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Symmetry is a fundamental organizational concept in art as well as science.
To develop and exploit this concept to its fullest, it must be given a precise
mathematical formulation. This has been a primary motivation for developing
the branch of mathematics known as “group theory.” There are many kinds of
symmetry, but the symmetries of rigid bodies are the most important and useful,
because they are the most ubiquitous as well as the most obvious. Moreover,
they provide an excellent model for the investigation of other symmetries. We
have already developed the mathematical apparatus needed to describe and
classify all possible rigid body symmetries. The aim of this section is to show
how such a description and classification can be carried out efficiently with
geometric algebra. The results have extensive applications in the theory of
molecular and crystalline structure.

We say that a geometrical figure or a rigid body is “symmetrical” if there
exists isometries which permute its parts while leaving the object as a whole
unchanged. An isometry of this kind is called a symmetry. The symmetries of
a given object form a group called the symmetry group of the object. Obviously,
every symmetry group is a subgroup of the group of all isometries, the improper
Euclidean group. We know, therefore, from Sec. 5.4 that any symmetry S of a
rigid body can be given the mathematical form

Sx = {R|t}x = R̃ xR+ t , (1)

where x is the position of any particle in the rigid body. This reduces the
problem of describing and classifying symmetry groups to the problem of deter-
mining relations among the spinors and translation vectors for the symmetries
in each group. As we shall see, this problem has a simple and elegant solution.

As usual in mathematical and physical problems, the best strategy is to study
the simplest cases first, and therefrom discover results which are needed to han-
dle the most complex cases. So let us begin by examining the 2-dimensional
symmetry groups with a fixed point. The fixed point condition eliminates trans-
lations, so all the symmetries are orthogonal transformations. Consider, for ex-
ample, the benzene molecule shown in Fig. 1. This molecule has the structure
of a regular hexagon with a carbon atom at each vertex. Evidently, the sim-
plest symmetry of this molecule is the rotation R taking each vertex xk into its
neighbor xk+1 as described by

xk+1 = Rxk = R†xkR = xkR2 . (2)
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Fig. 1. Planar benzene (C6H6), showing generators of the symmetry
group. (Hydrogen atoms not shown.)

A sixfold repetition of this rotation brings each vertex back to its original
position so R satisfies the operator equation

R6 = 1 . (3)

This relation implies that the “powers” of R compose a group with six distinct
elements R, R2, R3, R4, R5, R6 = 1. This group, the rotational symmetry
group of a hexagon, or any group isomorphic to it, is called a (or the) cyclic
group of order 6 and commonly denoted by C6.

The group C6 is a finite group, so-called because it has a finite number of
elements. The order of a finite group is the number of elements it contains. The
element R is said to be a generator of C6, because the entire group can be gen-
erated from R by the group operation. The group C6 is completely determined
by the condition R6 = 1 on its generator, with the tacit understanding that
lower powers of R are not equal to the identity element. Any such condition
on the generators of a group is called a relation of the group. A set of relations
which completely determine a group is called a presentation of the group. For
C6 the presentation consists of the single relation R6 = 1.

From preceding sections we know that it is computationally advantageous
to represent rotations by spinors rather than linear operators, so we look for a
representation of C6 by spinors. According to (2), the operator R corresponds
to a unique spinor S = R2, so the operator relation R6 = 1 corresponds to the
spinor relation

S6 = 1 . (4)

This presentation of C6 has the advantage of admitting the explicit solution

S = e2πi/6 = eiπ/3 , (5)
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where i is the bivector for the plane of rotation. The representation (5) shows
explicitly that the generator of C6 is a rotation through the angle π/3 = 60◦.

Now, we know that to every rotation there corresponds two spinors differing
only by a sign. Consequently, to every finite rotation group there corresponds a
spinor group with twice as many elements. In the present case the generator R
of the spinor group is related to the generator S of the cyclic group by S = R2.
Taking the negative square root of the relation S6 = (R2)6 = (R6)2 = 1, we get
the new relation

R6 = −1 . (6)

This is the presentation for the dicyclic group of order 12 generated by R.
Strictly speaking, we should include the relation (−1)2 = 1 in the presentation
of the group since it is not one of the group properties. However, this is taken
care of by the understanding that the group elements are spinors. Since the
dicyclic group presented by (6) is the spinor group of C6, let us denote it by 2C6.
The dicyclic group actually provides a more complete description of rotational
symmetries than the cyclic group, because as we have observed in Sec. 5–3, the
pair of spinors±R distinguish equivalent rotations of opposite senses. The cyclic
group does not assign a sense to rotations. This important fact is illustrated in
Fig. 2 and explained more fully below.
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Fig. 2. Illustrating the interpretation of the spinors ±R = ±ab =
a(±b) as equivalent rotations with opposite sense generated by
reflections with different senses.

