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Abstract Geometric calculus is shown to unite vectors, spinors, and complex

numbers into a single mathematical system with a comprehensive geometric sig-

nificance. The efficacy of this calculus in physical applications is explicitly demon-

strated.

[Note: The terms “multivector algebra” and “multivector calculus” originally

used in this paper have been replaced throughout by the terms “geometric alge-

bra” and “geometric calculus,” which have since become standard terms.]

INTRODUCTION

Among the many alternative mathematical systems in which the equations of physics
can be expressed, two of the most popular are the matrix form of spinor calculus
and the vector calculus formulated by Gibbs. These two systems in some mea-
sure complement one another and are often used together in problems concerning
particles with spin. However, many theorems of vector calculus are equivalent to
theorems of matrix calculus. So when the two systems are combined a great deal of
redundancy occurs which makes computations more difficult than necessary, much
time being taken up with mere translation between the two modes of expression.
This paper shows how the matrix and vector algebra can be replaced by a single
mathematical system, called geometric algebra, with which the tasks of theoretical
physics can be carried out more efficiently.

Geometric algebra derives its power from the fact that both the elements and
the operations of the algebra are subject to direct geometrical interpretation. It
can be argued, further, that geometric algebra is the simplest system capable of
providing a complete algebraic expression of geometric concepts, though only some
examples of the effectiveness of the system are given in this paper.

Additional perspective on the cogency of geometric algebra can be gained by
comparing it with other approaches. For example, it is important to note that co-
variant formulations of tensor and spinor algebra are by nature inefficient, because
at the very beginning they introduce irrelevant coordinates. The coordinates func-
tion as a vehicle for the algebraic system. The actual irrelevancy of the coordinates
is finally admitted by requiring that quantities which represent intrinsic geometric
(and physical) entities be covariant under coordinate transformations. In contrast,
geometric algebra is built out of objects with direct geometric interpretations; the
properties of these objects are specified by introducing algebraic operations which
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directly determine their interrelations. Coordinates are utilized only when they
arise naturally in specific problems. Moreover, geometric algebra retains all the
advantages of tensor algebra, because tensors can be introduced in a coordinate
free fashion as multilinear functions on geometric algebra; the operations of tensor
algebra are then already included in the operations of geometric algebra. However,
a systematic account of this approach to tensors has not yet been published. [But
see more recent references on the web site.]

Though the geometric algebra discussed here is isomorphic to the so-called
“Pauli (matrix) algebra,” the interpretations of the two systems differ considerably,
and the practical consequences of this difference are not trivial. Thus, questions of
the representation of Pauli matrices and of transformations among representations
never arise in geometric algebra, because they are irrelevant. Matrix algebra was
invented to describe linear transformations. So it should not be surprising to find
that matrices have irrelevant features when they are used to represent objects of
a different nature. From the geometric viewpoint of geometric algebra, matrices
are seen to arise in the theory of linear geometric functions; that is, geometrics
are taken to be more fundamental than matrices, rather than the other around.
Simplifications which result from this reversal of viewpoint are manifest in text and
references of this paper.

Just as important as the mathematical simplifications that accrue is the fact
that the use of geometric algebra imbues many well known mathematical expres-
sions with new meaning. Thus, complex numbers arise naturally with distinctive
geometrical and physical interpretations depending on the situation. Of particular
significance is the realization of a connection between spin and complex numbers in
quantum theory and the surprising conclusion that the Schrodinger theory already
describes a particle with spin. This will be discussed thoroughly in a subsequent
paper (hereinafter referred to as II[1]). [Also discussed in many other papers on
this web site.]

The purpose of this paper is to explain some of the advantages of geometric
calculus. The object is not to give a complete and balanced account of the subject,
but only to call attention to its major features and some of the minor points that
are often overlooked. Other aspects of the subject are treated in Refs. 2–5.

In Sec. 1, the fundamentals of geometric calculus are discussed in preparation for
applications to follow. Section 2 delineates the role of spinors. Section 3 illustrates
the use of spinors in classical mechanics. Section 4 discusses the significance of
complex numbers in electrodynamics.

This paper makes only brief and incomplete allusions to quantum theory. How-
ever, the full power of geometric methods in quantum theory is demonstrated in II
[1].

1 GEOMETRIC ALGEBRA

The most distinctive feature of geometric algebra is the rule for multiplying vectors.
The product ab of vectors a and b is designed to contain all the information about
the relative directions of vectors a and b. To see how this is done, it is helpful to
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decompose the product into symmetric and antisymmetric parts. Write

ab = a · b + a ∧ b , (1.1)

where

a · b ≡ 1
2 (ab + ba) = b · a , (1.2)

a ∧ b ≡ 1
2 (ab− ba) = −b ∧ a . (1.3)

The symmetric part of a · b is taken to be the familiar way inner (or scalar) product
of vectors, so no comment about its geometrical significance is required. The an-
tisymmetric part of a ∧ b is taken to be a bivector determined by vectors a and
b.

Lamentably, bivectors are not so widely appreciated as they deserve to be,
though they were invented together with vectors well over a hundred years ago
by Grassmann. Since in geometric algebra bivectors are as important as vectors
and scalars, a few words on their behalf may be in order. Just as a vector can be
interpreted as a directed number which describes an oriented line segment, with
the direction of the vector representing the oriented line and the magnitude of the
vector measuring the length of the segment; so a bivector can be interpreted as
a directed number which describes an oriented plane segment, with the direction
of the bivector representing the oriented plane and the magnitude of the bivector
measuring the area of the plane segment. The direction of the bivector B = a ∧ b
represents the oriented plane “containing” a and b, while the magnitude of a ∧ b
is equal to the area of a parallelogram with sides corresponding to a and b. The
bivector B should not be conceived merely as the product a ∧ b, for B is an entity
unto itself. The product simply describes a relation of the vectors a and b to B,
just as 2× 3 = 6 describes a relation of 2 and 3 to 6.

