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This is an introduction to spacetime algebra (STA) as a unified mathematical
language for physics. STA simplifies, extends and integrates the mathemat-
ical methods of classical, relativistic and quantum physics while elucidating
geometric structure of the theory. For example, STA provides a single, matrix-
free spinor method for rotational dynamics with applications from classical
rigid body mechanics to relativistic quantum theory – thus significantly reduc-
ing the mathematical and conceptual barriers between classical and quantum
mechanics. The entire physics curriculum can be unified and simplified by
adopting STA as the standard mathematical language. This would enable
early infusion of spacetime physics and give it the prominent place it deserves
in the curriculum.

I. Introduction

Einstein’s Special Theory of Relativity has been incorporated into the founda-
tions of theoretical physics for the better part of a century, yet it is still treated
as an add-on in the physics curriculum. Even today, a student can get a PhD in
physics with only a superficial knowledge of Relativity Theory and its import.
I submit that this sorry state of affairs is due, in large part, to serious language
barriers. The standard tensor algebra of relativity theory so differs from ordi-
nary vector algebra that it amounts to a new language for students to learn.
Moreover, it is not adequate for relativistic quantum theory, which introduces
a whole new language to deal with spin and quantization. The learning curve
for this language is so steep that only graduate students in theoretical physics
ordinarily attempt it. Thus, most physicists are effectively barred from a work-
ing knowledge of what is purported to be the most fundamental part of physics.
Little wonder that the majority is content with the nonrelativistic domain for
their research and teaching.

Beyond the daunting language barrier, tensor algebra has certain practical
limitations as a conceptual tool. Aside from its inability to deal with spinors,
standard tensor algebra is coordinate-based in an essential way, so much time
must be devoted to proving covariance of physical quantities and equations. This
reinforces reliance on coordinates in the physics curriculum, and it obscures the
fundamental role of geometric invariants in physics. We can do better – much
better!

This is the second in a series of articles introducing geometric algebra (GA)
as a unified mathematical language for physics. The first article1 (hereafter

1Published in Am. J. Phys, 71 (6), June 2003.
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referred to as GA1) shows how GA simplifies and unifies the mathematical
methods of classical physics and nonrelativistic quantum mechanics. This article
extends that unification to spacetime physics by developing a spacetime algebra
(STA) expressly designed for that purpose. A third article is planned to present
a profound and surprising extension of the language to incorporate General
Relativity.2

Although this article provides a self-contained introduction to STA, the seri-
ous reader is advised to study GA1 first for background and motivation. This
is not a primer on relativity and quantum mechanics. Readers are expected
to be familiar with those subjects so they can make their own comparisons of
standard approaches to the topics treated here. Topics have been selected to
showcase unique advantages of STA rather than for balanced coverage of every
subject. Nevertheless, topics are developed in sufficient detail to make STA
useful in instruction and research, at least after some practice and consultation
with the literature. The general objectives of each Section in the article can be
summarized as follows:

Section II presents the defining grammar for STA and introduces basic defi-
nitions and theorems needed for coordinate-free formulation and application of
spacetime geometry to physics.

Section III distinguishes between proper (invariant) and relative formulations
of physics. It introduces a simple algebraic device called the spacetime split
to relate proper descriptions of physical properties to relative descriptions with
respect to inertial systems. This provides a seamless connection of STA to the
GA of classical physics in GA1.

Section IV extends the treatment of rotations and reflections in GA1 to a
coordinate-free treatment of Lorentz transformations on spacetime. The method
is more versatile than standard methods, because it applies to spinors as well
as vectors, and it reduces the composition of Lorentz transformations to the
geometric product.

Lorentz invariant physics with STA obviates any need for the passive Lorentz
transformations between coordinate systems that are required by standard co-
variant formulations. Instead, Section V uses the spinor form of an active
Lorentz transformation to characterize change of state along world lines. This
generalizes the spinor treatment of classical rigid body mechanics in GA1, so it
articulates smoothly with nonrelativistic theory. It has the dual advantages of
simplifying solutions of the classical Lorentz force equation while generalizing
it to a classical model of an electron with spin that is shown to be a classical
limit of the Dirac equation in Section VIII.

Section VI shows how STA simplifies electromagnetic field theory, including
reduction of Maxwell’s equations to a single invertible field equation. It is most
notable that this simplification comes from recognizing that the famous “Dirac
operator” is just the STA derivative with respect to a spacetime point, so it is
as significant for Maxwell’s equation as for Dirac’s equation.

Section VII reformulates Dirac’s famous equation for the electron in terms
of the real STA, thereby showing that complex numbers are superfluous in
relativistic quantum theory. STA reveals geometric structure in the Dirac wave
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function that has long gone unrecognized in the standard matrix theory. That
structure is explicated and analyzed at length to ascertain implications for the
interpretation of quantum theory.

Section VIII discusses alternatives to the Copenhagen interpretation of quan-
tum mechanics that are motivated by geometric analysis of the Dirac theory.
The questions raised by this analysis may be more important than the conclu-
sions. My own view is that the Copenhagen interpretation cannot account for
the structure of the Dirac theory, but a fully satisfactory alternative remains to
be found.

Finally, Section IX outlines how STA can streamline the physics curriculum
to give the powerful ideas of relativistic field theory and quantum mechanics
roles that are commensurate with their importance.

II. Spacetime Algebra

The standard model for spacetime is a real 4D Minkowski vector space M4 called
Minkowski spacetime or (by suppressing the distinction between the model and
the physical reality it is supposed to represent) simply spacetime. With vector
addition and scalar multiplication taken for granted, we impose the geometry
of spacetime on M4 by defining the geometric product uv for vectors u, v, w by
the following rules:

(uv)w = u(vw) , associative (1)
u(v + w) = uv + uw , left distributive (2)
(v + w)u = vu + wu , right distributive (3)

v2 = εv| v |2 , contraction (4)

where εv is the signature of v and the magnitude | v | is a real positive scalar. As
usual in spacetime physics, we say that v is timelike if its signature is positive
(εv = 1), spacelike if (εv = −1), or lightlike if | v | = 0, which is equivalent to
null signature (εv = 0).

It should be noted that these are the same rules defining the “classical ge-
ometric algebra” in GA1, except for the signature in the contraction rule (4)
that allows vectors to have negative or null square. (This modification was the
great innovation of Minkowski that we honor by invoking his name!)

Spacetime vectors are denoted by italic letters to distinguish them from the
3D vectors denoted by boldface letters in GA1. This convention is especially
helpful when we formulate relations between the two kinds of vector in Section
III.

By successive multiplications and additions, the vectors of M4 generate a
geometric algebra G4 = G(M4) called spacetime algebra (STA). As usual in a
geometric algebra, the elements of G4 are called multivectors. The above rules
defining the geometric product are the basic grammar rules of STA.

In reviewing its manifold applications to physics, one can see that STA derives
astounding power and versatility from
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• the simplicity of its grammar,
• the geometric meaning of multiplication,
• the way geometry links the algebra to the physical world.
As we have seen before, the geometric product uv can be decomposed into a

symmetric inner product

u · v = 1
2 (uv + vu) = v · u, (5)

and an antisymmetric outer product

u ∧ v = 1
2 (uv − vu) = −v ∧ u. (6)

so that

uv = u · v + u ∧ v . (7)

To facilitate coordinate-free manipulations in STA, it is useful to generalize
the inner and outer products of vectors to arbitrary multivectors. We define the
outer product along with the notion of k-vector iteratively as follows: Scalars are
defined to be 0-vectors, vectors are 1-vectors, and bivectors, such as u∧v, are 2-
vectors. For a given k-vector K, the integer k is called the step (or grade) of K.
For k ≥ 1, the outer product of a vector v with a k-vector K is a (k + 1)-vector
defined in terms of the geometric product by

v ∧ K = 1
2 (vK + (−1)kKv) = (−1)kK ∧ v . (8)

The corresponding inner product is defined by

v · K = 1
2 (vK + (−1)k+1Kv) = (−1)k+1K · v , (9)

and it can be proved that the result is a (k − 1)-vector. Adding (8) and (9) we
obtain

vK = v · K + v ∧ K , (10)

which obviously generalizes (7). The important thing about (10), is that it
decomposes vK into (k − 1)-vector and (k + 1)-vector parts.