We have seen how the rotational symmetries of a hexagon can be character-
ized by the single equation S6 = 1 or better by R6 = −1. However, a hexagon
has reflectional as well as rotational symmetries. From an examination of Fig.
1, it is evident that the hexagon is invariant under reflection along any diagonal

3



through a vertex or the midpoint of a side. For example, with a = x1, the
reflection

Ax = −a−1xa , (7)

is a symmetry of Fig. 1, as is the reflection

Bx = −b−1xb , (8)

where b is directed towards the midpoint of a side adjacent to the vertex, is
shown in Fig. 1. These reflections generate a symmetry group of the hexagon
which, for the time being, we denote by H6. This group is sometimes called the
“dihedral group” of order 12, but that name will be reserved for a geometrically
different group isomorphic to it. To avoid introducing a new name, let us be
content with the symbol H6. Now, to get on with the study of H6, note that
the product

BAx = (ab)−1x(ab) (9)

is a rotation; in fact, it is the rotation R which generates C6. Therefore, C6 is a
subgroup of H6. From this we can conclude that the operator equations

A2 = B2 = (AB)6 = 1 (10)

provide an abstract presentation of H6.
The spinor group 2H6 corresponding to H6 is generated by the vectors a

and b normalized to unity, Since R = ab must satisfy (6), the presentation of

6 distinct rotations
with “positive sense”
represented by

6 distinct rotations
with “negative sense”
represented by

1 = a2 = b2 −1 = (ab)6 = (ba)6

ab −ab = ab(ba)6 = (ba)5

(ab)2 −(ab)2 = (ba)4

(ab)3 −(ab)3 = (ba)3

(ab)4 −(ab)4 = (ba)2

(ab)5 −(ab)5 = ba

12 distinct directed reflections:

±a, ±aba,±ababa = ±a(ba)2 ,

±b, ±bab,±babab = ±b(ab)2 .

Table 1 Exhibiting the 24 distinct elements of the group 2H6.

4



2H6 is the set of relations

a2 = b2 = 1 , (11)

(ab)6 = −1 . (12)

According to (8), the two vectors ±b in 2H6 correspond to the single re-
flection B. Physically, however, it is possible to distinguish two distinct mirror
reflections in a given plane by imagining the plane surface silvered on one side
or the other. Thus, we have two distinct reflecting planes (or mirrors) with
opposite orientations distinguished by the signs on their normal vectors ±b.
An oriented reflection in one of these oriented (silvered) planes maintains the
physical distinction between an object and its reflected image. So the two ori-
ented reflections specified by ±b, describe the two possible placements of an
object on opposite sides of the reflecting plane. The (unoriented) reflection B
in (8) makes no distinction between objects and reflected images. The notion
of oriented reflection is consistent with the notion of oriented rotation. For the
products of oriented reflections designated by ±b with an oriented reflection
designated by the vector a will produce the spinors representing equivalent ro-
tations with opposite senses, as illustrated in Fig. 2. Thus, each element of 2H6

characterizes some oriented symmetry of a hexagon.
The group 2H6 is the multiplicative group generated by two vectors a, b with

the properties (11, 12). The 24 distinct elements in the group are exhibited in
Table 1. Note that the geometrical interpretation given to ab in Fig. 2 permits
the assignment of a definite sense to the unit spinor 1, as indicated in Table
1. So the spinor 1 = e

1
2 i0 represents a rotation of zero angle in the positive

sense, while the spinor −1 = e−iπ = e
1
2 i(−2π) represents a rotation of 2π with

the opposite sense.
Ordinarily, the group H6 is regarded as the symmetry group of a regular

hexagon. But we have seen that the corresponding spinor group 2H6 provides
a more subtle and complete characterization of the symmetries. Since the two
groups are so closely related, it matters little which one is regarded as the “true”
symmetry group of the hexagon. The spinor group, however, is easier to describe
and work with mathematically. Consequently, as we shall see, it will be easier
to generalize and relate to other symmetry groups.

Our results for the hexagon generalize immediately to any regular polygon
and enable us to find and describe all the fixed point symmetry groups of all two-
dimensional figures. We merely consider the multiplicative group 2Hp generated
by two unit vectors a and b related by the dicyclic condition

(ab)p = −1 , (13)

where p is a positive integer. The vectors a and b determine reflections (7, 8)
which generate the reflection group H. The dicyclic group 2Cp is a subgroup of
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2Hp generated by

ab = eiπ/p = e
1
2 i(2π/p) (14)

the spinor for a rotation through an angle of magnitude 2π/p. The correspond-
ing rotation generates the cyclic group Cp.

The spinor group 2Hp or, if you will, the reflection groupHp is the symmetry
group of a regular polygon with p sides. The group is well defined even for
p = 2, though a two sided polygon is hard to imagine. When p = 1, (14) implies
that b = −a, so 2H1 is the group consisting of the four elements ±a and ±1.
Thus, the group H1 is the group generated by a single reflection. The group
2H1 consists of the two elements ±1 while the corresponding rotation group C1
contains only the identity element 1. Either of these last two groups can be
regarded as the symmetry group of a figure with no symmetry at all.

A symmetry group with a fixed point is called a point group. The groups
Hp and Cp, for any positive integer p, are point groups in two dimensions. The
groups 2Hp and 2Cp are oriented point groups. The point groups of a few
simple 2-dimensional figures are given in Fig. 3. Besides Hp and Cp, there are
no other point groups in two dimensions. This can be proved by considering
the possibility of a group generated by three distinct vectors a, b, c in the same
plane. If they are to be generators of a symmetry group, then each pair of them
must be related by a dicyclic condition like (14). It can be proved, then that
one of the vectors can be generated from the other two, so two vectors suffice
to generate any symmetry group in two dimensions.