The product ab acquires a geometrical significance from the interpretations given
to a · b and a ∧ b. This product may be interpreted directly as a measure of the
relative directions of vectors a and b. Thus, if a and b are collinear, then they
commute: ab = ba. Or, if a and b are orthogonal, they anticommute: ab = −ba.
In general, ab describes a “degree of commutivity” somewhere between these two
extremes. Neither of the products a · b or a ∧ b suffices by itself to fully describe
the geometrical relation of a and b; the full product ab is needed.

While development of the full geometric algebra in a coordinate free manner
is the ideal way to proceed, it is convenient here to introduce a basis of vectors
at once, because it facilitates comparison with matrix representations of algebra.
Furthermore, only the geometric algebra appropriate for the description of objects
in three-dimensional physical space is discussed here, though the whole approach is
easily adapted to spaces of higher dimension. Application of geometric algebra to
space-time physics is carried out in Refs. 2 and 3.

Let {σi, i = 1, 2, 3} be a right-handed orthonormal basis of vectors representing
directions in physical space. Then Eq. (1.1) gives

σ2
1 = σ2

2 = σ2
3 = 1 , (1.4)

3



σ1σ2 = σ1 ∧ σ2 = −σ2σ1 ,

σ2σ3 = σ2 ∧ σ3 = −σ3σ2 ,

σ3σ1 = σ3 ∧ σ1 = −σ1σ3 . (1.5)

Just as any vector a can be expressed as a linear combination of basis vectors:

a = aiσi (sum over repeated indices), (1.6)

so any bivector S can be expressed as a linear combination of basis bivectors σi∧σj :

S = 1
2Sij σi ∧ σj . (1.7)

The scalars Sij = −Sji are called components of S with respect to the basis {σi ∧
σj}. From (1.5) it follows that the bivectors compose a three-dimensional linear
space.

Besides the bivectors σi ∧ σj , only one other new entity can be constructed by
multiplying together the σi, namely the pseudoscalar

i = σ1σ2σ3 = σ1 ∧ σ2 ∧ σ3 . (1.8)

Just as σ1 ∧ σ2 can be interpreted as an oriented plane segment with unit area,
so the pseudoscalar i ean be interpreted as an oriented three-space segment with
unit volume. And i should not be conceived as simply an abbreviation for the
product σ1σ2σ3; the pseudoscalar is an entity unto itself, as significant as scalars,
vectors, and bivectors. Equation (1.8) expresses the fact that i can be factored into
a product of three vectors; actually, any three orthonormal vectors will do.

Every element of the geometric algebra of physical space can be expressed as a
linear combination of the basis elements {1,σi,σi ∧σj , i}, composed of the vectors
σi and their products. It follows that every geometric M can be expressed as the
sum of a scalar MS , a vector MV , a bivector MB , and a pseudoscalar MP :

M = MS +MV +MB +MP . (1.9)

It is fair to ask what it means to add scalars, vectors, bivectors, and pseudoscalars.
Mathematically, the operation of addition is well defined by the usual rules, in-
cluding the distributive rule, which relates addition to multiplication; together with
the consistency requirement that scalars are linearly independent of vectors, while
vectors are linearly independent of bivectors, and so on. On the other hand, the ge-
ometrical and physical meanings of geometric addition are many. One example has
already been given by Eq. (1.1), which shows that the geometric properly describing
the relative direction of two vectors consists of the sum of a scalar and a bivector.
Another example is given by the fact that electromagnetic field is best represented
by a geometric consisting of a vector and a bivector. Every combination of scalar,
vector, bivector, and pseudoscalar turns out to be significant in one application or
another.

4



If there is one message which needs repeated emphasis in these days when the
abstract nature of mathematics is so avidly cultivated, it is that geometric algebra
derives its potency from its geometric interpretation. Anyone who thinks that
the interpretation is a mere adornment to the algebra is invited to examine the
literature on Clifford algebra. He will find that where Clifford algebra is treated
as a purely abstract system, the mathematics is hardly developed beyond the most
trivial theorems. But when geometrical considerations intrude, the mathematical
theory is correspondingly enriched. Geometric algebra is Clifford algebra with a
thoroughgoing geometric interpretation; it is entirely a geometric algebra. This
paper and Refs. 2–5 only begin to show what can be accomplished by this union of
algebra and geometry.

To emphasize geometrical interpretations as well as to increase algebraic effi-
ciency, it is desirable to introduce more concepts and definitions than are strictly
needed for a formulation of the fundamentals of geometric algebra.

A geometric which can be factored into the product of k orthogonal vectors is
called a k-vector. It is convenient to augment this definition by calling scalars 0-
vectors. A k-vector is said to be even if k is even and odd if k is odd. Thus, scalars
and bivectors are even k-vectors, while vectors and pseudoscalars are odd k-vectors.
In general, a geometric will be said to be even (or odd) if it can be expressed as the
sum of even (or odd) k-vectors.

For a k-vector Ak and an m-vector Bm, the inner product Ak ·Bm is defined by

Ak ·Bm = (AkBm)| k−m |, (1.10)

where the subscript on the right means take the | k−m |-vector part of the products
AkBm; analogously, the outer product Ak ∧Bm is defined by

Ak ∧Bm = (AkBm)k+m . (1.11)

The inner and outer products of a vector a with a bivector B arise quite frequently,
and it can be shown that

a ·B = 1
2 (aB −Ba) . (1.12)

This is a vector. Also,

a ∧B = 1
2 (aB +Ba) . (1.13)

This is a three-vector. Equivalently, it is a pseudoscalar, so

a ∧B = λi , (1.14)

where λ is a scalar, and as always in this paper, i is the unit pseudoscalar. Adding
(1.12) to (1.13) gives

aB = a ·B + a ∧B . (1.15)

Note the similarity to Eq. (1.1).
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In geometric algebra multiplication is noncommutative, yet the discussion of Eq.
(1.1) already shows that the order of terms in a product has geometric significance.
To represent symbolically the important operation of reversing the order of terms in
a product, it is convenient to define a geometric M† which is said to be the adjoint
of a given geometric M . The adjoint of every geometric is determined by specifying
the adjoint of every vector and the rule for determining the adjoint of a product
from the adjoints of its factors; to wit,

a† = a (1.16)

and

(MN)† = N†M† (1.17)

for every vector a and all geometrics M and N . For example, when the rules (1.16)
and (1.17) are applied, it follows from (1.3) that (a ∧ b)† = b ∧ a = −a ∧ b, and
from (1.5) and (1.8) that i† = −i. More generally, (1.9) yields

M† = MS +MV −MB −MP . (1.18)

The magnitude (or modulus) |M | of a geometric M is determined by the equation

|M | = [(MM†)S ]1/2 , (1.19)

where the subscript S means take the scalar part of the product MM†. Substitution
of (1.9) and (1.18) into (1.19) relates the magnitude of M to that of its k-vector
parts; thus

|M |2 = (MM†)S
= |MS |2 + |MV |2 + |MB |2 + |MP |2

= M2
S +M2

V −M2
B −M2

P . (1.20)

It follows that |M | ≥ 0, and |M | = 0 only if M = 0. A geometric M is said to be
unitary if |M | = 1.