A basis for STA can be generated by a standard frame {γµ; 0, 1, 2, 3} of
orthonormal vectors, with timelike vector γ0 in the forward light cone and com-
ponents gµν of the usual metric tensor given by

gµν = γµ · γν = 1
2 (γµγν + γνγµ) . (11)

(We use c = 1 so spacelike and timelike intervals are measured in the same
unit.) The γµ determine a unique righthanded unit pseudoscalar

i = γ0γ1γ2γ3 = γ0 ∧ γ1 ∧ γ2 ∧ γ3 . (12)

It follows that

i2 = −1 , and γµi = −iγµ. (13)
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Thus, i is a geometrical
√
−1, but it anticommutes with all spacetime vectors.

By forming all distinct products of the γµ we obtain a complete basis for the
STA G4 consisting of the 24 = 16 linearly independent elements

1, γµ, γµ ∧ γν , γµi, i . (14)

To facilitate algebraic manipulations it is convenient to introduce the recip-
rocal frame {γµ} defined by the equations

γµ = gµνγν or γµ · γν = δν
µ . (15)

(summation convention in force!) Now, any multivector can be expressed as a
linear combination of the basis elements (14). For example, a bivector F has
the expansion

F = 1
2Fµνγµ ∧ γν , (16)

with its “scalar components” Fµν given by

Fµν = γµ · F · γν = γν · (γµ · F ) = (γν ∧ γµ) · F . (17)

Note that the two inner products in the second form can be performed in either
order, so a parenthesis is not needed.

The entire spacetime algebra is obtained by taking linear combinations of
basis k-vectors in (14).

A generic element M of the STA, called a multivector, can therefore be written
in the expanded form

M = α + a + F + bi + βi , (18)

where α and β are scalars, a and b are vectors, and F is a bivector. This is a
decomposition of M into its k-vector parts, with k = 0, 1, 2, 3, 4, as is expressed
more explicitly by putting (18) in the form

M =
4∑

k=0

M(k), (19)

where the subscript (k) means “k-vector part.” Of course, M(0) = α, M(1) = a,
M(2) = F , M(3) = bi, M(4) = βi. Alternative notations include MS = 〈M〉 =
M(0) for the scalar part of a multivector. The scalar part of a product behaves
much like the “trace” in matrix algebra. For example, we have the very useful
theorem 〈MN〉 = 〈NM〉 for arbitrary M and N .

Computations are also facilitated by the operation of reversion, the name
indicating reversal in the order of geometric products. For M in the expanded
form (18) the reverse M̃ can be defined by

M̃ = α + a − F − bi + βi . (20)

Note, in particular, the effect of reversion on the various k-vector parts.

α̃ = α, ã = a, F̃ = −F, ĩ = i . (21)
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It is not difficult to prove that

(MN)˜ = ÑM̃ , (22)

for arbitrary M and N . For example, in (20) we have (bi)˜ = ib = −bi, where
the last sign follows from (13).

A positive definite magnitude |M | for any multivector M can now be defined
by

|M |2 = | 〈MM̃ 〉 | . (23)

Any multivector M can be decomposed into the sum of an even part M+ and
an odd part M− defined in terms of the expanded form (18) by

M+ = α + F + βi , (24)

M− = a + bi , (25)

or, equivalently, by

M± = 1
2 (M ∓ iMi) . (26)

The set {M+} of all even multivectors forms an important subalgebra of STA
called the even subalgebra.

If ψ is an even multivector, then ψψ̃ is also even, but its bivector part must
vanish according to (20), since (ψψ̃)˜ = ψψ̃. Therefore, ψψ̃ has only scalar and
pseudoscalar parts, as expressed by writing

ψψ̃ = ρeiβ = ρ(cos β + i sin β) , (27)

where ρ ≥ 0 and β are scalars. If ρ �= 0 we can derive from ψ an even multivector
R = ψ(ψψ̃)−

1
2 satisfying

RR̃ = R̃R = 1 . (28)

Then ψ can be put in the canonical form

ψ = (ρeiβ)
1
2 R (29)

We shall see that this invariant decomposition has a fundamental physical sig-
nificance in the Dirac Theory.

An important special case of the decomposition (29) is its application to a
bivector F , for which it is convenient to replace β/2 by β + π/2 and write
f = ρ

1
2 Ri. Thus, for any bivector F that is not null (F 2 �= 0) we have the

invariant canonical form

F = feiβ = f(cos β + i sin β) , (30)

where f2 = −ff̃ = | f |2, so f is said to be a timelike bivector with magnitude
| f |. Similarly, the dual if is said to be a spacelike bivector, since (if)2 = −| f |2.
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Thus the right side of (30) is the unique decomposition of F into a sum of
mutually commuting timelike and spacelike parts.

When F 2 = 0, F is said to be a lightlike bivector, and it can still be written
in the form (30) with

f = k ∧ e = ke , (31)

where k is a null vector and e is a spacelike vector orthogonal to k. In this
case, the decomposition is not unique, and the exponential factor can always be
absorbed in the definition of f .

To extend spacetime algebra into a complete spacetime calculus, suitable def-
initions for derivatives and integrals are required. Though that can be done in a
completely coordinate-free way,6 it is more expedient here to exploit one’s prior
knowledge about coordinates.

For each spacetime point x a standard frame {γµ} determines a set of “rect-
angular coordinates” {xµ} given by

xµ = γµ · x and x = xµγµ . (32)

In terms of these coordinates the derivative with respect to a spacetime point
x is an operator � ≡ ∂x that can be defined by

� = γµ∂µ, (33)

where ∂µ is given by

∂µ =
∂

∂xµ
= γµ ·� . (34)

The square of � is the usual d’Alembertian

�2
= gµν∂µ∂ν where gµν = γµ · γν . (35)

The matrix representation of the vector derivative � can be recognized as the
socalled “Dirac operator,” originally discovered by Dirac by seeking a “square
root” of the d’Alembertian (35) in order to find a first order “relativistically
invariant” wave equation for the electron. In STA however, where the γµ are
vectors rather than matrices, it is clear that � is a vector operator; indeed, it
provides an appropriate definition for the derivative with respect to any space-
time vector variable.

Contrary to the impression given by conventional accounts of relativistic quan-
tum theory, the operator � is not specially adapted to spin- 1

2 wave equations.
It is equally apt for electromagnetic field equations, as seen in Section VI.

This is a good point to describe the relation of STA to the standard Dirac
algebra. The Dirac matrices are representations of the vectors γµ in STA by
4 × 4 matrices, and to emphasize this correspondence the vectors here are de-
noted with the same symbols γµ ordinarily used to represent the Dirac matrices.
In view of what we know about STA, this correspondence reveals the physi-
cal significance of the Dirac matrices, appearing so mysteriously in relativistic
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quantum mechanics: The Dirac matrices are no more and no less than matrix
representations of an orthonormal frame of spacetime vectors and thereby they
characterize spacetime geometry. But how can this be? Dirac never said any
such thing! And physicists today regard the set {γµ} as a single vector with
matrices for components. Nevertheless, their practice shows that the “frame
interpretation” is the correct one, though we shall see later that the “compo-
nent interpretation” is actually equivalent to it in certain circumstances. The
correct interpretation was actually inherent in Dirac’s argument to derive the
matrices in the first place: First he put the γµ in one-to-one correspondence
with orthogonal directions in spacetime by indexing them. Second, he related
the γµ to the metric tensor by imposing the “peculiar condition” (11) on the
matrices for formal algebraic reasons. But we see in (11) that this condition
has a clear geometric meaning in STA as the inner product of vectors in the
frame. Finally, Dirac introduced associativity automatically by employing ma-
trix algebra, without realizing that it has a geometric meaning in this context.
If indeed the physical significance of the Dirac matrices derives entirely from
their interpretation as a frame of vectors, then their specific matrix properties
must be irrelevant to physics. That is proved in Section VII by dispensing with
matrices altogether and formulating the Dirac theory entirely in terms of STA.

In relativistic quantum mechanics one often encounters the notation γ · p =
γµpµ, where γ is regarded formally as a vector with matrices γµ as components
and p is an ordinary vector. Likewise, the Dirac operator is denoted by γ · ∂ =
γµ∂µ without recognizing it as a generic vector derivative with components ∂µ.
The notation γ · p has the same deficiencies as the notation σ · a criticized in
GA1. In STA it is inconsistent with identification of {γµ} as an orthonormal
frame.