Although it takes us outside the domain of finite groups, it is worthwhile to
consider the limiting case p =∞. With increasing values of p, a regular p-sided
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Fig. 3. Symmetry groups of some 2-dimensional figures.
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polygon is an increasingly good approximation to a circle, which can be regarded
as the limit at p = ∞. Therefore, the complete orthogonal group O(2) in two
dimensions can be identified as the symmetry group of a circle, the rotation
subgroup of O+(2). It can be regarded as the symmetry group of an oriented
circle, as shown in Fig. 3. Note that a reflection will reverse the orientation, so
O(2) is the group of an unoriented circle. Note further, by examining Fig. 3,
that even for finite p, Cp is the group of an oriented polygon while Hp is the
group of an unoriented polygon.

Point groups in three dimensions

We have seen how every finite subgroup of the orthogonal group O(2) can be
generated by one or two reflections. One might guess, then, that no more than
three reflections are required to generate any finite subgroup of the orthogonal
group O(3). So we shall see!

If three unit vectors a, b, c are to be generators of a finite multiplicative
group, then each pair of vectors must generate a finite subgroup, so we know
from our preceding analysis that they must satisfy the dicycle conditions

(ab)p = (bc)q = (ac)r = −1 , (15)

where p, q, and r are positive integers. If r = 1, then (15) implies c = −a,
and p = q, so (15) reduces to a relation between two vectors, the case we have
already considered. Therefore, if the vectors a, b, and c are to be distinct, then
each of the integers p, q, and r must be greater than 1.

The three generators of rotations in (15) are not independent, for they are
related by the equation

(ab)(bc) = ac . (16)

We have seen in Sec. 2-4 that this equation relates the sides of a spherical triangle
with vertices a, b, and c. This relation restricts the simultaneous values allowed
for p, q, and r in (15). The precise nature of the restriction can be ascertained
by writing (15) in the equivalent form

ab = eic
′π/p,

bc = eia
′π/q, (17)

ac = eib
′π/r.

The unit vectors a′, b′, c′ are poles (or axes) of the rotations generated
by ab, bc, ac, so the spherical triangle they determine is aptly called thepolar
triangle of the generating triangle {a,b, c}. From (17) it follows that the interior
angles of the polar triangle are equal in magnitude to corresponding sides of the
generating triangle and they have the values π/p, π/q and π/r. Therefore,
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Oriented
Point
Group
Symbol Generators

Point
Group
Symbol

[pq ] a, b, c pq

[pq ] ab, c pq

[pq ] a, bc pq

[pq ] ab, bc pq

[pq ] abc pq

[p ] or 2Dp a, b p or Dp
[p ] or 2Hp ab pq or Hp

Table 2 Symbols for the double point (diorthogonal) groups
in three dimensions and their corresponding point (orthogonal)
groups. The groups generated by three unit vectors have the pre-
sentation

(ab)p = (bc)q = (ac)2 = −1 ,

with 5 ≥ p ≥ q ≥ 2. The groups generated by two unit vectors
have the presentation

(ab)p = −1 .

Of course, our notation admits confusion between p = 22 and pq =
22, but we will not be concerned with such large values for p.
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according to the “spherical excess formula” (established in Ex. 2-4.20), the area
∆′ of the polar triangle is given by

∆′ = π
(1
p

+
1
q

+
1
r
− 1
)
. (18)

This is the desired relation among p, q, and r in its most convenient form.
From (18) we can determine the permissible values of p, q, and r. Since the

area ∆′ must be positive, equation (18) gives us the inequality

1
p

+
1
q

+
1
r
> 1 . (19)

The integer solutions of this inequality are easily found by trial and error. Trying
p = q = r = 3, we see that there are no solutions with p > q > r > 2. So,
without loss of generality, we can take r = 2 so (19) reduces to

1
p

+
1
q
>

1
2
. (20)

Requiring p ≥ q, we see that any value of p is allowed if q = 2, and if q = 3, we
find that p = 3, 4 or 5. This exhausts the possibilities. It is not difficult to prove
that no new point groups with four or more generating vectors are possible. For
every subset of three vectors must generate one of the groups we have already
found, and it follows from this that if we have four generators, then one of them
can be generated from the other three.

All we need now is a suitable nomenclature to express our results in a com-
pact form. Since each of the multiplicative groups generated by three unit
vectors is distinguished by the values of p, q and r = 2 in the presentation
(15), each of these finite diorthogonal groups can be identified by the symbol
[pq ]. Let us use the simpler symbol pq for the corresponding orthogonal groups,
because they are more prominent in the literature of mathematics and physics.
The groups pq are usually called point groups by physicists, who usually refer
to the groups [pq ] as double point groups, though considering the geometrical
reason for the doubling, it might be better to call them oriented point groups.
The usual derivation of the double groups is far more complicated than the one
presented here. Consequently, the double groups are seldom mentioned except
in the most esoteric applications of group theory to physics. Of course, we
have seen that there is ample reason to regard the diorthogonal groups as more
fundamental than the orthogonal groups. Even so, we have learned that the
diorthogonal and orthogonal groups are so simply and intimately related that
we hardly need a special notation to distinguish them.