As usual, the inverse M−1 of a geometric M is defined by the equation

MM−1 = 1 . (1.21)

If MM† = |M |2, the inverse of M exists and can be written in the simple form

M−1 = M†/|M |2 . (1.22)

It follows that every vector has an inverse, so it is possible to divide by vectors. This
one feature alone gives geometric calculus a great advantage over “vector algebras”
in which vector division is not defined. Note that vector division is made possible
by (1.1) which combines inner and outer products into a single product.

The dual of a geometric is obtained by multiplying it by the unit pseudoscalar
i. Particularly significant is the fact that every bivector S is the dual of a unique
vector s, that is

S = is . (1.23)

6



This definition of dual is equivalent to that given in covariant tensor analysis, namely

Sij = εijkSk . (1.24)

Equation (1.24) can be obtained from (1.23) by taking the inner product with σi∧σj .
Thus

(σi ∧ σj) · S = Sji = −Sij , (1.25)

(σi ∧ σj) · (is) = [σi ∧ σjiskσk]S = −εijksk . (1.26)

[In (1.26) and below, multiplications indicated by a symbol are meant to be carried
out first, for instance

A ·BC = (A ·B)C 6= A · (BC)

and

AB ∧ C = A(B ∧ C) 6= (AB) ∧ C .

This convention eliminates a lot of parentheses.] It should be noted that (1.25) can
be obtained from (1.7) by using

(σi ∧ σj) · (σm ∧ σn) = δjmδin − δjnδim , (1.27)

which can be derived by inserting the steps

= [σi ∧ σjσm ∧ σn]S = [σiσjσm ∧ σn]S
= [σiσj · (σm ∧ σn)]S
= σi · (δjmσn − δjnσm) .

Equation (1.26) can be established by noting the following equivalent expressions
for the components of the alternating tensor:

εijk = −iσi ∧ σj ∧ σk = i†σi ∧ σj ∧ σk
= −i · (σi ∧ σj ∧ σk) = −(iσi ∧ σj ∧ σk)S
= −(iσi ∧ σjσk)S = −(iσiσjσk)S
= (σ1σ2σ3σiσjσk)S . (1.28)

It should be obvious that the coordinate free formulation of the dual is far simpler
than the usual tensor relation. For instance, to invert (1.23) one only needs to
remember that i2 = −1; thus

s = −iS . (1.29)

To invert (1.24), more formulas, more indices, and more bookkeeping is needed, all
of which is not worth the trouble now that a much simpler approach is available.
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Of course the difference in complexity between the two approaches increases as
problems become more difficult.

The “cross product” introduced by Gibbs is just the dual of the outer product,
thus

a× b = −ia ∧ b . (1.30)

Multiplication of (1.8) on the left by σ2σ1 yields

σ3 = σ2σ1i = iσ2σ1 = −iσ1σ2 = σ1 × σ2 . (1.31)

which shows that (1.8) and (1.30) are consistent with the usual right-hand rule for
the cross product.

As defined in (1.30), a× b is a vector. It is a common practice [6] to define the
cross product so that a× b transforms as an “axial vector” under space inversions.
Actually, this axial vector is nothing more than the bivector a ∧ b disguised as a
vector. Since geometric algebra has bivectors to represent bivectors, the confusing
practice of admitting two kinds of vectors is wholly unneccesary. In this connection,
it should be noted that (1.30) shows that under space inversions the transformtion
of the cross product differs from that of the outer product, because the pseudoscalar
i changes sign.

Since the σk represent fixed directions in physical space, they are associated with
a set of Cartesian coordinates {σk, k = 1, 2, 3}. The association can be explicitly
formulated by introducing the gradient operator ∇ with the formula

∇ = σk∂k , (1.32)

where

∂k = σk · ∇ = ∂/∂xk . (1.33)

Clearly

σk = ∇xk , (1.34)

which says that σk measures the direction and rate of change of xk. In truth, the
σk provide a mathematical formulation of the notion of uniform increase in a fixed
direction implicit in the definition of the xk.

When operating on a scalar, ∇ is equivalent to the usual gradient operator.
However, in geometric calculus the gradient of a vector, indeed of any geometric, is
a well-defined quantity. Thus, by virtue of (1.1) and (1.30), for a vector function
A,

∇A = ∇ ·A +∇∧A = ∇ ·A + i∇×A . (1.35)

∇ ·A and ∇ ×A are precisely the divergence and curl of Gibbs. The divergence
determines the flux of the normal component of A through a given surface while
the curl determines the flux of the tangential component of A. Thus the complete
rate of change of A across a surface is described by ∇A.
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In Ref. [4] the gradient is defined in a more fundamental fashion without in-
troducing coordinates. The gradient was introduced here by (1.32) to expediate
comparison with better known approaches. In Ref. [5] the inverse of the gradient
is found and shown to be a natural generalization of the famous Cauchy integral
formula. This result has many applications to physics. For instance, it greatly
facilitates the solving of electrostatic and magnetostatic problems directly for the
field strengths without introducing potentials.

