of electron mass. Intuitively speaking, when
accelerated by external fields, the electron must drag its own field along.

The direct relation of mass to ZBW frequency described here comes from assuming
m = Q.S = ¢, which differs from the relations (2.21) and (1.8) in the Dirac theory by the
eA -v term. This difference was introduced into the particle model for a physical reason.
The Dirac equation allows the value of ¢ to be changed by a gauge transformation, whereas
the ZBW interpretation of ¢ as an objective property of electron motion related to its spin
implies that ¢ should have a unique value. It will be argued later that the eA - v term may
appear in the Dirac theory from time averaging which is inherent in the theory. On the
other hand, if the eA v term is found to be essential to account for physical facts such
as the Aharonov-Bohm effect, it could be incorporated into a particle model. This is a
physical issue to be resolved by further theoretical and experimental analysis.

4. ZITTERBEWEGUNG DYNAMICS

As already mentioned, the dynamics of electron motion is completely determined by
specifying the rotational velocity = Q(z(7)). An explicit expression for € in the Dirac
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theory was derived in Ref. 3 and is discussed in Section 6. With the Dirac 2 as a guide,
our problem is to guess a suitable expression for €2 in our particle model. The simplest
possibility to consider is

Q=S FimeS (4.1)
Mo
where mg is the electron rest mass and the bivector F' is any specified external electro-
magnetic field. This determines a well-defined dynamical model which can account for a
significant range of physical phenomena.
Substituting (4.1) into (2.18) and using v - S = 0, we obtain

moev = eF - v (4.2)

which is exactly the form of the classical Lorentz force, so it is evident that classical elec-
trodynamics can be recovered from the model. However, if (4.2) is to be regarded as an
equation of motion for the center of curvature x = x(7) with v = g, it is necessary to
express F' as a function of z instead of z. This is most naturally done by means of the
first-order Taylor expansion.

F(z)=F(x+r)=F(zx)+r-[1F(z) (4.3)

where r - [[] = 7#0,,,. Thus, the classical result will be obtained if and only if the last term
in (4.3) in negligible compared to F'(z). Let us call this case the classical approximation.
Of course, the last term in (4.3) is a ZBW effect.

Substituting (4.1) into (2.19) yields

S="Fxs (4.4)
mo

which exhibits the g = 2 value for the gyromagnetic ratio in the classical approximation,
exactly as in the Dirac theory. Note that the ZBW correction on the right side of (4.3)
vanishes when F' is constant, so the classical approximation applies rigorously in that case,
the case which has been of greatest interest in measurements of the g-factor.

While (4.2) determines the electron’s center of curvature, and (4.4) determines the spin
precession along the worldline, the remaining feature of electron motion is the ZBW fre-
quency determined by substituting (4.1) into (3.12) or (3.15), with the result

m=—F-S+mg (4.5)
mo

Thus, the external field produces a gauge-invariant mass shift of Larmor type.

Instead of trying to integrate the equations for © and S directly, it is advisable to employ
the spinor equation (2.16) which, for €2 given by (4.1), becomes with the help of (2.2) and
(2.7),

. e 2mg
R=—FR+—R 4.6
9 + 5o em (4.6)
This equation has solutions of the form

R = Rye 7271#/h (4.7)
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where Ry satisfies the “reduced equation”

. e
Ry=—FR 4.8
o= 50 FRy (43)

and the phase ¢ can be obtained by integrating (4.5) with m = ¢ after S has been found
by integrating (4.8).

Solutions of (4.8) in the classical approximation have been found in Ref. 4 for the cases
where F' is a constant, plane wave, or Coulomb field, and the equation & = v was integrated
to find explicit expressions for the worldline in each case.

The form of (4.1) suggests various generalizations, such as

0= (F+F) (4.9)
mo

where Fj is the electron’s self-field, that is, the electromagnetic field of the electron itself
evaluated on the electron’s worldline. The self-field has the general form
e

Fy=moS™ 4 Qew + — Frp (4.10)
mo mo

where Frp is the radiative reaction field of the electron. Since radiative reaction is not
included in the Dirac theory, we can defer discussion of the Frg term to another occasion.
The remaining terms must then describe nonradiative effects of self-interaction.