Without altering the group presentation (15), we get subgroups of [pq ] by
taking the various products of the vectors a, b, c as generators. To denote these
groups, let us introduce the notation p to indicate a generator ab satisfying the
relation (ab)p = −1. Accordingly, [p q ] denotes the dirotation group generated
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Table 3. The 32 crystal classes (point groups).
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by ab and bc, and p q denotes the corresponding rotation group. The notation
is explained further and the various groups it denotes are listed in Table 2.

Now that we have a compact notation, we list in Table 3 all the point groups
in three dimension, that is, all the finite subgroups of O(3). We begin by listing
the groups pq for the allowed values of p and q determined above. Then we apply
the “overbar notation” to generate a list of candidate subgroups p q , p q, pq ,
pq. Finally, we check the candidates to see if they are new symmetry groups.

The groups pq are said to be finite reflection groups, because they are gen-
erated by reflections. All the finite groups are reflection groups or subgroups
thereof. The groups pq generated by two pairs of reflections are finite rotation
groups. Table 3 shows that the only finite rotation groups are the cyclic groups
p = Cp, the dihedral groups p2 = Dp, the tetrahedral group 33 = T , the oc-
tahedral group 43 = O and the icosahedral group 53 = I. These are the only
finite groups with widely accepted names. The last three of them are symmetry
groups of the famous Platonic solids, the five regular solids discovered by the
ancient Greeks (Fig. 4). The tetrahedral group is the rotational symmetry group
of a tetrahedron. The octahedral group 43 is the rotational symmetry group of
both the (8-sided) octagon and the (6-sided) cube. The icosahedral group 53
is the symmetry group of both the (20-sided) icosahedron and the (12-sided)
dodecahedron. As can be seen by looking at Fig. 4, the notation 53 indicates
the fivefold symmetry at each vertex (face) and the threefold symmetry at each
face (vertex) of the icosahedron (dodecahedron). The notation 43 and 33 have
similar interpretations for the other regular solids. From the fact that there are
no other rotational symmetry groups besides those we have mentioned, it is not
difficulty to prove that there are no regular convex polyhedra besides the Pla-
tonic solids. There exist, however, some regular solids which are “starshaped”
and so not convex. The largest symmetry groups of the Platonic solids are actu-
ally the reflection groups 33, 43 and 53 rather than their rotational subgroups,
but this was not appreciated when names were handed out, so they are without
special names.

The cyclic and dihedral groups are symmetry groups for various prisms or
prismatic crystals rather than polyhedra. However, in physics they appear most
frequently as symmetry groups for molecules. We are now in position to see
that the dihedral group D6 = 62, rather than the cyclic group C6 = 6, is the
rotational symmetry group for the Benzene molecule (Fig. 1) in a space of three
dimensions rather than two. Furthermore, it is readily verified (Ex. 2) that the
rotation group D6 = 62 is isomorphic to the reflection group H6 = 6, and they
have identical effects on the planar Benzene molecule; nevertheless, they have
different geometrical effects on three dimensional objects. In three dimensions
the complete symmetry group of the Benzene molecule is the reflection group
D6h = 62, which is formed by using the generating vector c along with the
reflection generators a and b of H6 = 6, as illustrated in Fig. 1.

Besides the groups pq generated by reflections and the groups p q generated
by rotations, Table 3 lists “mixed groups” p q, pq and pq generated by com-
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Tetrahedron

Octahedron

IcosahedronDodecahedron

Cube

Fig. 4. The five regular (convex) polyhedra. A polyhedron is
regular is all its faces are identical regular polygons. Note that
an octagon can be formed from a cube (or vice versa) by joining
the midpoints of adjacent faces with line segments, that is, one
can be formed from the other by interchanging vertices and faces.
The dodecahedron and the icosahedron are similarly related. What
about the tetrahedron?
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Fig. 5. Generators a, b, c for the double point group [43] of
a cube or an octagon. Vertices a′, b′, c′ of the polar triangle (or
fundamental region) specify axes of threefold, twofold, and fourfold
symmetry, as indicated by the triangle, lense, and square symbols.
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binations of rotations and reflections. Some of the mixed groups are identical
to reflection groups. For example, the equivalence 43 = 43 means that a, b, c
generate the same group as ab, c; in other words, the group 43 generated by
three reflections can also be generated by one rotation and one reflection.

Some of the candidates for mixed groups must be rejected because they do
not satisfy the condition for a symmetry group. To see why, consider the rotary-
reflection group pq. The corresponding diorthogonal group [pq] has the same
generator abc. Since ab represents a rotation and c represents a reflection, the
product abc represents a combined rotation and reflection, that is, a rotary-
reflection. The quantity R = (abc)2 is an even spinor generating a dirotational
subgroup of [pq], so it must satisfy the dicyclic condition Rn = (abc)2n (for
some integer n) if [pq] is to be a symmetry group. This condition must be
evaluated separately for each group. For example, for the group [p2], the vector
c is orthogonal to both vectors a and b, hence abc = cab and

R = (abc)2 = (ab)2. (21)

But (ab)p = −1, so

Rp = (abc)2p = (ab)2p. (22)

Therefore, the dicyclic condition Rn = −1 can be met only if p = 2n, that
is, only if p is an even integer. Thus, we have proved that the group p2 is a
symmetry group only if p is even, as stated in Table 3. The same argument
proves that p2 is a symmetry group only for even p. In a similar way, it can be
proved that 33, 43 and 53 are not symmetry groups, but the algebra required is
a little trickier.