III. Proper Physics and Spacetime Splits

STA makes it possible to formulate and analyze conventional relativistic physics
in invariant form without reference to a coordinate system. To emphasize the
distinctive features of this formulation, I like to call it “proper physics.” From the
proper point of view, the term “relativistic mechanics” is a misnomer, because
the theory is less rather than more relativistic than the so-called “nonrelativis-
tic” mechanics of Newton. The equations describing a particle in Newtonian
mechanics depend on the motion of the particle relative to some observer; in
Einstein’s mechanics they do not. Einstein originally formulated his mechanics
in terms of “relative variables” (such as the position and velocity of a particle
relative to a given observer), but he eliminated dependence of the equations on
the observer’s motion by the “relativity postulate,” which requires that the form
of the equations be invariant under a change of relative variables from those of
one inertial observer to those of another. Despite the taint of misnomer, the
terms “relativistic” and “nonrelativistic” are so ensconced in the literature that
it is awkward to avoid them.

Minkowski’s covariant formulation of Einstein’s theory replaced the explicit

8



use of variables relative to inertial observers by components relative to an ar-
bitrary coordinate system for spacetime. The “proper formulation” given here
takes another step to move from covariance to invariance by relating particle
motion directly to Minkowski’s “absolute spacetime” without reference to any
coordinate system. Minkowski had the great idea of interpreting Einstein’s the-
ory of relativity as a prescription for fusing space and time into a single entity
“spacetime”.5 The straightforward algebraic characterization of “Minkowski
spacetime” by spacetime algebra makes a proper formulation of physics possi-
ble.

The history or world line of a material particle is a timelike curve x = x(τ) in
spacetime. Particle conservation is expressed by assuming that the function x(τ)
is single-valued and continuous except possibly at discrete points where particle
creation and/or annihilation occurs. Only differentiable particle histories are
considered here, and τ always refers to the proper time (arc length) of a particle
history. After a unit of length (say centimeters) has been chosen, the physical
significance of the spacetime metric is fixed by the assumption that the proper
time of a material particle is equal to the time (in centimeters) recorded on a
(perhaps hypothetical) clock traveling with the particle.

The unit tangent v = v(τ) = dx/dτ ≡ x
. of a particle history will be called

the (proper) velocity of the particle. By the definition of proper time, we have
dτ = | dx | = | (dx)2 | 12 , and

v2 = 1. (36)

The term “proper velocity,” is preferable to the alternative terms “world veloc-
ity,” “invariant velocity,” and “four velocity.” The adjective “proper” is used to
emphasize that the velocity v describes an intrinsic property of the particle, in-
dependent of any observer or coordinate system. The adjective “absolute” would
do the same, but it may not be free from undesirable connotations. Moreover,
the word “proper” is shorter and has already been used in a similar sense in
the terms “proper mass” and “proper time.” The adjective “invariant” is inap-
propriate, because no coordinates or transformation group has been introduced.
The velocity should not be called a “4-vector,” because that term means pseu-
doscalar in STA; besides, there is no need to refer to four components of the
velocity.

Though STA enables us to describe physical processes by proper equations,
observations and measurements are often expressed in terms of variables tied
to a particular inertial system, so we need to know how to reformulate proper
equations in terms of those variables. STA provides a very simple way to do
that called a spacetime split.

In STA a given inertial system is completely characterized by a single future-
pointing, timelike unit vector. Refer to the inertial system characterized by the
vector γ0 as the γ0-system. The vector γ0 is tangent to the world line of an
observer at rest in the γ0-system, so it is convenient to use γ0 as a name for
the observer. The observer γ0 is represented algebraically in STA in the same
way as any other physical system, and the spacetime split amounts to no more
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than comparing the motion of a given system (the observer) to other physical
systems. Indeed, the world line of an inertial observer is the straight world
line of a free particle, so inertial frames can be characterized by free particles
without the anthropomorphic reference to observers.

An inertial observer γ0 determines a unique mapping of spacetime into the
even subalgebra of STA. For each spacetime point (or event) x the mapping is
specified by

xγ0 = t + x , (37)

where

t = x · γ0 (38)

and

x = x ∧ γ0 . (39)

This defines the γ0-split of spacetime. Equation (38) assigns a unique time t
to every event x; indeed, (38) is the equation for a one-parameter family of
spacelike hyperplanes with normal γ0.

Equation (39) assigns to each event x a unique position vector x in the γ0

system. Thus, to each event x the single equation (37) assigns a unique time
and position in the γ0-system. Note that the reverse of (37) is

γ0x = γ0 · x + γ0 ∧ x = t − x , (40)

so, since γ2
0 = 1,

x2 = (xγ0)(γ0x) = (t − x)(t + x) = t2 − x2 . (41)

The form and value of this equation are independent of the chosen observer; thus
we have proved that the expression t2 − x2 is Lorentz invariant without even
mentioning a Lorentz transformation. Thus, the term “Lorentz invariant” can
be construed as meaning “independent of a chosen spacetime split.” In contrast
to (41), equation (37) is not Lorentz invariant; indeed, for a different observer
γ′
0 we get the split

xγ′
0 = t′ + x′ . (42)

Mostly we shall work with manifestly Lorentz invariant equations, which are
independent of even an indirect reference to an inertial system.

The set of all position vectors (39) is the 3-dimensional position space of the
observer γ0, which we designate by P3 = P3(γ0) = {x = x ∧ γ0}. Note that P3

consists of all bivectors in STA with γ0 as a common factor. In agreement with
common parlance, we refer to the elements of P3 as vectors. Thus, we have two
kinds of vectors, those in M4 and those in P3. To distinguish between them,
we refer to elements of M4 as proper vectors and to elements of P3 as relative
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vectors (relative to γ0, of course!). To keep the discussion clear, relative vectors
are designated in boldface, while proper vectors are not.

By the geometric product and sum, the vectors in P3 generate the entire even
subalgebra of STA as the geometric algebra G3 = G(P3) employed for classical
physics in GA1. This is made obvious by constructing a basis. Corresponding
to a standard basis {γµ} for M4, we have a standard basis {σk; k = 1, 2, 3} for
P3, where

σk = γk ∧ γ0 = γkγ0 . (43)

These generate a basis for the relative bivectors:

σi ∧ σj = σiσj = iσk = γjγi , (44)

where the allowed values of the indices {i, j, k} are cyclic permutations of 1,2,3,
and the wedge is the outer product of relative vectors (not to be confused with
the outer product of proper vectors as in (43)). The right sides of (43) and (44)
show how the bivectors for spacetime are split into vectors and bivectors for P3.
Comparison with (14) shows that the σk generate the entire even subalgebra,
which can therefore be identified with G3 = G(P3). Remarkably, the right-
handed pseudoscalar for P3 is identical to that for M4, that is,

σ1σ2σ3 = i = γ0γ1γ2γ3 . (45)

To be consistent with the operation of reversion defined in GA1 for the algebra
G3 we require

σ†
k = σk and (σiσj)† = σjσi . (46)

This can be extended to the entire STA by defining

M† ≡ γ0M̃γ0 (47)

for an arbitrary multivector M . The explicit appearance of the timelike vector
γ0 here shows the dependence of M† on a particular spacetime split. The
definitions in this paragraph guarantee smooth articulation of proper physics
with physical descriptions relative to inertial frames.

Now let us rapidly survey the spacetime splits of some important physical
quantities. Let x = x(τ) be the history of a particle with proper time τ and
proper velocity v = dx/dτ . The spacetime split of v is obtained by differentiating
(37); whence

vγ0 = v0(1 + v) , (48)

where

v0 = v · γ0 =
dt

dτ
=

(
1 − v2

)− 1
2 (49)
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is the “time dilation” factor, and

v =
dx
dt

=
dτ

dt

dx
dτ

=
v ∧ γ0

v · γ0
(50)

is the relative velocity in the γ0-system. The last equality in (49) was obtained
from

1 = v2 = (vγ0)(γ0v) = v0(1 + v)v0(1 − v) = v2
0(1 − v2) . (51)

Let p be the proper momentum (i.e., energy-momentum vector) of a particle.
The spacetime split of p into energy (or relative mass) E and relative momentum
p is given by

pγ0 = E + p , (52)

where

E = p · γ0 and p = p ∧ γ0 . (53)

Of course

p2 = (E + p)(E − p) = E2 − p2 = m2 , (54)

where m is the proper mass of the particle.
The proper angular momentum of a particle relates its proper momentum p

to its location at a spacetime point x. Performing the splits as before, we find

px = (E + p)(t − x) = Et + pt − Ex − px . (55)

The scalar part of this gives the familiar split

p · x = Et − p · x , (56)

so often employed in the phase of a wave function. The bivector part gives us
the proper angular momentum

p ∧ x = pt − Ex + i(x × p) , (57)

where, as explained in GA1, x × p is the standard vector cross product.
An electromagnetic field is a bivector-valued function F = F (x) on spacetime.