An isomorphism of the geometric algebra of physical space to the algebra of
complex 2×2 matrices can be established by means of the following correspondences:

σ1 ∼ σ1 =
(

0 1
1 0

)
, σ2 ∼ σ2 =

(
0 −i
i 0

)
,

σ3 ∼ σ3 =
(

1 0
0 −1

)
, i ∼ iI =

(
i 0
0 i

)
, (1.36)

The symbol i, of course, means something different in each of the algebras, but
in both cases i2 = −1, and i commutes with all elements of the algebra, which is
reason enough for using the same symbol in both cases. In the matrix algebra, the
significance of i is exhausted by the algebraic properties just mentioned; this i has
no geometric significance. But the geometric i is to be interpreted geometrically as
a pseudoscalar; this gives it additional algebraic properties, such as (1.8). As (1.36)
indicates, the matrix analog of the pseudoscalar is not simply the “unit imaginary”
in the matrix theory; it is the unit imaginary times the unit matrix.

The so-called Pauli algebra is more than just the algebra of complex 2×2 matri-
ces; it is matrix algebra together with a geometrical interpretation. This association
is usually set up by interpreting the set of matrices {σk} as the components of a
single vector. This clumsy approach is in large measure responsible for sustaining
the practice of using two algebras, a matrix algebra and a vector or tensor algebra,
where one will do. The preferred approach is, of course, to associate the σk with
vectors as in (1.36), and then it becomes apparent that the matrices ought to be dis-
pensed with altogether. But this program cannot be consummated unless spinors
can be represented without matrices. That this can be done, and with salutary
effects, is explicitly demonstrated in the following pages and in II [1].

The geometric algebra of physical space was called the Pauli algebra in Ref. [2],
because of its similarity to the Pauli matrix algebra. Pauli’s name is not the most
appropriate to use in this connection, though Pauli was the first to use the matrix
algebra in a discussion of electron spin. Nor is the use of Clifford’s name better
justified, though the name Clifford algebra is widely used in the literature. The
names of Grassmann and Hamilton would be more appropriate, because they showed
how to buiId geometric meaning into algebraic systems, but both failed to discover
the rule (1.1) which unites their separate works into a harmonious whole. Clifford
discovered the rule, but he failed to realize its geometric significance. The import of
Clifford’s innovation has remained unrealized to this day, though geometric algebras
have been enriched by many men in manifold ways.

Instead of associating the name of any one man with a system which has evolved
from the work of so many men, the descriptive name geometric algebra has been
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adopted here. The word “multivector” has often been used in the literature in a
sense similar to the one advocated here. Unfortunately, it is not a lovely word and
is rather a mouthful to say.

2 REFLECTIONS, ROTATIONS, AND SPINORS

Consider the following function of a vector v:

v→ v′ = −ava , (2.1)

where a is a unit vector. Squaring, one finds that this mapping preserves the
magnitude of v:

v′2 = avaava = avva = v2 = |v |2 . (2.2)

Further insight into the nature of (2.1) can be obtained by decomposing v into a
component v‖ collinear with a plus a component v⊥ orthogonal to a; thus

v = va2 = (v · a + v ∧ a)a = v‖ + v⊥ , (2.3)

where

v‖ = (v · a)a , v⊥ = v ∧ a a = (v ∧ a) · a , (2.4)

and

v‖a = v · a = av‖ , v⊥a = v ∧ a = −av⊥ , (2.5)

So (2.1) yields

v′ = −a(v‖ + v⊥)a = −v‖ + v⊥ . (2.6)

This shows that the mapping (2.1) simply reverses the direction of any vector
collinear with a and leaves any vector orthogonal to a unaffected; thus (2.10) is
a reflection in the plane “orthogonal” to a.

If the mapping (2.1) is followed by the mapping

v′ → v′′ = −bv′b , (2.7)

where b is a unit vector, the following composite mapping is obtained:

v→ v′′ = UvU† , (2.8a)

where

U = ba = cos 1
2 | θ |+ i sin 1

2 | θ |
= exp (1

2 i| θ |) = exp (1
2θ) (2.8b)
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To write the terms on the right of (2.8b), (1.1) was used together with the relations

cos 1
2 | θ | = a · b , (2.9a)

sin 1
2 | θ | = |b ∧ a | , (2.9b)

i = b ∧ a/|b ∧ a | , (2.9c)
θ = i | θ | . (2.9d)

The scalar | θ | is readily identified as twice the magnitude of the angle between b
and a. The reason for introducing a half-angle is evident below. The unit bivector
which represents the oriented “b ∧ a plane” has been designated by the suggestive
symbol i, because i2 = −1; boldface type has been used to avoid confusion of the
bivector i with the pseudoscalar i. It should be noted that the angle between the
vectors b and a is fully represented only by the bivector 1

2θ and not just a scalar;
the “direction of the angle” represents the plane in which the magnitude | θ | is
measured; the “sign of the angle” designates the orientation of the bivector.

To get at the meaning of (2.8a) it is useful to decompose v into a component
v‖ which lies in the “i plane” and a component v⊥ which is “perpendicular” to it.
Thus, since −i2 = i†i = 1,

v = vi†i = (v · i† + v ∧ i†)i = v‖ + v⊥ , (2.10)

where

v‖ = (v · i†)i = −(v · i)i = −(v · i) · i , (2.11a)

v⊥ = (v ∧ i†)i = −(v ∧ i)i = −(v ∧ i) · i , (2.11b)

and
v‖i = v · i = −v · i = −iv‖ , (2.12a)
v⊥i = v ∧ i = i ∧ v = iv⊥ . (2.12b)

From (2.12a) and (2.8b), it follows that

v‖U† = Uv‖ , (2.13a)

v⊥U† = U†v⊥ . (2.13b)

So (2.8a) yields

v′′ = U(v‖ + v⊥)U† = U2v‖ + v⊥ = eθv‖ + v⊥ . (2.15)

Note that

eθv‖ = v‖ cos | θ |+ i · v‖ sin | θ | . (2.16)

is a rotation by | θ |, since iv‖ = i · v‖ is just v‖ rotated by 90◦ in the i plane.
The mapping (2.8) is simply a rotation by θ [i.e., a rotation by | θ | in the (ori-

ented) i plane]. It will be proved below that every rotation can be expressed in the
form (2.8). So the approach used above to arrive at (2.8) proves not only that the
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composition of two reflections is equivalent to a rotation, but that every rotation
can be expressed as a product of two reflections. Note that the fundamental rule
(1.1) is responsible for the ease with which this result has been established and
expressed.