Our “geometric notation” for the finite groups is unconventional, so Table 3
relates it to the widely used Shoenflies notation to facilitate comparison with the
literature on crystallography and group theory. The rationale for the Schoen-
flies notation need not be explained here. However, it should be noted that
our geometric notation has the great advantage of enabling us to write down
immediately the generators and relations for any finite group by employing the
simple code in Table 2. Thus, for the group [43], the angle between generators
a and b is π/4, the angle between b and c is π/3, and the angle between a and
c is π/2. Figure 5 shows three such vectors in relation to a cube whose reflec-
tion group they generate. According to (17), the algebraic relations among the
generators are fully expressed by the equations

ab = eic
′π/4, (23)

bc = eia
′π/3, (24)

ac = eib
′π/2 = ib′ . (25)
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Fig. 6a. Fundamental regions for the reflection group 43 = O on
the surface of a cube, an octagon, or a sphere.

Fig. 6b. Fundamental regions for the group 53 = Ĩh.
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Fig. 6c. Fundamental regions for the group 33 = t̃d.

Fig. 6d. Fundamental regions for the groups 22 = D2 and 32 = D3.
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Fig. 6e. Fundamental regions for the group 2 = H2 and 3 = H3.

The poles a′, b′, c′ are also shown in Fig. 5, It should be evident from Fig.
5 that every reflection symmetry of the cube is generated by a vector directed
at the center of a face (like a) or at the midpoint of an edge (like b or c).
Furthermore, every one of these vectors is also the pole of a four-fold rotation
symmetry (like c′ or a) or of a two-fold rotation symmetry (like b′, b or c) but
not of a three-fold symmetry (like a′). Indeed, we see from Fig. 5 that b′ can
be obtained from c by a rotation generated by (ab)2 = eic

′π about the c′ axis,
so we can directly write down the relation

b′ = (ba)2c(ab)2 . (26)

Similarly, by a rotation about the a′ axis,

c′ = (cb)a(bc) = cbabc . (27)

This illustrates how algebraic relations in the group [43] can be written down
directly and interpreted by referring to some model of a cube like Fig. 5. A
three-dimensional physical model of a cube is even more helpful than a figure.

The polar triangle with vertices a′, b′, c′ determines a triangle on the sur-
face of a cube, shown as a shaded triangle in Fig. 5. This triangle is called a
fundamental region of the group 43 for the following reason. Notice that each
of the three generators a, b, c is perpendicular to one of the three sides of the
triangle, so a reflection by any one of the generators will transform the triangle
into an adjacent triangle of the same size and shape. By a series of such reflec-
tions the original triangle can be brought to a position covering any point on
the cube. In other words, the entire surface of the cube can be partitioned into
triangular fundamental regions, as shown in Fig. 6a, so that any operation of the
group 43 simply permutes the triangles. Fig. 6a shows an alternative partition
of the octahedron and the sphere into fundamental regions of the group 43. In
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a completely analogous way, the tetrahedron and the icosahedron (or dodeca-
hedron) can be partitioned into fundamental regions of the groups 33 and 53
respectively, as shown in Fig. 6b, c. The sphere can also be partitioned into
fundamental regions for the groups p2 and p, as illustrated in Fig. 6d, e, though
in the latter case the fundamental regions are “lunes” rather than triangles.

Given one fundamental region of a group, there is one and only one group
operation which transforms it to any one of the other fundamental regions. Con-
sequently, the order of a group is equal to the number of distinct fundamental
regions. Thus, from Fig. 6a we see that there are eight fundamental regions on
the face of a cube, so there are 6 × 8 = 48 elements in the group 43. To get
a general formula for the order of finite groups, it is better to consider funda-
mental regions on a unit sphere. Then the area of each fundamental region is
equal to the area of the polar triangle given by (18), so the order of the group
is obtained by dividing this into the area 4π of the sphere. For example, taking
r = 2 and q = 3 in (18), we find that the orders of the reflection groups p3 are
given by

4π
δ′

=
2p

6− p . (28)

This is twice the order of the rotation groups p3, because all rotations are
generated by pairs of reflections. The orders of the other finite groups and their
subgroups can be found in a similar way. The results are listed in Table 3.

The 32 Crystal Classes and 7 Crystal Systems

A crystal is a system of identical atoms or molecules located near the points of
a lattice. A 3-dimensional lattice is a descrete set of points generated by three
linearly independent vectors a1, a2, a3. Any tn in the lattice can be expressed
as a linear combination of the generators with integer coefficients, that is,

tn = n1a1 + n2a2 + n3a3 , (29)

where n1, n2, n3 are integers. Given the generating vectors, any set of integers
n = {n1, n2, n3} determines a lattice point, so the lattice is an infinite set of
points. Of course, any crystal consists of only a finite number of atoms, but
the number is so large that for the analysis of many crystal properties it can be
regarded as infinite without significant error. Our aim here is to classify crystals
according to the symmetries they possess. The symmetries of a crystal depend
only on the locations of its atoms and not on the physical nature of the atoms.
Therefore, the analysis of crystal symmetries reduces to the analysis of lattice
symmetries, a well-defined geometrical problem.