The term mpS~! in (4.1) and (4.10), which is crucial for “generating” the electron rest
mass and spin, has the bivector form of a magnetic field. This leads to the conclusion that
the electron’s electromagnetic selfinteraction is fundamentally of magnetic type.

This also raises the question of what form the electron’s field takes at points away from
the electron worldline. A major reason for developing a ZBW model in the first place
was to explain the electron’s magnetic dipole field. If this explanation is taken seriously,
then the dipole field must be regarded as an average over a ZBW period, and the actual
field must also contain a high-frequency component Flp, which oscillates with the ZBW
frequency. As argued in Refs. 1 and 2, this has the potential for explaining some of the
most prominent and perplexing features of quantum theory, such as electron diffraction
and the Pauli principle, as resonant interactions mediated by the ZBW field F.p,,. Note
that (4.1) can be employed to study this possibility without further modification. It is
only necessary to regard the external field Fin (4.1) as including ZBW fields from external
sources. However, a quantitative analysis of ZBW resonances must be deferred to another
time.

Of course, the existence of a stable fluctuating ZBW field accompanying even a free elec-
tron raises questions about radiation which must be addressed eventually. The viewpoint
adopted here is that the Dirac theory suggests that such fields exist, and we should push
the study of their putative effects on electron motion as far as possible before attacking
the fundamental problems of radiation and self-interaction. Equation (4.10) describes the
coupling of the electron to its own field. Even for a free particle, the mgS~! term implies
that the electron’s momentum (3.11) has a component mr which fluctuates (rotates ) with
the ZBW frequency. Presumably, this reflects a fluctuation of momentum in the electron’s
ZBW field. The nonspecific term €., is included in (4.10) to cover the possibility that the
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electron’s field may have nonradiating excitations which appear even in the motion of a
free particle. An example will be given in the next section.

5. ZITTERBEWGUNG AVERAGES

It is of interest to eliminate ZBW oscillations from the equations of motion by averaging
over a ZBW period for two good reasons at least. First, these high-frequency oscillations
(on the order of 102! Hz) are irrelevant in many situations (such as the classical limit), so
it is advisable to systematically eliminate the need to consider them. Second, the (energy)
momentum vector in the Dirac theory does not exhibit the ZBW fluctuations of the mo-
mentum vector p defined by (3.11), so it must be regarded as some kind of average p of p.
Thus, the study of ZBW averages is essential if the Dirac theory is to be derived from an
underlying ZBW substructure.

Even apart from the complication that the ZBW period T' = 27 /w is a variable quantity,
the definition of a ZBW average is not entirely straightforward, because it must be compati-
ble with invariant constraints on ZBW kinematics. For example, for the center-of-curvature
velocity the straightforward definition of an average v = v(7) by

1 /(7 z(7) — z(0)
f/o v(T)dr = — (5.1)

is unsatisfactory, because it fails to preserve the constraint v?> = 1. For any curved history
(1),

v

|$(T)—93(0)]>/0T]d:c|:T

implies 2 > 1. This defect could be corrected by introducing a parameter 3y and revising
the definition (5.1) to
-
vceos Py = l/ v(T)dr (5.2)
T Jo

with v2 = 1 by definition. A parameter like 3y does indeed appear in the Dirac theory, but
we shall entertain other, probably deeper, reasons for that. Since v is orthogonal to the
ZBW fluctuations, it is affected by them only indirectly through the equations of motion.
It appears permissible, therefore, to take v = v by definition.

To maintain the constraint v-S = 0, it is necessary to define § = S also. In Ref. 2,
I made the mistake of suggesting that v be defined by the ZBW average u. Instead, we
take v as defined already by (3.3) and define p indirectly by imposing angular momentum
conservation as a constraint. In Ref. 2, it was correctly argued that compatibility with the
Dirac theory requires that the average angular momentum JJ must satisfy the decomposition
into orbital and spin components defined by

J=pANz=pAx+S (5.3)

Of course, momentum conservation on the average requires that

p=f (5.4)
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where f is the average force on the particle. Angular momentum conservation then requires
that . S
J=pAz+pAv+S=fAx (5.5)

Therefore, )
S+pAv=0 (5.6)

As noted in Ref. 3, this equation was first formulated by Wessenhoff and has been studied
by many authors as a classical model for a particle with spin. Its appearance here gives it
new significance as an approximation to the Dirac equation.