An observer γ0 splits it into an electric (relative vector) part E and, a magnetic
(relative bivector) part iB; thus

F = E + iB , (58)

where

E = (F · γ0)γ0 = 1
2 (F + F †) (59)

is the part of F that anticommutes with γ0, and

iB = (F ∧ γ0)γ0 = 1
2 (F − F †) (60)

is the part that commutes. Also, in accordance with (47), F † = E − iB. Note
that the split of the electromagnetic field in (58) corresponds exactly to the split
of the angular momentum (57) into relative vector and bivector parts.

A different kind of spacetime split is most appropriate for Lorentz transfor-
mations, as explained in the next Section.
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IV. Lorentz Transformations

Orthogonal transformations on spacetime are called Lorentz transformations.
With due attention to the indefinite signature of spacetime (11), geometric al-
gebra enables us to treat Lorentz transformations by the same coordinate-free
methods used in GA1 for 3D rotations and reflections. Again, the method has
the great advantage of reducing the composition of transformations to simple
versor multiplication. The method is developed here in complete generality to
include space and time inversion, but the emphasis is on rotors and rotations as
a foundation for classical spinor mechanics in the next Section and subsequent
connection to relativistic quantum mechanics in Section VIII.

The main theorem is that any Lorentz transformation of a spacetime vector
a can be expressed in the canonical form

La = εLLaL−1, (61)

where εL = 1 if versor L is an even multivector and εL = −1 if L is odd. The
condition

LL−1 = 1 (62)

allows L to have any nonzero magnitude, but normalization to |L | = 1 is often
convenient. The Lorentz transformation L is said to be proper if εL = 1, and
improper if εL = −1. It is said to be orthochronous if, for any timelike vector v,

v · L(v) > 0 . (63)

A proper, orthochronous Lorentz transformation is called a Lorentz rotation (or
a restricted Lorentz transformation). For a Lorentz rotation R the canonical
form can be written

R(a) = RaR̃ , (64)

where the even multivector R is called a rotor and is normalized by the condition

RR̃ = 1 . (65)

The rotors form a multiplicative group called the rotor group, which is a double-
valued representation of the Lorentz rotation group (also called the restricted
Lorentz group).

As in the 3D case, the canonical form (61) simplifies the whole treatment of
Lorentz transformations. In particular, its main advantage is that it reduces
the composition law for Lorentz transformations,

L2 L1 = L3 (66)

to the versor product

L2 L1 = L3. (67)
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It follows from the rotor form (64), that, for any vectors a and b,

(Ra)(Rb) = RabR̃ = R(ab). (68)

Thus, Lorentz rotations preserve the geometric product. This implies that the
Lorentz rotation (64) can be extended to any multivector M as

RM = RMR̃. (69)

The most elementary kind of Lorentz transformation is a reflection n by a
(non-null) vector n, according to

n(a) = −nan−1 . (70)

This is a reflection with respect to a hyperplane with normal n. Even if n is
normalized to |n | = 1, if it is spacelike we need n−1 = −n in (70) to account
for its negative signature. A reflection

v(a) = −vav (71)

with respect to a timelike vector v = v−1 is called a time reflection. Let
n1, n2, n3 be spacelike vectors that compose the trivector

n3n2n1 = iv . (72)

A space inversion vs can then be defined as the composite of reflections with
respect to these three vectors, so it can be written

vs(a) = n3n2n1an1n2n3 = ivavi = vav . (73)

Note the difference in sign between the right sides of (71) and (73). The com-
posite of the time reflection (71) with the space inversion (73) is the spacetime
inversion

vst(a) = vsv(a) = iai−1 = −a , (74)

which is represented by the pseudoscalar i. Note that spacetime inversion is
proper but not orthochronous, so it is not a rotation despite the fact that i is
even.

Two basic types of Lorentz rotation can be obtained from the product of two
reflections, namely timelike rotations (or boosts) and spacelike rotations. For a
boost

L(a) = LaL̃ , (75)

the rotor L can be factored into a product

L = v2v1 (76)
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of two unit timelike vectors v1 and v2. The boost is a rotation in the timelike
plane containing v1 and v2. The factorization (76) is not unique. Indeed, for a
given L any timelike vector in the plane can be chosen as v1, and v2 can then
be computed from (76). Similarly, for a spacelike rotation

U(a) = UaŨ, (77)

the rotor U can be factored into a product

U = n2n1 (78)

of two unit spacelike vectors in the spacelike plane of the rotation. Note that
the product, say n2v1, of a spacelike vector with a timelike vector is not a
rotor, because the corresponding Lorentz transformation is not orthochronous.
Likewise, the pseudoscalar i is not a rotor, even though it can be expressed as
the product of two bivectors, for it does not satisfy the rotor condition RR̃ = 1.

The Lorentz rotation (64) can be applied to a standard frame {γµ}, trans-
forming it into a new frame of vectors {eµ} given by

eµ = RγµR̃ . (79)

A spacetime rotor split of this Lorentz rotation is accomplished by a split of the
rotor R into the product

R = LU , (80)

where U† = γ0Ũγ0 = Ũ or

Uγ0Ũ = γ0 (81)

and L† = γ0L̃γ0 = L or

γ0L̃ = Lγ0 . (82)

This determines a split of (79) into a sequence of two Lorentz rotations deter-
mined by U and L respectively; thus,

eµ = RγµR̃ = L(UγµŨ)L̃ . (83)

In particular, by (81) and (82),

e0 = Rγ0R̃ = Lγ0L̃ = L2γ0 . (84)

Hence,

L2 = e0γ0 . (85)

This determines L uniquely in terms of the timelike vectors e0 and γ0, which,
in turn, uniquely determines the split (80) of R, since U can be computed from
U = L̃R.
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It is essential to note that the “spacetime rotor split” (80) is quite different
from the “spacetime split” introduced in the preceding section, for example in
(58). The terminology is motivated by the expression of rotors U and L in terms
of relative vectors, to which we now turn.

Equation (81) for variable U defines the “little group” of Lorentz rotations
that leave γ0 invariant; This is the group of “spatial rotations” in the γ0-system.
Each such rotation takes a frame of proper vectors γk (for k = 1, 2, 3) into a new
frame of vectors UγkŨ in the γ0-system. Multiplication by γ0 expresses this as
a rotation of relative vectors σk = γkγ0 into relative vectors ek; thus, we get

ek = UσkU† = UσkŨ , (86)

in exact agreement with the equation for 3D rotations in GA1.
Equation (84) can be solved for L, in particular, for the case where e0 = v is

the proper velocity of a particle of mass m. Then (48) enables us to write (85)
in the alternative forms

L2 = vγ0 =
pγ0

m
=

E + p
m

, (87)

It is easily verified that this has the solution

L = (vγ0)
1
2 =

1 + vγ0[
2(1 + v · γ0)

] 1
2

=
m + pγ0[

2m(m + p · γ0)
] 1

2
=

m + E + p[
2m(m + E)

] 1
2

.

(88)

This displays L as a boost of a particle from rest in the γ0-system to a relative
momentum p.

Generalizing the treatment of rotating frames in GA1, the Lorentz rotation
of a frame (79) can be related to the standard matrix form by writing

eµ = RγµR̃ = αν
µγν . (89)

As in GA1, this can be solved for the matrix elements

αν
µ = eµ · γν = (γνRγµR̃)(0). (90)

Or it can be solved for the rotor,7 with the result

R = ±(AÃ)−
1
2 A, (91)

where

A ≡ eµγµ = αν
µγνγµ (92)

Equation (89) can be used to describe a change of coordinate frames.
In the tensorial approach to Lorentz rotations, the coordinates xµ = γµ · x of

a point x transform according to

xµ → x′µ = αµ
νxν , with αµ

ναν
λ = δµ

λ (93)
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as the orthogonality condition on the transformation. This can be interpreted
either as a passive or an active transformation. In the passive case, it is accom-
panied by a (usually implicit) transformation of coordinate frame:

γµ → γ′
µ = αλ

µγλ, (94)

so that each spacetime point x = xµγµ = x′µγ′
µ is left unchanged.