Like any finite object, the symmetry of a lattice is described by its symmetry
group, the complete group of isometries that leave it invariant. However, unlike
the group of a finite object, the symmetry group of a lattice includes translations
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as well as orthogonal transformations. Before considering translations, let us
determine the conditions for a lattice to be invariant under one of the point
groups.

Lattice calculations are greatly facilitated by introducing the reciprocal frame
{a∗k}. Reciprocal frames were introduced (with a different notation) and their
properties were analyzed in Ex. (2-3.11). Presently, all we need are the relations

a∗j · ak = δjk , (30)

for j, k = 1, 2, 3, which determine the reciprocal frame uniquely.
Now, any symmetry S of a lattice transforms lattice points ak (k = 1, 2, 3)

into new lattice points

sk = Sak =
∑
j

aj sjk , (31)

where the matrix elements

sjk = a∗j · sk = a∗j · (Sak) (32)

are all integers. Consequently, the trace of this matrix∑
k

skk =
∑
k

a∗k · (Sak) (33)

is also an integer. This puts a significant restriction on the possible symmetries
of a lattice. In particular, if R is a rotation symmetry generating a rotation
subgroup, then it satisfies a cyclic condition Rp = 1, and it rotates the lattice
through an angle θ = 2π/p. From Ex. (3.12), we know that

TrR =
∑
k

a∗k · (Rak) = 1 + 2 cos θ . (34)

This has integer values only if

cos θ = 0, ± 1
2 , ±1 , (35)

which has the solutions

θ = 0,
π

3
,
π

2
,

2π
3
, π,

4π
3
,

3π
2
,

5π
3
, 2π . (36)

Consequently, the order p of any cyclic subgroup of a lattice point group is
restricted to the values

p = 1, 2, 3, 4, 6 . (37)

This is known as the crystallographic restriction.
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Fig. 7. Subgroup relations among the 32 crystallagraphic point
groups. Dark lines connect groups in the same crystal system.
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The point groups satisfying crystallographic restriction are called crystallo-
graphic point groups. There are exactly 32 of them. They are listed in Table
4. Crystals are accordingly classified into 32 crystal classes, each one corre-
sponding to one of the point groups. Besides our geometric symbols for the
crystal classes (point groups) and the symbols of Schoenflies, Table 4 lists sym-
bols adopted in the International Tables of X-Ray Crystallography, an extensive
standard reference on the crystallographic groups.

It is conventional to subdivide the crystal classes into seven crystal systems
with the names given in Table 4. This subdivision corresponds to an arrange-
ment of the point groups into families of subgroups, as indicated in Fig. 7.
The largest group in each system is called the holohedry of the system. Rela-
tions of one system to another are described by the subgroup relations among
their holohedry, as shown in Fig. 8. From the symbols, it is easy to produce
a set of generators for each of the seven diholohedry (the spinor groups of the
holohedry). Figure 9 has sets of such generators arranged to show the simple
relations among them. Note that the orthogonal vectors a, c can be chosen to
be the same for each system, and there are three distinct choices for the remain-
ing vector b. Actually, from the generators for [43 | and [62] the generators of
all other crystallographic point groups can be generated, because all the groups
are subgroups of [43] or [62], as shown in Fig. 7.

We have determined all possible point symmetry groups for 3-dimensional
objects. There are, however, an infinite number of different objects with the same
symmetry group, for a symmetry group describes a relation among identical
parts of an object without saying anything about the nature of those parts.
Figure 10 shows a set of objects with symmetries of the 32 crystallographic
point groups.

The Space Groups

A set of linearly independent vectors a1, a2, a3 (and their negatives −a1, −a2,
−a3) generate a discrete group under addition, and each element can be associ-
ated with a lattice point designated by (29). We call this the translation group
of the lattice. It is an additive symmetry group of the corresponding lattice.
We have seen also that there are 32 point groups that may leave a lattice in-
variant. The complete symmetry group of a crystal is called its space group.
Each element of a space group can be written as an orthogonal transformation
combined with a translation, as represented by (1). Consequently, every space
group can be described as a point group combined with a translation group, and
we can determine all possible space groups by finding all possible combinations.
An enumeration of the space groups is of great interest because it characterizes
the structure of any regular crystal that might be found in nature. Our purpose
now is to see how this can be done.

The translation group of a crystal is an additive group generated by three
vectors a1, a2, a3, while the double point group is a multiplicative group gen-
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Fig. 9. Generators for the seven diholohedry. One of the generators
of [22] and [62] is a bivector ac, and the generator of [22] is the
unit trivector abc = i. All other generators are vectors.
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erated by at most three vectors a, b, c. Consequently, the space group can be
characterized by a set of relations among these two sets of generators. Indeed,
we can choose three linearly independent vectors from the two sets and write
the others in terms of them. Thus, every element of a space group can be ex-
pressed in terms of three vectors which generate translations by addition and
orthogonal transformations by multiplication.