Defining the average mass by

Mm=pv=p-v (5.7)

and adding it to (5.6), we obtain
vp=m+ 8 (5.8)

This can be solved explicitly for
p=v(m+S)=mv+v-S=mv+S-0 (5.9)

where the last equality comes from differentiating v-S = 0, and it is noted that (5.6)
implies as well as

vAS=0 (5.10)

as well as

PAS=0 (5.11)
Consistency with the conservation laws thus implies that we must take (5.8) as the definition
of p. It will be seen in the next section that this corresponds to the Gordon decomposition
in the Dirac theory. Comparison of (5.8) with (3.11) implies that
mr=uv-58 (5.12)
an altogether reasonable result, which implies that p = mu = mv if and only if v - S =0.
The mean dynamics is determined by assuming that it is governed by the average 2 of
the rotational velocity over a ZBW period. This implies that
S=QxS8 (5.13)
for example. Accordingly, averaging (3.12) gives
m=Q-S=p-v (5.14)
so the analog of (2.20) in this case takes the form
QS =m+ S +i(5-v) (5.15)
Whence, comparison with (5.8) gives

QS =wvp +i($-v) (5.16)
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The last term in (5.16) is purely kinematical, but (5.10) puts a constraint on §, for the
derivative of is = Sv = S A v is then i = S A0 = i(sv) - v. Whence,

$=—(s-0)v=_(5-v)v (5.17)
which implies
$-0=0 (5.18)
as well as '
0S5 =0 (5.19)

An equation of motion for the mass can now be derived. From the right side of (5.9), it
follows that
p-v=0 (5.20)

and (5.13) implies .
0-5=0-QxS)=0 (5.21)

for any value of Q. Therefore, the derivative of (5.14) gives

f=0-S=v-p=v-J (5.22)
This is consistent with a general force law of the form

p=F=mQ-v+ Q-9 (5.23)

However, when radiation is ignored, f should presumably depend only on the external field
F in (4.9). Accordingly, since (4.3) implies

F(z) = F(x) (5.24)

for m =0, (5.23) should be replaced by

ﬁ:f:—ﬁeF-v—FD(iS-F) (5.25)

mo mo

which is related to (5.22) by

m:v-f:v-m<is-F>:iS-F (5.26)

mo mo

The force law (5.25) appears to be the most general expression for f which holds for
arbitrary F and is consistent with the conditions on p. The mean equations of motion
are thus determined by consistency conditions without a formal averaging procedure. The
ratio m/mg in (5.25) is strange, but a similar ratio appears in the Dirac theory. Of course,
it may be that some modification of the expression for Q in (4.9) is needed.

Substituting (5.9) into (5.25) and using (5.26) as well as (5.19), we obtain

mo+ve - —S=—F-v (5.27)



This equation has a nontrivial solution even for ' = 0, but it must be integrated together
with Eq. (5.13) for S. The general free particle solution is most easily obtained by deter-
mining the constants of motion. Of course, p is one such constant. The bivector € is also
constant if and only if § = 0, for in that case (5.16) yields

Q=vpS ™t =is"'p (5.28)
The spinor equation (2.16) then integrates to
R = e (5.29)

so the spin undergoes constant precession described by

S = RS,R (5.30)
The history z = z(7) is most easily found by writing (5.8) in the form
v=(m+5)/p (5.31)
which integrates immediately to
2(t) =z +mp T+ RSep 'R (5.32)

where the fact that p commutes with € has been used. This solution is a timelike helix
with a precessing velocity _
v = RugR (5.33)

What physical meaning can be ascribed to such a solution? Comparison with (4.10) suggests
that 3
Q=meS™ ! 4+ Qew (5.34)

As suggested in Section 4, the 2., may describe self-interaction due to stable excitations
of the electron’s ZBW field. For the “ground state self-interaction, Q., = 0 which implies
S=0and m= mg.