The occurrence of half-angles in the fundamental expression (2.8) for a rotation
is, of course, related to the bilinearity in U . The bilinear expression performs the
function of separating, by virtue of the “commutation relations” (2.12), v‖ from v⊥
to give (2.15). As (2.16) shows, the bilinear form is not needed to represent rotation
of vectors which lie entirely in the θ plane.

For obvious reasons, the bivector i is called the generator of rotations in the
i plane. This name designates a geometrical property that was not ascribed to
bivectors when they were first introduced. Thus, either or both of two fundamental
geometrical interpretations can be ascribed to any bivector: an operational interpre-
tation as the generator of rotations, or an “extensive” interpretation as an oriented
plane segment. Grassmann based his “algebra of extension” on the extensive view,
while Hamiltonian based his quaternions on the operational view. The rule (1.1)
fuses these two complementary views into a single system.

It is worthwhile to observe that (2.15) expresses the solution of an eigenvalue
problem. Both v‖ and v⊥ are eigenvectors of the linear transformation (2.8). Thus

v⊥ → v′⊥ = Uv⊥U† = v⊥ , (2.17)

v‖ → v′‖ = Uv‖U† = exp (i | θ |)v‖ . (2.18)

The eigenvalue 1 corresponds to the eigenvector v⊥, and the “complex” eigenvalue
exp (i | θ |) corresponds to the eigenvector v‖. This suggests that in the general
theory of linear transformations complex eigenvalues can always be associated with
rotations. The matrix approach to linear transformations fails to reveal the fact the
“unit imaginary” which is needed to express a complex root of the characteristic
equation has a geometric significance; (2.18) indicates that it can be interpreted as
the generator of rotations in the plane of eigenvectors corresponding to the complex
eigenvalue. A systematic exploitation of this fact ought to enrich the theory of
linear transformations.

A rotation takes an orthonormal set of vectors {σi} into an orthonormal set
{ei}. The ei can be expressed as a linear combination of the {σi}, that is,

ei = aijσj . (2.19)

The rotation is completely determined bv specifying the {σi} and either the {ei}
or the rotation matrix aij . This representation of a rotation is evidently inferior to
that displayed by (2.8). For the geometric U = exp (1

2θ) describes the rotation com-
pletely and directly in terms of the angle and plane of rotation, whereas the matrix
representation requires reference to a basis which typically has no significance.

Just the same, the matrix aij is sometimes a given quantity, so the problem of
finding an equivalent U arises. This can be solved by applying (2.8) to the {σi} to
get

ei = UσiU
† . (2.20)

12



This equation can be solved for U . First observe that since σiσi = 3 and
σiBσi = −B for any bivector B,

σiU
†σi = σi(US − UB)σi = 3US + UB = 4US − U† . (2.21)

where US is the scalar part of U . Hence, by multiplying (2.20) on the right by σi
and summing, one finds

4UUS = 1 +M , (2.22)

where

M ≡ eiσi = aijσjσi . (2.23)

Multiplying (2.22) by its adjoint, one obtains

16U2
S = (1 +M)(1 +M†) .

This quantity is a positive scalar so there is no problem in taking its square root
and using the result to eliminate US from (2.22). Thus

U = ±(1 +M)/[ (1 +M)(1 +M†) ]1/2 . (2.24)

Actually, an expression for U which is even simpler than (2.24) can be obtained by
solving the scalar part of (2.22) directly for US ; thus

4U2
S = 1 +MS = 1 + akk . (2.25)

So,

U = ±1
2 (1 +M)/(1 +MS)1/2 . (2.26)

By virtue of the definition for M in (2.23), either of the equations (2.24) or (2.26)
provides the desired expression for U in terms of the transformation matrix aij and
the basis {σi}. That the U in (2.24) can be written in the explicit forms given by
(2.8b) follows from the fact that M is composed of scalar and bivector parts only,
as (2.23) shows. The ambiguity in sign in (2.22) merely reflects the bilinearity of
(2.8); the negative root can be ignored without danger.

The inverse problem of finding the transformation matrix from U and the σi is
easily solved by using (2.19) and (2.20). Thus,

aij = ej ·σj = (ejσj)S = (UσiU†σj)S . (2.27)

This completes an explicit demonstration that (2.8) and (2.19) are equivalent
descriptions of a rotation. Since any rotation can obviously be described by (2.19),
it follows, as promised, that any rotation can be written in the form (2.8).

Even geometrics have a special geometric significance which the above discussion
of rotations makes it possible to appreciate. To emphasize this significance, the word
spinor will be used hereafter to designate an even geometric. Justification for this
usage will appear in due course.
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From its definition, it follows that any spinor can be expressed as the sum of a
scalar S and a bivector B:

ψ = S +B . (2.28)

The decomposition can be used to prove that

|ψ |2 = ψψ† , (2.29)

for

ψψ† = (S +B)(S −B) = S2 −B2

= S2 + |B |2 = (ψψ†)S ,

Now factor ψ into the product of a scalar λ = |ψ | and a unitary spinor U :

ψ = λU . (2.30)

Clearly

UU† = U†U = 1 . (2.31)

In fact, it is a simple matter to show that U can be expressed in any of the forms
given by (2.8b).

Now consider the following function of a vector v:

v→ v′ = ψvψ† = λ2UvU† . (2.32)

Comparison with (2.8) shows that (2.32) consists of a rotation and a dilation by λ2.
Thus, by virtue of (2.32), every spinor uniquely determines a rotation dilatation.
Therein lies the operational geometric significance of spinors.

The spinors form a subalgebra of geometric algebra. The algebra of spinors was
discovered independent of the full geometric algebra by Hamilton, who gave it the
name quaternion algebra. Some readers may want to say, rather, that we have here
two isomorphic algebras, but there is no call for any such distinction. A quaternion
is a spinor. The identification of quaternions with spinors is fully justified not only
because they have equivalent algebraic properties, but more important, because
they have the same geometric significance.