Let the three generating vectors of a space group be a, b, c. The allowed
lengths and directions of these vectors are limited by the requirement that they
generate translations and that each one is the shortest translation vector with
its direction. The allowed directions are further limited by requiring that all
orthogonal transformations in the space group are generated by products of the
vectors. To express the dependence of an isometry on the generating vectors in
simple terms, it is convenient to extend our notation for (1) so that

{λR|t} = {R|t} , (38)

where λ is any nonzero scalar. Then, for example, we can write

{a|12a}x = −a−1xa + 1
2a = −âxâ + 1

2a = −â(x− 1
2a)â . (39)

The transformation {a| 12a} = {â| 12a} is an isometry composed of a reflection and
a translation, and it can be interpreted as a reflection in a plane with normal
â passing through the point 1

2a. Since {1|a} is assumed to be the shortest
translation with direction â, the translation {1| 12a} cannot belong to the group.
Nevertheless, the combined reflection-translation {a|12a} is an element of some
space groups, as we shall see.

We can determine all the space groups by taking each of the 32 point groups
in turn and considering the various ways it can be combined with translations
to produce a space group. Thus, the space groups fall into 32 classes determined
by the point groups. The number of space groups in each class is given in Table
4. There are 230 in all. This is too many to consider here, so let us turn to the
simpler problem of determining the space groups in two dimensions.

In two dimensions there are 17 space groups falling into 10 crystal classes.
Generators for each group are given in Table 5 along with a “Geometric symbol”
designed to describe the set of generators in a way to be explained. For reference
purposes, the table gives the “short symbols” for space groups adopted in the
International Tables for X-ray Crystallography. Finally, the table shows that
the space groups fall into 5 crystal systems distinguished by the angle between
generating vectors. Five lattice related to the 5 systems are shown in Fig. 11.

To see how every 2-dimensional space group can be described in terms of two
vectors, let us examine a representative sample of the groups in Table 5. The
reader is advised to refer continually to the table while the groups are discussed.
In the geometric symbol for each group, the class is indicated by the class (point
group) symbol devised earlier, and the translation generators are indicated by
letters a and b.
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Fig. 11. The five kinds of planar lattices.
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Table 5. The 17 planar space groups.

System
Space Group
  GeneratorsGeometric International

Space Group Symbol

1 ab p1
p2

p4
p4m
p4g

p3
p3m1

p6
p6m

p31m

pm

pmm
pmg
pgg
cmm

cm
pg

{1|   a}, {1|   b}Oblique

a

b

a

b

Rectangular

π/4

π/3

π/6

Square

a

Trigonal

–

2 ab

–

4 a
4 a
4 ag

–

6 a
6 a

–

3 a
3 a

–

1 ab

2 ab

2 abgg
2 abg

1 ab
1 abg

2 ab

––

3 ab

––

––

Hexagonal

a

b

b

+– +–
{1| a}, {1| b},

{1| b},

 {a   b | 0}<

{1|   a}, {1|   b}+– +–
+–{1| a},

{1| a},

{1|   b},  {a |   b}

 {a |   b},

 {a |   a},

–1
2

–1
2

–1
2

+–{1|    ( a    b)}, {a | 0}
{a | 0}, {b | 0}

{a | 0}, {b | 0}
{b | 0}

{1| b},{1| a},
 {a |   b}, {b |   a}–1

2

–1
2{1| b},{1| a},

{b | 0}

–1
2

{1| a},
{1| a},

{a | 0}, {b | 0}{1| a},

{1| a},

{ab | 0} 

{1| a}, {ab | 0} 

{a | 0}, {b | 0}{1| a},
{1| a}, {ab | 0} 

{1|    ( a + b)}, {a | 0}, {b | 0}–1
2

{1|    ( a + b)}, {a | 0}–1
2

a

b
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(1) In the group 1ab, the vectors a and b generate translations only.
Since the point group 1 contains only the identity operator, it does not imply
any relation between the directions of the translation vectors, so the lattice they
generate (Fig. 11) is said to be Oblique. The equation

{1|n1a + n2b} = {1|n1a}n1{1|n1b}n2 (40)

for integers n1 and n2 expresses an arbitrary element of the group in terms of
the generators.

(2) As indicated in the symbol 2, the group 2ab contains the 2-fold
rotation {a∧b|0} = {i|0} determined by the unit bivector i for the a∧b-plane.
Since

{i|0}{1|a}{i|0} = {1| − a} , (41)

the negatives of a and b need not be listed among the translation generators.
The symbol 1 indicates that the groups 1ab and 1ab contain the reflection

{a|0}. Now {a|0} is required to leave the lattice invariant, so it must transform
translation generators into translation generators. By considering the alterna-
tives, one can see that this can be done in two ways only. In the group 1ab, the
reflection is along the direction of one of the translations, so the translation can
be reversed by

{a|0}{1|a}{a|0} = {1| − a} . (42)

The other translation vector b must be orthogonal to a so that

{a|0}{1|b}{a|0} = {1|b} . (43)

Since a and b determine a rectangle, the lattice they generate is said to be
Rectangular.