Returning to the general problem of ZBW averaging, we note that the net effect of the

averaging is to change Egs. (2.16) and (2.17) to
OR (5.35)
and

¢ =0ve, (5.36)

This reduces the problem to determining . Evidently Q cannot be found by simple
averaging because certain consistency constraints must be satisfied. Though a thoroughly
justified derivation of Q is not possible at this time, comparison of (5.27) with (5.36) and
(4.1) suggests that it should have the form

_ 1 .
Q=" FtmeS™'+ —5 (5.37)

mo
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This differs in form from Eq. (4.1) for Q only in the S term. It seems, therefore, that the S
arises from the averaging, though the interpretation of (5.34) suggests that it may describe
an excitation of the ZBW field and so should be included in €2 even without averaging.
Aside from (possibly) altering the form of 2, the ZBW averaging changes the functional
dependence from Q = Q(z(7)) defined on the electron worldline z(7) to Q@ = Q(x(7))
defined on the center-of-curvature worldline x(7) This has the effect of decoupling the
circular motion in the S-plane from the equations of motion for v and S, so €2- S could be
assigned any value without affecting v and S. Determining the average angular velocity (or
mass) of the ZBW therefore requires special considerations. Though a definitive resolution
of the issue is not to be expected at this time, here is an important consideration: It may
be that the difference between the ZBW mass-angle relation m = ¢ and the Dirac relation
(1.8) is a consequence of averaging. This possibility can be expressed by rewriting (1.8) in
the form
m=p-v=@9=0p—eA-v (5.38)

To see how the A - v term might be generated by averaging, consider the line integral over

a ZBW period T' = 27 /w,
T T T
/ A-dz:/ A-d:n—i—?{ A-dr (5.39)
0 0 0

where (3.9) has been employed to decompose it into two terms. Stokes’ theorem gives

T
T
A-dr = d?r) - A) ~ - F Al
7€ " /( P (A~ S F(a) (5.40)
Whence, (5.39) yields
1 [T S-F
T/O A'dZNA"U+T (541)

Thus, the line integral generates the gauge-invariant average of the .S« F' “mass shift” term
n (4.5), but at the expense of introducing the gauge-dependent term A-v. Is the A-v
term an artifact of the averaging process? If this term is really needed to account for the
Aharonhov-Bohm effect, as is widely believed, then the ZBW “phase velocity” ¢ must be
gauge dependent, so it does not have a unique value, which appears to be incompatible
with its ZBW interpretation as a property of a unique world line. These remarks are aimed
at sharpening the issue with no pretense of a final resolution.

6. RELATION TO THE DIRAC THEORY

The Dirac equation can be reformulated as a kind of “constitutive equation” relating the
observables p, v, S, p and 3 defined in Section 2. This was done in Ref. 3, with the result

p(p —iq)e® = mopv — [1(pSe'P) (6.1)

where [ ] = +#0,. The symbol p for the momentum vector has been replaced by p here,
because, as in Section 5, we wish to consider p as the average of a particle momentum
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p. Only, here the average is conceived as taken over a statistical ensemble of possible
momenta as well as over a ZBW period. So p = p(z) is a vector field, and pp = p(x)p(z)
is a momentum density, just as the Dirac current pv = p(z)v(z) is a particle density. The
vector part of (6.1) gives the so-called “Gordon decomposition” of the Dirac current

mopv = pk + [+ (pSe'?) (6.2)

where the “Gordon current”
pk = p(p cos 3 — gsin 3) (6.3)

is interpreted as a “conduction current” and pSe®® is said to be a “spin density.” But this
interpretation is confounded by the peculiar role of 5. In particular, it seems inconsis-
tent with the identification of pS as spin density, which comes from angular momentum
conservation.

A more sensible interpretation comes from rewriting (6.1) in the form

p(p —iq) = mopve™ " — [1(pS) +i([@AB)pS (6.4)

Its vector part,
pb = pumocos B — 1+ (pS) + p(iS) - (13 (6.5)

separates the momentum density pp into a part which depends on the spin density pS
and a part which does not. This equation should be compared with Eq. (5.9) for the
time-average momentum. The difference between the two equations is presumably due to
ensemble averaging, so (5.9) should be recoverable by some kind of approximation to (6.5).
Toward that end, we neglect the derivative of p in

p=vmgcosf— []-S+ (vs)- 15 (6.6)
Next, to decouple Dirac streamlines the spatial variation between them must be ignored; in

other words, assume that the variation of all quantities in (6.6) is along streamlines. This
“streamline approximation” can be expressed formally by writing

d
in (6.6), so it becomes ‘ .
p=vmgcosf3 —v-S5—sf (6.8)

Comparing this with (5.9), the first thing to note is that the sign corresponding v - S term
is opposite. This discrepancy could be eliminated by changing a sign in the initial equation
(5.3) determining the relation between p and S. However, Eq. (5.6), from which (5.9) is
derived, is also derivable from the Dirac theory. Thus, the discrepancy is perplexing, but,
with full confidence in the internal consistency of the Dirac theory, let us presume that it
can be resolved and move on.