It is unfortunate that Hamilton chose the name quaternion, for this name merely
refers to the comparatively insignificant fact that the quaternions compose a linear
space of four dimensions. The name quaternion diverts attention from the key
fact that Hamilton had invented a geometric algebra. Hamilton’s work itself shows
clearly the crucial role of geometry in his invention. Hamilton was consciously
looking for a system of numbers to represent rotations in three dimensions. He was
looking for a way to describe geometry by algebra, and so he found a geometric
algebra.

In the twentieth century quaternions seem to be generally regarded as something
of a mathematical museum piece, a curious artifact from the nineteenth century or
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a diversion from the mainstream of modern mathematics. One reason for this
unfortunate circumstance might be found in the fact that Frobenius proved in 1878
that the quaternions constitute the largest associative division algebra. Thus, if
division is a characteristic feature of quaternions, then quaternion algebra cannot
be generalized. This is a typical diversion from the geometrical spirit of Hamilton’s
inquiry. The predominance of such diversions from the geometric to the algebraic
features of quaternions goes far to explain why quaternions have not yet found the
central place in mathematics which Hamilton had forseen.

The treatment of reflections and rotations given above originated with Hamilton.
Many opportunities to make use of Hamilton’s incisive conceptions are missed,
because quaternion algebra is something apart from the usual vector or tensor
algebra. But this barrier is completely removed by adopting the more comprehensive
geometric viewpoint of geometric algebra. Moreover, identification with spinors
gives quaternions a prominent place in modern physics. Spinors are commonly held
to be an invention of the twentieth century, the credit often going to Cartan, though
he did not contribute to their emergence in physics. The relation of spinors to
quaternions has remained rather obscure since their inception. The “new” definition
of a spinor given here goes back over a hundred years to Hamilton, so it is actually
the oldest definition of a spinor rediscovered and renamed.

When the Hamiltonian spirit is restored by interpreting quaternions as rota-
tion dilatations, and infused with the spirit of Grassmann by recognizing its place
in geometric algebra, then the appropriate generalization of quaternions is easily
found to be as follows: The vectors of an n-dimension vector space Rn generate
a geometric algebra Mn (Refs. [4], [2], [1]); spinors are identified as elements of
the even subalgebra of Mn, and they can be shown to represent rotation dilata-
tions of Rn by a direct and simple generalization of the procedure used above.
A reformulation of Dirac theory using this conception of spinor has already been
carried out in Ref. [3]. Thus, the quaternion representing a rotation dilatation in
three space is generalized to a spinor representing a rotation dilatation in n space.
Of course, the fourness and the universal invertibility of quaternions is lost in this
generalization, but the geometric meaning is retained, as is its most significant al-
gebraic realization, namely, the unitary spinors form a group under multiplication
which is homomorphic to the group of rotations in n dimensions. Thus, the unitary
spinors characterize the rotations in n space simply and completely. This feature is
so important that it is worthwhile to express it in another fashion: Every unitary
spinor is a number which represents a rotation. The word number is used advisedly
here, because multiplication has a significant meaning. The product of two such
numbers to produce another directly and completely describes the composition of
two rotations.

Though the quaternions are well known to many physicists, they have been
regarded, heretofore, as something different than spinors. So the relation of the
quaternions to other representations of spinors must be explained.

In Ref. [2] spinors {φ+} are identified with elements of minimal left ideals of
geometric algebra. Each φ+ is related to a quaternion ψ by the formula

φ+ = ψ(1 + σ3)(2)−1/2 , (2.33)

15



where σ3 is a fixed but definite unit vector. The trouble with the “ideal” approach is
that ψ and σ3 have different geometric significance, but φ+ mixes them up, mixes
them so well, in fact, that even authors well versed in spinor lore have failed to
realize their existence and disentangle them. In Ref. [3] the separation of ψ from
σ3 was first carried out and shown to have physical significance in the Dirac theory.
The roles of ψ and σ3 in the Pauli theory are thoroughly discussed in II [1].

The representation of spinors as ideal elements is almost identical to their rep-
resentation as column matrices; the connection is discussed in Ref. [2]. However,
the correspondence of a quaternion ψ with a column spinor Ψ is most easily accom-
plished by means of the following algorithm: Express ψ as a polynomial of the basis
vectors {σk}; then replace the {σk} by their matrix representations (1.36). Define
the column matrix u by

σ3u = u , u =
(

1
0

)
. (2.34)

Then, regarding ψ as a matrix operator, Ψ is given by

Ψ = ψu . (2.35)

This enables one to obtain Ψ from ψ. To obtain ψ from Ψ is more difficult. Further
details are given in II [1].

One sometimes finds in the literature the cryptic assertion that spinors are more
fundamental than vectors, because a spinor is a kind of square root of a vector.
This view reveals an incomplete grasp of the geometric meaning of spinors. Spinors
cannot be defined without reference to vectors. As has been shown above, the
geometric meaning of a spinor is operational: it transforms one vector (or frame
of vectors) into another. The resulting vector (or frame) is a bilinear function (a
kind of square) of the spinor as in (2.30), but it also depends on the choice of the
“initial” vector (or frame) to be transformed. The dependence of column spinors
of a specification of an “initial” frame of vectors is subtly disguised (though, of
course, not on purpose). It is certainly not apparent in (2.33), but (2.33) has no
significance apart from a specification of the matrix representations of the {σk}.
In this covert manner the {σk} have been chosen implicitly as an “initial” frame.
In physical applications, the spinor ψ (or Ψ) transforms {σk} into some vector
with physical significance, such as the spin. By maintaining an explicit separation
of the geometrically distinct elements of spinor theory from the beginning, the
“operational” approach to spinors recommended in this paper broadens the range,
simplifies the application, and enhances the geometric content of the mathematical
apparatus.

3 SPINORS IN CLASSICAL MECHANICS

Geometric calculus makes it possible to take full advantage of spinors in classical
mechanics. Since unitary spinors are numbers which directly represent rotations,
they can be used to advantage whenever rotations play a significant role in a physical
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problem. A wider use of spinors in classical mechanics ought to dispel the pervasive
mistaken impression that spinors are a special feature of quantum mechanics. As a
simple significant example what should be one of the most common applications of
spinors is discussed in this section.