In the active case, each spacetime point x = xµγµ is mapped to a new space-
time point

x′ = x′µγµ = xµγ′
µ = RxR̃, (95)

where the last form was obtained by identifying γ′
µ with eµ in (89). This shows

that STA enables us to dispense with coordinates entirely in the treatment of
Lorentz transformations. Consequently, we deal with active Lorentz transfor-
mations only in the coordinate-free form (64) or (61), and we dispense with
passive transformations entirely.

If all this seems rather obvious, just turn to any textbook on relativistic
quantum theory,8 where the γµ are matrices and (89) is introduced as a change
in matrix representation to prove relativistic invariance of the “Dirac operator”
γµ∂µ = γ′µ∂′

µ. In STA this is recognized as a passive Lorentz transformation,
so it is superfluous. Consequently, this aspect of Lorentz invariance need not be
mentioned in our treatment of the Dirac equation in Section VII.

V. Spinor Particle Mechanics

Now we are prepared to exploit the unique advantages of STA with a spinor for-
mulation of relativistic (or proper) mechanics. This approach has three major
benefits. First, it articulates perfectly with the rotor formulation of nonrelativis-
tic rigid body mechanics in GA1. Second, it articulates perfectly with Dirac’s
quantum theory of the electron, providing it with an informative and useful
classical limit that includes a natural classical explanation for the gyromagnetic
ratio g = 2. Indeed, the spinor used here for particle mechanics is an obvi-
ous special case of the real Dirac spinor introduced in Section VII. Finally, the
spinor formulation simplifies the solution of problems in relativistic mechanics
and automatically generalizes particle mechanics to include spin precession.

The rotor equation for a frame

eµ = RγµR̃ (96)

can be used to describe the relativistic kinematics of a rigid body (with negligible
dimensions) traversing a world line x = x(τ) with proper time τ , provided we
identify e0 with the proper velocity v of the body, so that

dx

dτ
= x

. = v = e0 = Rγ0R̃ . (97)
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Then {eµ = eµ(τ);µ = 0, 1, 2, 3} is a comoving frame traversing the world line
along with the particle, and the rotor R must also be a function of proper time,
so that, at each time τ , equation (96) describes a Lorentz rotation of some
arbitrarily chosen fixed frame {γµ} into the comoving frame {eµ = eµ(τ)}.
Thus, we have a rotor-valued function of proper time R = R(τ) determining a
1-parameter family of Lorentz rotations eµ(τ) = R(τ)γµR̃(τ). The rotor R is a
unimodular spinor, as it satisfies the unimodular condition RR̃ = 1.

The spacelike vectors ek = RγkR̃ (for k = 1, 2, 3) can be identified with the
principal axes of the body. But the same equations can be used for modeling
a particle with an intrinsic angular momentum or spin, where e3 is identified
with the spin direction ŝ; so we write

ŝ = e3 = Rγ3R̃ . (98)

Later we see that this corresponds exactly to the spin vector in the Dirac theory
where the magnitude of the spin has the constant value | s | = h̄/2.

The rotor equation of motion for R = R(τ) has the form

Ṙ = 1
2ΩR (99)

where Ω = Ω(τ) is a bivector-valued function. The fact that Ω = 2ṘR̃ = −Ω̃ is
necessarily a bivector is easily proved by differentiating RR̃ = 1. Differentiating
(96) and using (99), we see that the equations of motion for the comoving frame
have the form

ėµ = Ω · eµ . (100)

Clearly Ω can be interpreted as a generalized rotational velocity of the comoving
frame.

The dynamics of the rigid body, that is, the effect of external forces and
torques on the body, is completely characterized by specifying Ω as a definite
function of proper time. The single rotor equation (99) is equivalent to the set
of four frame equations (100). Besides the theoretical advantage of being closely
related to the Dirac equation, as we shall see, it has the practical advantage of
being simpler and easier to solve than the set of frame equations (100). The
corresponding nonrelativistic rotor equation for a spinning body was introduced
in GA1. It should be noted that the nonrelativistic rotor equation describes only
rotational motion, while its relativistic generalization (99) describes rotational
and translational motion together.

For a classical particle with mass m and charge e in an electromagnetic field
F , the dynamics is specified by

Ω =
e

m
F . (101)

So (100) gives the particle equation of motion

mv̇ = eF · v (102)
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This may be recognized as the classical Lorentz force with tensor components
mv̇µ = eFµνvν , but note that tensor theory does not admit the more powerful
rotor equation of motion (99).

As demonstrated in specific examples that follow, even if one is interested in
the motion of a structureless point charge, the rotor equation (99) is easier to
solve than the Lorentz force equation (102). However, if one wants to extend
the model to an electron with spin, the same solution automatically describes
the electron’s spin precession. The result is physically meaningful too, for, as
we see later, the classical model of an electron with proper rotational veloc-
ity (101) proportional to the field F gives the same gyromagnetic ratio as the
Dirac equation. Indeed, it is a well-defined classical limit of the Dirac equation,
though Planck’s constant remains in the magnitude of the spin. This role of the
electromagnetic field F as a rotational velocity is so simple and natural that it
deserves a name. I propose to dub the relation (101) the Lorentz Torque, since
it is a straightforward generalization of the Lorentz Force (102). It is notewor-
thy that this idea, which is so natural in STA, seems never to have occurred
to physicists using tensor theory. This is one more example of the influence of
mathematical language on physical theory.

A. Motion in constant electric and magnetic fields.
If F is a uniform field on spacetime, then Ω̇ = 0 and (99) has the solution

R = e
1
2ΩτR0 , (103)

where R0 = R(0) specifies the initial conditions. When this is substituted into
(103) we get the explicit τ dependence of the proper velocity v. The integration
of (97) for the history x(t) is most simply accomplished in the general case
of arbitrary non-null F by exploiting the invariant decomposition F = feiϕ

determined in (30). This separates Ω into mutually commuting parts Ω1 =
(e/m)f cos ϕ and Ω2 = (e/m)if sin ϕ, so

e
1
2Ωτ = e

1
2 (Ω1+Ω2)τ = e

1
2Ω1τe

1
2Ω2τ . (104)

It also determines an invariant decomposition of the initial velocity v(0) into a
component v1 in the f -plane and a component v2 orthogonal to the f -plane;
thus,

v(0) = f−1(f · v(0)) + f−1(f ∧ v(0)) = v1 + v2 . (105)

When this is substituted in (97) and (104) is used, we get

dx

dτ
= v = eΩ1τv1 + eΩ2τv2 . (106)

Note that this is an invariant decomposition of the motion into “electriclike”
and “magneticlike” components. It integrates easily to give the history

x(τ) − x(0) = 2(eΩ1τ − 1)Ω−1
1 v1 + 2(eΩ2τ − 1)Ω−1

2 v2 . (107)
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This general result, which applies for arbitrary initial conditions and arbitrary
uniform electric and magnetic fields, has such a simple form because it is ex-
pressed in terms of invariants. It looks far more complicated when subjected to
a space-time split and expressed directly as a function of “laboratory fields” in
an inertial system. Details are given in my mechanics book.3

B. Electron in the field of a plane wave.
As a second example with important applications, we integrate the rotor

equation for a “classical test charge” in an electromagnetic plane wave.9 This
is useful for describing the interaction of electrons with lasers. As explained
at the end of Section VI in GA1, any plane wave field F = F (x) with proper
propagation vector k can be written in the canonical form

F = fz , (108)

where f is a constant null bivector (f2 = 0), and the x-dependence of F is
exhibited explicitly by

z(k · x) = α+ei(k·x) + α−e−i(k·x) , (109)

with

α± = ρ±e±iδ± , (110)

where δ± and ρ± ≥ 0 are scalars. It is crucial to note that the “imaginary” i
here is the unit pseudoscalar, because it endows these solutions with geometrical
properties not possessed by conventional “complex solutions.” Indeed, as noted
in GA1, the pseudoscalar property of i implies that the two terms on the right
side of (109) describe right and left circular polarizations. Thus, the orientation
of i determines handedness of the solutions.