Comparison of (6.8) with (5.9) or (5.7) suggests

m=7p-v=mgcosf (6.9)
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In other words, the invariant cos /3 describes a variation in mass. This interpretation is
strongly supported by a virial theorem derived from the Dirac equation in Ref. 5, which
proves that the entire energy shift of an electron in a Coulomb field can be ascribed to
cos [3.

The last term in (6.8) does not appear in (5.9), but it may indicate a need to generalize
the derivation of (5.9). It follows from (6.8) that

B=—p-s! (6.10)

which could play a complementary role to (6.9).
By strict analogy with the reasoning that led to (5.12), to obtain (6.5) by averaging over
ZBW oscillations, we should presumably have

mi=—[1-(pS)+ p(iS)- 13 (6.11)

where the overbar now denotes an ensemble average as well as the time average in (5.12).
To complete our discussion of the Dirac equation (6.4), we will need to consider its
trivector part

pqg = —pvmgsin B+ [+ (pSi) + pS- 18 (6.12)

One can obtain from this
pq-s=sL1(pv) — ps(s-1v) (6.13a)

and
pq-v=—pmosin B+ pv-s—L1-(ps) (6.13b)

Using the definition of ¢ by (2.12) to evaluate the left side, these equations yield
- (pv) =0 (6.14a)

and
1+ (ps) = —pmgsin 3 (6.14D)

The first of these is the well-known conservation law for the Dirac current, and in the
approximation (6.7) it reduces to the identify v - © = 0. The physical significance of (6.14b)
is difficult to divine. In the approximation (6.7) it reduces to

ve§=—mgsinf (6.15)

which shouid be considered for a particle model along with (6.9) and (6.10). The main
issue is whether ( is an artifact of the averaging process or actually describes a real feature
of the particle (such as variable mass). Of course, it could be a combination of the two.
Besides (6.13a,b), Eq. (6.12) implies two other relations which can be found by evaluating
q+S. However, the result is contained in the dynamical relation which we consider next.
The dynamics of electron motion along a streamline in the Dirac theory is completely
determinied by the rotational velocity €, which can be calculated from the Dirac wave
function. An explicit expression for 2 in terms of observables was found in Ref. 3 to have
the form
meQ = eFe’ +Q + (mgcos B+ ev- A)S™! (6.16)

17



where F' is the external electromagnetic field and @ is a complicated function of p, 3, and
S which need not be exhibited here. The overbar is to remind us that € is to be regarded
as an average in the sense specified above.

Inserting (6.16) into (2.18) and (2.19), we get equations of motion for the velocity and
the spin precession along a streamline:

mot = (eFe + Q) v (6.17)

moS = (eFe’® + Q) x S (6.18)

These are exact equations in the Dirac theory. Their most surprising feature is the -
dependent “duality rotation” of the external field F'. This kind of rotation mixes electric
and magnetic fields, so it may well be detectable experimentally, but there has been no
effort to do so thus far. There seems to be nothing in the ZBW process to produce such
an effect, which again suggests that the peculiar parameter § arises from the process of
averaging.

The term @ - v generalizes what Bohm has called the “quantum force.” It determines
the “bunching up” and “thinning out” of streamlines at maxima and minima in diffraction
patterns. If the speculations about ZBW fields in Section 4 are on track, this term must
describe statistical features of electron motion due to ZBW interactions. It may also include
self-interaction. Indeed, in the approximation (6.7) with g = 0,

Q=-5 (6.19)

in agreement with (5.37), except for the sign. The consequences of this approximation
have been discussed at length in Ref. 5, with results essentially in agreement with those in
Section 5.
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