Let the vector x which designates a point of physical space be called the coor-
dinate of the point. A coordinate is more than a name for a point; it is an element
of a geometric algebra which is a kind of special language invented to express rela-
tions among “physical points” in a most efficient manner. Let a specified procedure
which (in principle) puts the points of physical space (or some subset of them, at
least) in one to one correspondence with coordinates be called a coordinate system.
Write x = x(t) to denote that the correspondence may depend on the time t. Any
smooth invertible function f(x) determines a new system of coordinates x′ by the
rule

f : x→ x′ = f(x) , x = f−1(x′) . (3.1)

In practical problems, one frequently encounters coordinate systems related by a
rotation. In that case the function f(x) can be written explicitly in the form

x′ = UxU† . (3.2)

Here U = U(t) is a unitary spinor which may be a function of time.
The aim of this section is to show how to use the spinor U to relate dynamics

in the x system to dynamics in the x′ system. The key to the whole approach is
the formula

dU/dt = 1
2ΩU , (3.3)

where Ω is a bivector.
First it is necessary to show that Ω is, in fact, a bivector. To this end UU† = 1

may be used to solve (3.3) for Ω:

Ω = 2(dU/dt)U† . (3.4)

Differentiation of UU† = 1 yields

(dU/dt)U† = −U(dU†/dt) = −[(dU/dt)U†]† ,

so

Ω = −Ω† . (3.5)

Since U is even, by (3.4) Ω is even. And, by (3.5) Ω cannot have a scalar part.
Hence Ω is a bivector.

It is appropriate to call Ω the angular velocity of the rotation U , though this
name is usually reserved for its dual

ω = iΩ . (3.6)
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The bivector Ω is more fundamental than the vector ω, because it describes the
rate of rotation in a plane, while an equivalent description by ω as the rate of
rotation about an axis is possible only in a space of three dimensions. However, the
intuition of physicists is more highly developed for vectors than for bivectors, and
of course, ω is more common in the literature. So both characterizations are used
here, especially to emphasize how easy it is to go from one to the other with (3.6).

For some readers it may not be superfluous to remark that Ω is equal to the
time rate of change of angle if and only if the plane of rotation is a constant; that
is, for U = exp ( 1

2θ), (3.3) is equivalent to Ω = dθ/dt if and only if

d(θ/| θ |)
dt

= 0 .

It is often convenient to express the constancy of the plane of rotation by Ωθ = θΩ.
Now observe that the adjoint of (3.3) is

dU†/dt = 1
2U
†Ω† = −1

2U
†Ω . (3.7)

So, with dots for time derivatives, the time derivative of (3.2) is

ẋ′ = U ẋU† + U̇xU† + UxU̇†

= U(ẋ + U†U̇x + xU̇†U)U†

= U [ ẋ + 1
2 (Ωx− xΩ) ]U†

= U [ ẋ− i1
2 (ωx− xω) ]U†

Recalling (1.12) and (1.30), this can be written

ẋ′ = U(ẋ + Ω · x)U†

= U(ẋ + ω × x)U† (3.8)

With the initial condition at time t,

U(t) = 1 or x′(t) = x(t) , (3.9)

(3.8) becomes

ẋ′ = ẋ + Ω · x = ẋ + ω × x (3.10)

Differentiation of (3.8) yields
..
x
′ = U [

..
x + Ω̇ · x + Ω · ẋ + Ω(ẋ + Ω · x) ]U†

= U [
..
x + Ω̇ · x + 2Ω · ẋ + Ω · (Ω · x) ]U†

= U [
..
x + ω̇ × x + 2ω × ẋ + ω × (ω × x) ]U† (3.11)

With the initial condition (3.9), this becomes
..
x
′ =

..
x + Ω̇ · x + 2Ω · ẋ + Ω · (Ω · x)

=
..
x + ω̇ × x + 2ω × ẋ + ω × (ω × x) (3.12)
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The vector forms of (3.10) and (3.12) are, of course, well known and often used. The
matrix equivalent of (3.3) is also used, though less frequently than it deserves. What
is new here is the simple connection between these equations made possible by the
comprehensive geometric approach of geometric calculus. This unifies vector and
spinor desciptions of rotating systems into a single simple approach. And it may not
be superfluous to point out that, in contrast to other approaches, no arbitrary vector
basis or set of scalar coordinates is needed to carry out computations. Moreover,
as shown in II [1], this unified approach applies to quantum as well as to classical
physics.

As a typical illustration of the missed opportunities to exploit spinors in classical
mechanics the chapter on rigid body motion in the widely used textbook by Gold-
stein [7] may be cited. Goldstein formulates Eq. (3.2) with the customary clumsy
matrix approach, but he does not use it to obtain (3.10) and (3.12), or anything
else for that matter. Instead, to get (3.10) and (3.12) he describes rotations with
3 × 3 matrices and then translates some of the results into vector notation. Al-
together, the chapter is a jumble of three different descriptions of rotations only
loosely tied together. Moreover, it is unnecessarily restricted in generality. It does
not apply unless the plane of rotation is constant, and it implicitly assumes the
initial condition (3.9) with no hint of how this condition can be relaxed.

4 COMPLEX NUMBERS IN ELECTRO-
DYNAMICS

The electromagnetic field can be described by eight equations for six scalars, or four
equations for two vectors, or two equations for an antisymmetric tensor, or as shown
in Ref. [2], by a single equation for a single geometric. The last of these formulations
is simpler than the others not just because it deals with only one equation, but more
because geometric calculus has a more comprehensive geometric significance than
the usual vector or tensor calculus. To illustrate this point, the role of complex
numbers in electrodynamics is briefly discussed here.

Every physicist is aware of the great utility of complex numbers for describing
electromagnetic waves. For this reason alone, in vector and tensor calculus the
electromagnetic field is commonly represented ad hoc by complex quantities. The
phrase ad hoc is advisable here, because only the real part of a complex quantity is
purported to have physical significance. In contrast, when the electromagnetic field
is described by geometric calculus, “complex quantities” arise naturally with definite
geometric and physical meanings. Thus it appears that the utility of complex
numbers is something more than an accident.