For the plane wave (108), Maxwell’s equation reduces to the algebraic condi-
tion,

kf = 0 . (111)

This implies k2 = 0 as well as f2 = 0. To integrate the rotor equation of motion

Ṙ =
e

2m
FR , (112)

it is necessary to express F as a function of τ . This can be done by using special
properties of F to find constants of motion. Multiplying (112) by k and using
(111) we find immediately that kR is a constant of the motion. So, with the
initial condition R(0) = 1, we obtain k = kR = Rk = kR̃ ; whence

RkR̃ = k . (113)

Thus, the one parameter family of Lorentz rotations represented by R = R(τ)
lies in the little group of the lightlike vector k. Multiplying (113) by (96), we
find the constants of motion k · eµ = k · γµ. This includes the constant

ω = k · v, (114)
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which can be interpreted as the frequency of the plane wave “seen by the par-
ticle.” Since v = dx/dτ , we can integrate (114) immediately to get

k · (x(τ) − x(0)) = ωτ . (115)

Inserting this into (109) and absorbing k · x(0) in the phase factor, we get
z(k · x) = z(ωτ), expressing the desired τ dependence of F . Equation (112)
can now be integrated directly, with the result

R = exp (efz1/2m) = 1 +
e

2m
fz1 , (116)

where

z1 =
2
ω

sin (ωτ/2)
[
α+eiωτ/2 + α−e−iωτ/2

]
. (117)

This gives the velocity v and, by integrating (97), the complete particle history.
Details are given elsewhere.9 It is of practical interest to know that this solution
is equivalent to the “Volkov solution” of the Dirac equation for an electron in a
plane wave field.10 In this case, the quantum mechanical solution is equivalent
to its classical limit. The solution has practical applications to the interaction
of electrons with laser fields.13

The problem of motion in a Coulomb field has been solved by the same spinor
method,11 but no other exact solutions of the rotor equation (99) with Lorentz
torque have been published.

C. Spin precession.
We have established that specification of kinematics by the rotor equation

(99) and dynamics by Ω = (e/m)F is a geometrically perspicuous and analyti-
cally efficient means of characterizing the motion of a classical charged particle,
and noted that it automatically provides us with a classical model of spin preces-
sion. Now let us take a more general approach to modeling and analyzing spin
precession. Any dynamics of spin precession can be characterized by specifying
a functional form for Ω. That includes gravitational precession12 and electron
spin precession in the Dirac theory. To facilitate the analysis for any given
dynamical model, we first carry the analysis as far as possible for arbitrary Ω.
Then we give a specific application to measurement of the g-factor for a Dirac
particle.

The rotor equation of motion (99) determines both translational and rota-
tional motions of the comoving frame (96), whatever the frame models physi-
cally. It is of interest to separate translational and rotational modes, though
they are generally coupled. This can be done by a spacetime split by the particle
velocity v or by the reference vector γ0. We consider both ways and how they
are related.

D. Larmor and Thomas precession.
To split the rotational velocity Ω by the velocity v, we write

Ω = Ω v2 = (Ω · v)v + (Ω ∧ v)v . (118)
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This produces the split

Ω = Ω+ + Ω− , (119)

where

Ω+ = 1
2 (Ω + vΩ̃v) = (Ω · v)v = v̇v , (120)

and

Ω− = 1
2 (Ω − vΩ̃v) = (Ω ∧ v)v . (121)

Note that Ω · v = v̇ was used in (120) to express Ω+ entirely in terms of the
proper acceleration v̇ and velocity v. This split has exactly the same form as
the split (58) of the electromagnetic bivector into electric and magnetic parts
corresponding here to Ω+ and Ω− respectively. However, it is a split with respect
to the instantaneous “rest frame” of the particle rather than a fixed inertial
frame. In the rest frame the relative velocity of the particle itself vanishes, of
course, so the particle’s acceleration is entirely determined by the “electriclike”
part Ω+, as (120) shows explicitly. The “magneticlike” part Ω− is completely
independent of the particle motion; it is the Larmor precession (frequency) of
the spin for a particle with a magnetic moment, so let us refer to it as the
Larmor precession in the general case.

Unfortunately, (119) does not completely decouple precession from translation
because Ω+ contributes to both. Also, we need a way to compare precessions
at different points on the particle history. These difficulties can be resolved by
adopting the γ0-split

R = LU , (122)

exactly as defined by (80) and subsequent equations. At every time τ , this split
determines a “deboost” of relative vectors eke0 = Rγkγ0R̃ = RσkR̃ (k = 1, 2, 3)
into relative vectors

ek = L̃(eke0)L = UσkŨ (123)

in the fixed reference system of γ0. The particle is brought to rest, so to speak,
so we can watch it precess (or spin) in one place. The precession is described
by an equation of the form

dU

dt
= −1

2 iωU , (124)

so, as already shown in GA1, differentiation of (123) yields the familiar equations
for a rotating frame:

dek

dt
= ω × ek . (125)
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The problem now is to express ω in terms of the given Ω and determine the
relative contributions of the parts Ω+ and Ω−. To do that, we use the time
dilation factor v0 = v · γ0 = dt/dτ to change the time variable in (124) and
write

ω = −iωv0 (126)

so (124) becomes U̇ = 1
2ωU . Then differentiation of (122) and use of (99) gives

Ω = 2ṘR̃ = 2L̇L̃ + LωL̃ . (127)

Solving for ω and using the split (119), we get

ω = L̃Ω−L + L̃ v̇vL − 2L̃ L̇ . (128)

Differentiation of (87) leads to

L̃(v̇v)L = L̃ L̇ + L̇L̃ , (129)

while differentiation of (88) gives

2L̇L̃ =
v̇ ∧ (v + γ0)
1 + v · γ0

. (130)

These terms combine to give the well-known Thomas precession frequency

ωT =
(
(2L̇L̃) ∧ γ0

)
γ0 = L̇L̃ − L̃ L̇

=
(v̇ ∧ v ∧ γ0)γ0

1 + v · γ0
= i

(
v2
0

1 + v0

)
v × v̇ .

(131)

The last step here, expressing the proper vectors in terms of relative vectors,
was derived from the split

v̇v = v̇ ∧ v = v2
0(v̇ + i(v × v̇)) . (132)

Finally, writing

ωL = L̃ Ω−L (133)

for the transformed Larmor precession, we have the desired result

ω = ωT + ωL . (134)

The Thomas term describes the effect of motion on the precession explicitly and
completely.
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E. The g-factor in spin precession.
Now let us apply the rotor approach to a practical problem of spin precession.

In general, for a charged particle with an intrinsic magnetic moment in a uniform
electromagnetic field F = F+ + F−,

Ω =
e

mc

(
F+ +

g

2
F−

)
=

e

mc

[
F + 1

2 (g − 2)F−
]
, (135)

where as defined by (121), F− is the magnetic field in the instantaneous rest
frame of the particle, and g is the usual gyromagnetic ratio. This yields the
classical equation of motion (102) for the velocity, but by (98) and (100) the
equation of motion for the spin is

ṡ =
e

m
[F + 1

2 (g − 2)F− ] · s . (136)

This is the well-known Bargmann-Michel-Telegdi (BMT) equation, which is used
in high precision measurements of the g-factor for the electron and muon.