The overbar in the symbol 1ab means that the translation group is generated
by 1

2 (a± b) rather than a and b. The equation

{a|0} 1
2 (a± b) = −1

2 (a± b) . (44)

shows that the set of translation generators is invariant under the reflection
{a|0}. Since the vectors 1

2 (a±b) determine a rhombus, the lattice they generate
is said to be Rhombic. As Fig. 11 shows, the rhombic lattice can be obtained
from the rectangular lattice by inserting a lattice point at the center of each
rectangle. For this reason it is sometimes called a Centered rectangular lattice.

In the group 1abg, the reflection indicated by 1 has a relation of the trans-
lations different from the one in 1ab or 1ab. The symbol g means that the
reflection is combined with a translation into a so-called glide reflection {a|12b}
with a · b = 0. Neither the reflection {a|0} nor the translation {1| 12b} belongs
to the symmetry group 1abg. Consequently, the point group 1 is not a subgroup
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of 1abg, as it is for 1ab or 1ab. For this reason, the symbol 1 is said to specify
the class rather than the point group of the spaces groups 1ab, 1ab and 1abg.

It should be easy now to interpret the symbols for the other space groups in
Table 5. But a few more comments may be worthwhile. The space groups in
the Rectangular and Oblique systems contain two arbitrary parameters, the so-
called “lattice constants” a = |a | and b = |b | which specify the magnitude of
the generating translations. This is indicated by the appearance of a and b in the
group symbols. On the other hand, a group like 4a has only one lattice constant
corresponding to a single generating translation. From this one translation all
other translations are obtained by operations of the point group.

For the group 4ag, Table 5 lists {a| 12a} instead of a glide-reflection as a
generator. The group contains the glide-reflection

{b|0}{a|12a}{b|0} = {a| − 1
2aba} , (45)

but {a| 12a} is preferred as a generator because it is a simpler function of the
generating vectors. Like 2abgg, the group 4ag contains two perpendicular glide
reflections, but only one of these is counted among the generators, because the
other can be obtained from it by a rotation.

It is important to distinguish between a crystal or a pattern and its lattice.
The crystal is a system of similar atoms and a pattern is a system of similar
figures located at the-points of a lattice. The space group is a symmetry group
of the crystal or pattern, while the lattice has its own symmetry group called a
lattice group. Although there are 17 different space groups in two dimensions,
there are only 5 different lattice groups for the 5 lattice types illustrated in
Fig. 11. It will be noted that two distinct lattice types, the Rectangular and
the Rhombic, are derived from the same system of generating vectors. On the
other hand, two distinct generator systems, the Hexagonal and the Trigonal,
determine the same lattice.

Patterns with symmetries of each of the 17 planar space groups are shown
in Fig. 12 and in Fig. 13.

In three dimensions rotations combine with translation to form screw-dis-
placements, as we have seen in Sec. 5-4. Aside from this, determination of the
230 3-dimensional space groups from the 32 crystal classes involves only consid-
eration like those required to determine the 17 2-dimensional space groups.
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Fig. 12. Regular systems of asymmetrical figures (triangles) cor-
responding to the 17 symmetry classes of plane patterns (Buerger).
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Figure 13. Reprinted with permission from Zeitschrift für Kristal-
lographic.
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Exercises

(1) Draw a labeled figure similar to Fig. 2 showing each of the 12 vectors in
Table 1.

(2) Prove that the reflection group Hp is isomorphic to the rotation group Dp
(3) Note that Table 2 does not specify any groups generated by ac and b.

Show that nothing has been lost thereby by identifying the groups in Table
3 generated by ac and b for each of the allowed values of p and q.

(4) What group is generated by

A =
1√
2

(1 + iσσ1)

B =
1
2

+
1
2
i(σσ1 + σσ2 + σσ3)

where {σσk} is a standard frame? Determine a complete set of relations
for the group by explicit calculation. List all the elements in the group.

(5) Determine relations for the group generated by

U = 1
2 (τ + σσ1σσ2 + τ−1σσ2σσ3)

V = 1
2 (τσσ1σσ2 + σσ2σσ3 + τ−1σσ3σσ1)

where τ = 1
2 (1 +

√
5) (the golden ratio!).

(6) From the generators a, b, c of [43], generate a set of generators for the
subgroup [33] and locate them on Fig. 5.

(7) Show that Eq. (18) gives the area of a fundamental region for the group
p = Hp, even though that region is not a spherical triangle. Deduce
therefrom the order of the group.

(8) How should Eq. (33) be interpreted for negative and zero values of n1 and
n2? Express {1|n1a + n2b}−1 in terms of the generators.

(9) Determine the lattice and generating vectors for each of the patterns in
Fig. 12 and 13.

Hints and Solutions

(4) A4 = B3 = (AB)2 = −1 ;

±2−
1
2 (1± iσσ1) , ±2−

1
2 (1± σσ2) , ±2−

1
2 (1± σσ3)

1
2 + 1

2 i(σσ1 ± σσ2 ± σσ3)

±2−
1
2 i(±σσ1 ± σσ2) , ±2−

1
2 i(±σσ2 ± σσ3) , ±2−

1
2 i(±σσ3 ± σσ1)

±iσσ1 ,±iσσ2 ,±iσσ3 ,±1 .

(6) b, c, babab

(8) {1|a}−1 = {1| − a}, {1|a}−2 = {1| − a}−2 = {1| − 2a}, {1|a}0 = {1|0}
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