As shown in Ref. [2], Maxwell’s Equation for the electromagnetic field in empty
space can be written

(c−1∂t +∇)F = 0 , (4.1)

where

F = E + iB . (4.2)
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The curious convenience of combining the electric and magnetic vectors E and B
into a single complex vector has been noted time and again for more than 50 yr
but with no inkling of its geometric significance. The expression (4.2) is actually
more than a “complex vector”; for i is more than a “unit imaginary”; it is the unit
pseudoscalar introduced in Sec. 1, and it appears in (4.2) because the magnetic field
is correctly described by the bivector iB and not its dual B. Representation of the
magnetic field by a vector dates back to the days when the difference between a
vector and a bivector was not appreciated.

With the geometric significance of i clear, it is apparent that the physical sep-
aration of the complete electromagnetic field F into electric and magnetic parts
corresponds exactly to the geometric separation into vector and bivector parts.

The limited geometric view of the usual form of vector calculus has preserved
an artificial separation of electric and magnetic fields, though the fact that they
compose a single physical entity has long been understood. This has helped to
disguise the significance of complex numbers in electrodynoamics. Today, electric
and magnetic fields are commonly represented as complex vectors without realizing
that the real part of one can be related to the imaginary part of the other, so
that only the single “complex vector” (4.2) is needed for a complete description of
the field. This more compact description of the electromagnetic field also yields
solutions with a more direct geometric significance. A study of plane waves brings
this out nicely.

No physicist will be surprised to be told that

F+(x, t) = f exp [ i(ωt− k · x) ] (4.3)

is a solution of Maxwell’s equation describing a monochromatic plane wave with
frequency ω > 0 and propagation vector k. However, he may be surprised to
learn that this wave is necessarily right circularly polarized, because that follows
unequivocally only from the geometric meaning of geometric algebra. To establish
the properties of (4.3), substitute it in (4.1) and use the facts that f , ω, and k are
constant to get Maxwell’s equation in the form

(ω/c− k)F = 0 . (4.4)

Multiplication by (ω/c+ k) gives

(ω2/c2 − k2)F = 0 .

Since F is not zero, this implies that |k | = ω/c, as expected. So (4.4) can be
written in the simpler form

k̂F = F . (4.5)

Substitution of (4.2) in (4.5) shows that both the even and odd parts of (4.5) give
the same relation among the vectors k, E and B, namely,

k̂E = iB . (4.6)
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Equation (4.6) can be used to eliminate the magnetic field from (4.2) giving

F = (1 + k̂)E = E(1− k̂) . (4.7)

This agrees with (4.5) since obviously k̂(1 + k̂) = (1 + k̂). The square of (4.6) gives
immediately E2 = B2, so (4.6) can be written

ÊB̂k̂ = i . (4.8)

Comparison with (1.8) reveals that {Ê, B̂, k̂}, in that order, compose a right-handed
orthornormal frame of vectors.

To make the time dependence of the field explicit, first note that

F (0, 0) = f = E0 + iB0 = E0(1− k̂) . (4.9)

Also note that

(1− k̂) exp (iωt) = (1− k̂) exp (−ik̂ωt) .

So at any point on the plane x · k = 0, the field is

F = E(t) + iB(t) = f exp (iωt)

= E0(1− k̂) exp (iωt) = E0(1− k̂) exp (−ik̂ωt) . (4.10)

The vector part of this expression is

E(t) = E0 exp (−ik̂ωt)
= E0(cosωt− ik̂ sinωt)
= E0 cosωt−B0 sinωt . (4.11)

This shows explicitly that as t increases the electric vector rotates clockwise in the
plane as viewed by an observer facing the oncoming wave train. The magnetic
vector follows 90◦ behind. Thus the usual picture of a circularly polarized wave
arises, but the “unit imaginary” in the complex solution generates the rotation of
E and B.

To obtain the left circularly polarized solution F− it is only necessary to change
the orientation of the “generator” in (4.3). Thus

F−(x, t) = f exp [−i(ωt− k · x) ] . (4.12)

In both (4.3) and (4.12) the frequency is positive. Instead, it is convenient to allow
the frequency to take both positive and negative values. The sign of the frequency is
then associated with the polarization of the wave, F+ being the positive frequency
solution and F− being the negative frequency solution. This is exactly the relation
of frequency to polarization found in the theory of the neutrino.

In general, a wave packet propagating in the k̂ direction can be written in the
form

F (x, t) = F (s) = fz(s) , (4.13)
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where

s = t− x · k̂/c , (4.14)

f = (1 + k̂)e , (4.15)

z(s) =
∫ ∞
−∞

dω α(ω) eiωs ,

=
∫ ∞

0

dω [α+e
iωs + α−e

−iωs ] , (4.16)

α±(ω) = α(±|ω |) . (4.17)

In (4.15), e can be any constant unit vector orthogonal to k̂; hence

| f |2 = 2 . (4.18)

The quantity α(ω) is “formally complex” (i.e., it has only scalar and pseudoscalar
parts). A change in the selection of the vector e is equivalent to a change in the
overall phase of α. The energy density of the field is

1
2 |F |

2 = 1
2 (E2 + B2) = | z |2 . (4.19)

The quantities α+(ω) and α−(ω) describe the components of the packet with fre-
quency |ω | and, respectively, right and left polarization. Thus it is clear that the
salient properties of the packet are described by the “complex” function z(s) or its
Fourier transform α(ω).

The above discussion serves to illustrate how the geometric approach describes
the electromagnetic field by a single quantity which can be readily analyzed to re-
veal its salient physical features. In contrast to more usual approaches, it is not
compelled to break up the field into electric and magnetic pieces. Thus, despite
the picturesqueness of rotating vectors, the decomposition of a propagating wave
into electric and magnetic parts holds little of physical interest; the decomposition
into orthogonal polarizations is more significant, and the multivector approach ac-
complishes this forthrightly. When “complex quantities” are appropriate they arise
automatically and with a geometric interpretation. One example is given above; an-
other is given in the discussion of quantum mechanics in II [1]. Is there a connection
between them? That is a physical question, so it calls for a physical analysis.
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