To apply the BMT equation, it must be solved for the rate of spin precession.
The general solution for an arbitrary combination F = E+iB of uniform electric
and magnetic fields is most easily found by replacing the BMT equation by the
rotor equation

Ṙ =
e

2m
FR + R 1

2 (g − 2)
( e

2m

)
iB0 , (137)

where

iB0 = R̃F−R = 1
2

[
R̃FR − (R̃FR)†

]
. (138)

is an “effective magnetic field” in the “rest system” of the particle. With initial
conditions R(0) = L0, U(0) = 1, for a boost without spatial rotation, a solution
of (137) is

R = exp
[ e

2m
Fτ

]
L0 exp

[
1
2 (g − 2)

( e

2m

)
iB0τ

]
, (139)

where B0 is defined by

B0 =
1
2i

[
L̃0FL0 − (L̃0FL0)†

]
= B +

v2
00

1 + v00
v0×(B×v0) + v00E×v0 ,

(140)

where v00 = v(0) · γ0 = (1−v2)−
1
2 . The first factor in (139) has the same effect

on both the velocity v and the spin s, so the last factor gives directly the change
in the relative directions of the relative velocity v and the spin s. This can be
measured experimentally.3

To conclude this section, some general remarks about the description of spin
will be helpful in applications and in comparisons with more conventional ap-
proaches. We have represented the spin by the proper vector s = | s |e3 defined

24



by (98) and alternatively by the relative vector σ = | s |e3, where e3 is defined by
(123). For a particle with proper velocity v = L2γ0, these two representations
are related by

sv = LσL̃ (141)

or, equivalently, by

σ = L̃(sv)L = L̃sLγ0 . (142)

A straightforward spacetime split of the proper spin vector s, like (48) for the
velocity vector, gives

sγ0 = s0 + s , (143)

where

s = s ∧ γ0 (144)

is the relative spin vector, and s · v = 0 implies that

v0s0 = v · s . (145)

From (141) and (143), the relation of s to σ is found to be

s = σ + (v0 − 1)(σ · v̂)v̂ , (146)

where v0 = v · γ0 and v̂ = v/|v |. Both vectors s and σ are sometimes used
in the literature, and some confusion results from a failure to recognize that
they come from two different kinds of spacetime split. Of course either one can
be used, since one determines the other, but σ is usually simpler because its
magnitude is constant. Note from (146) that they are indistinguishable in the
non-relativistic approximation.

VI. Electromagnetic Field Theory

In STA an electromagnetic field is represented by a bivector-valued function
F = F (x) on spacetime. The field produced by a source with proper current
density J = J(x) is determined by Maxwell’s Equation

�F = J . (147)

As explained in Section II, the differential operator � = ∂x in STA is regarded
as the (vector) derivative with respect to a spacetime point x.

Since � is a vector operator the expansion (10) applies, so we can write

�F = � · F + �∧ F , (148)
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where � · F is the divergence of F and � ∧ F is the curl. We can accordingly
separate (147) into vector and trivector parts:

� · F = J , (149)

�∧ F = 0. (150)

This is the coordinate-free form for the two covariant tensor equations for the
electromagnetic field in standard relativistic theory.

As a pedagogical point, it is worth noting that the decomposition (148) into
divergence and curl is a straightforward generalization of the 3D vectorial de-
composition introduced in GA1. Also note that, as standard SI units are not
well suited for spacetime physics, we choose a system of units that minimizes
the number of constants in basic equations. The reader can infer the choice
from the spacetime split of Maxwell’s equation given below.

The reduction of the two Maxwell equations (149) and (150) to the to a sin-
gle “Maxwell’s Equation” (147) brings many simplifications to electromagnetic
theory. For example, the operator � has an inverse so (147) can be solved for

F = �−1
J , (151)

Of course, �−1
is an integral operator that depends on boundary conditions on

F for the region on which it is defined, so (151) is an integral form of Maxwell’s
equation. However, if the “current” J = J(x) is the sole source of F , then (151)
provides the unique solution to (147).

Next we survey other simplifications to the formulation and analysis of elec-
tromagnetic equations. Differentiating (147) we obtain

�2
F = �J = � · J + �∧ J , (152)

where �2
is the d’Alembertian (35). Separately equating scalar and bivector

parts of (152), we obtain the charge conservation law

� · J = 0 (153)

and an alternative equation for the E-M field

�2
F = �∧ J . (154)

A. Electromagnetic Potentials.
A different field equation is obtained by using the fact that, under general con-

ditions, any continuous bivector field F = F (x) can be expressed as a derivative
with the specific form

F = �(A + Bi) , (155)

where A = A(x) and B = B(x) are vector fields, so F has a “vector potential”
A and a “trivector potential” Bi. This is a generalization of the well-known

26



“Helmholtz theorem” in vector analysis.4 Since �A = � · A + � ∧ A with a
similar equation for �B, the bivector part of (155) can be written

F = �∧ A + (�∧ B)i , (156)

while the scalar and pseudoscalar parts yield the so-called “Lorenz condition”

� · A = � · B = 0 , (157)

Inserting (155) into Maxwell’s equation (147) and separating vector and trivec-
tor parts, we obtain the usual wave equation for the vector potential

�2
A = J , (158)

as well as

�2
Bi = 0 . (159)

The last equation shows that B is independent of the source J , so it can be
set to zero in (155). However, in a theory with magnetic charges, Maxwell’s
equation takes the form

�F = J + iK, (160)

where K = K(x) is a vector field, the “magnetic current density.” On substituting
(155) into (160) we obtain in place of (159),

�2
Bi = iK . (161)

The pseudoscalar i can be factored out to make (161) appear symmetrical with
(157), but this symmetry between the roles of electric and magnetic currents is
deceptive, because one is vectorial while the other is actually trivectorial.

The separation of the generalized Maxwell’s equation (160) into parts with
electric and magnetic sources can be achieved by again using (148) and again
getting (149) for the vector part but getting

�∧ F = iK (162)

for the trivector part. This equation can be made to look similar to (149) by
duality to put it in the form

� · (Fi) = K . (163)

Note that the dual Fi of the bivector F is also a bivector. Hereafter we restrict
our attention to the “physical case” K = 0.

B. Maxwell’s equation for material media.
Sometimes the source current J can be decomposed into a conduction current

JC and a magnetization current � · M , where the generalized magnetization
M = M(x) is a bivector field; thus

J = JC + � · M . (164)
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The Gordon decomposition of the Dirac current is of this ilk. Because of the
mathematical identity � · (� · M) = (� ∧ �) · M = 0, the conservation law
� · J = 0 implies also that � · JC = 0. Using (164), equation (149) can be put
in the form

� · G = JC (165)

where we have defined a new field

G = F − M . (166)

A disadvantage of this approach is that it mixes up physically different kinds
of entities, an E-M field F and a matter field M . However, in most materials
M is a function of the field F , so when a “constitutive equation” M = M(F ) is
known (165) becomes a well defined equation for F .

C. Energy-momentum tensor.
STA enables us to write the usual Maxwell energy-momentum tensor T (n) =

T (n(x), x) for the electromagnetic field in the compact form

T (n) = 1
2FnF̃ = −1

2FnF . (167)

Recall that the tensor field T (n) is a vector-valued linear function on the tan-
gent space at each spacetime point x describing the flow of energy-momentum
through a surface with normal n = n(x), By linearity T (n) = nµTµ, where
nµ = n · γµ and

Tµ ≡ T (γµ) = 1
2FγµF̃ . (168)

The divergence of T (n) can be evaluated by using Maxwell’s equation (147),
with the result

∂µTµ = T (�) = J · F . (169)

Its value is the negative of the Lorentz force (density) F · J , which is the rate
of energy-momentum transfer from the source J to the field F .

D. Eigenvectors of the Maxwell Tensor.
The compact, invariant form (167) enables us to solve easily the eigenvector

problem for the Maxwell energy-momentum tensor. If F is not a null field, it
has the invariant decomposition F = feiϕ given by (30), which, when inserted
in (167), gives

T (n) = − 1
2fnf (170)

This is simpler than (167) because f is simpler than F . Note also that it
implies that all fields differing only by an arbitrary “duality factor” eiϕ have
the same energy-momentum tensor. The eigenvalues can be found from (170)
by inspection. The bivector f determines a timelike plane. Any vector n in that
plane satisfies n ∧ f = 0, or equivalently, nf = −fn. On the other hand, if n
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is orthogonal to the plane, then n · f = 0 and nf = fn. For these two cases,
(170) gives us

T (n) = ± 1
2f2n . (171)

Thus T (n) has a pair of doubly degenerate eigenvalues ±1
2f2 corresponding to

“eigenbivectors” f and if , all expressible in terms of F by inverting (30). This
approach should be compared with conventional matrix methods to appreciate
the simplifications achieved by STA.

E. Relation to tensor formulations.
The versatility of STA is also illustrated by the ease with which the above

invariant formulation of “Maxwell theory” can be related to more conventional
formulations. The tensor components Fµν of the E-M field F are given by (17),
whence, using (34), we find

∂µFµν = J · γν = Jν (172)

for the tensor components of Maxwell’s equation (149). Similarly, the tensor
components of (163) are

∂[νFαβ] = Kµεµναβ , (173)

where the brackets indicate antisymmetrization and εµναβ = i−1 · (γµγνγαγβ).
The tensor components of the energy-momentum tensor (168) are

Tµν = γµ · T ν = − 1
2 (γµFγνF )(0)

= (γµ · F ) · (F · γν) − 1
2γµ · γν(F 2)(0)

= FµαF ν
α − 1

2gµνFαβFαβ

(174)

F. Spacetime splits in E-M theory.
To demonstrate how smoothly the proper formulation of E-M theory articu-

lates with the relative formulation, we quickly survey several spacetime splits.
A spacetime split of Maxwell’s equation (147) puts it in the standard relative
vector form for an inertial system. Thus, following the procedure in Section 4,

Jγ0 = J0 + J (175)

splits the current J into a charge density J0 = J · γ0 and a relative current
J = J ∧ γ0 in the γ0-system. Similarly,

γ0� = ∂t + ∇ (176)

splits � = ∂x into a time derivative ∂t = γ0 ·� and spatial derivative ∇ =
γ0 ∧� = ∂x with respect to the relative position vector x = x∧ γ0. Combining
this with the split of F into electric and magnetic parts, we get Maxwell’s
equation (147) in the split form

(∂t + ∇)(E + iB) = J0 − J , (177)
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in agreement with the formulation in GA1.
Note that (176) splits the D’Alembertian into

�2
= (�γ0)(γ0�) = (∂t − ∇)(∂t + ∇) = ∂2

t − ∇2. (178)

The vector field T 0 = T (γ0) = T (γ0) is the energy-momentum density in the
γ0-system. The split

T 0γ0 = T 0γ0 = T 00 + T0 (179)

separates it into an energy density T 00 = T 0 · γ0 and a momentum density
T0 = T 0 ∧ γ0. Using the fact that γ0 anticommutes with relative vectors, from
(168) we obtain

T 0γ0 = 1
2FF † = 1

2 (E2 + B2) + E×B , (180)

in agreement with GA1.
The spacetime split helps us with physical interpretation. Corresponding to

the split F = E + iB, the magnetization field M splits into

M = −P + iM , (181)

where P is the electric polarization density and M is the magnetic moment
density. Writing

G = D + iH , (182)

we see that (166) gives us the familiar relations

D = E + P , (183)

H = B − M . (184)

Insertion of (182) into (165) with a spacetime split yields the usual set of
Maxwell’s equations for a material medium.

VII. Real Relativistic Quantum Theory

The Dirac equation is the cornerstone of relativistic quantum theory, if not the
single most important equation in all of quantum physics. This Section shows
how STA simplifies the entire Dirac theory, reveals hidden geometric structure
with implications for physical interpretation, and provides a common spinor
method for classical and quantum physics with a more direct and transparent
classical limit of the Dirac equation.

First, we show how to reformulate the standard matrix version of Dirac theory
in terms of the real STA. As this reformulation eliminates superfluous complex
numbers and matrices from the standard version, I call it the real Dirac theory.
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Next we provide the real Dirac wave function with a geometric interpretation
by relating it to local observables. The term “local observable” is non-standard
but the concept is not unprecedented. It refers to assignment of physical inter-
pretation to some local quantity such as energy or charge density rather than
to global quantities such as expectation values. It serves as a device for describ-
ing local geometric structure of the theory quite apart from claims of objective
reality. Its bearing on the interpretation of quantum mechanics is discussed in
the next Section.

For reference purposes, I provide a complete catalog of relations between
local observables in the real theory and the socalled “bilinear covariants” in the
matrix theory. This facilitates translation between the two formulations. It will
be noted that the real version is substantially simpler, and the complexities of
translation can be avoided by sticking to the real theory alone.

Finally, I provide a thorough analysis of local conservation laws in the real
Dirac theory to ascertain further what STA can tell us about geometric structure
and physical interpretation. The analysis is much more complete than any
treatment in textbooks that I know.

This account is limited to the single particle Dirac theory. The tendency in
textbooks is to forego a thorough study of single particle theory and leap at
once to the second quantized many particle theory. I leave it to the reader to
decide what might be lost by that practice.

Space does not permit an adequate account of “real solutions” of the Dirac
equation in this article. Partial treatments are given elsewhere,15,16 but it is
worth mentioning here that in some respects the real Dirac equation is easier
to solve and analyze than the Schroedinger equation.

A. Derivation of the real Dirac theory.
Derivation of the real STA version of the Dirac theory from the standard

matrix version is essentially the same as for the Pauli theory, but the differences
are sufficient to justify a quick review. To find a representation of the Dirac
theory in terms of STA, we begin with a Dirac spinor Ψ, a column matrix of 4
complex numbers. Let u be a fixed spinor with the properties

u†u = 1 , (185)

γ0u = u , (186)

γ2γ1u = i′u . (187)

In writing this we regard the γµ, for the moment, as 4 × 4 Dirac matrices, and
i′ as the unit imaginary in the complex number field of the Dirac algebra. Now,
we can write any Dirac spinor

Ψ = ψu , (188)

where ψ is a matrix that can be expressed as a polynomial in the γµ. The
coefficients in this polynomial can be taken as real, for if there is a term with
an imaginary coefficient, then (187) enables us to make it real without altering
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(188) by replacing i′ in the term by γ2γ1 on the right of the term. Furthermore,
the polynomial can be taken to be an even multivector, for if any term is odd,
then (186) allows us to make it even by multiplying on the right by γ0. Thus,
in (188) we may assume that ψ is a real even multivector, so we can reinterpret
the γµ in ψ as vectors in STA instead of matrices. Thus, we have established
a correspondence between Dirac spinors and even multivectors in STA. The
correspondence must be one-to-one, because the space of even multivectors (like
the space of Dirac spinors) is exactly 8-dimensional, with 1 scalar, 1 pseudoscalar
and 6 bivector dimensions.

Finally, it should be noted that by eliminating the ungeometrical imaginary
i′ from the base field we reduce the degrees of freedom in the Dirac theory
by half, with consequent simplification of the theory that shows up in the real
version. The Dirac algebra is generated by the Dirac matrices over the base
field of complex numbers, so it has 24 × 2 = 32 degrees of freedom and can be
identified with the algebra of 4 × 4 complex matrices. From (14) we see that
STA has 24 = 16 degrees of freedom.

One immediate simplification brought by STA appears in the spacetime split.
To write his equation in hamiltonian form, Dirac defined 4 × 4 matrices

αk = γkγ0 (189)

for k = 1, 2, 3. This is, in fact, a representation of the 2 × 2 Pauli matrices by
4×4 matrices. STA eliminates this awkward and irrelevant distinction between
matrix representations of different dimension, so the αk can be identified with
the σk, as we have already done in the spacetime split (43).

There are several ways to represent a Dirac spinor in STA,18 but all repre-
sentations are, of course, mathematically equivalent. The representation chosen
here has the advantages of simplicity and, as we shall see, ease of interpretation.

To distinguish a spinor ψ in STA from its matrix representation Ψ in the
Dirac algebra, let us call it a real spinor to emphasize the elimination of the
ungeometrical imaginary i′. Alternatively, we might refer to ψ as the operator
representation of a Dirac spinor, because, as shown below, it plays the role of
an operator generating observables in the theory.

In terms of the real wave function ψ, the Dirac equation for an electron can
be written in the form

γµ(∂µψγ2γ1h̄ − eAµψ) = mψγ0 , (190)

where m is the mass and e = −| e | is the charge of the electron, while the
Aµ = A · γµ are components of the electromagnetic vector potential. To prove
that this is equivalent to the standard matrix form of the Dirac equation,8 we
simply interpret the γµ as matrices, multiply by u on the right and use (186)
and (188) to get the standard form

γµ(i′h̄∂µ − eAµ)Ψ = mΨ . (191)

This completes the proof. Alternative proofs are given elsewhere.17–19 The
original converse derivation of (190) from (191) was much more indirect.14
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Henceforth, we can work with the real Dirac equation (190) without refer-
ence to its matrix representation (191). We know from previous Sections that
computations in STA can be carried out without introducing a basis, and we
recognize the so-called “Dirac operator” � = γµ∂µ as the vector derivative
with respect to a spacetime point, so let us write the real Dirac equation in the
coordinate-free form

�ψih̄ − eAψ = mψγ0 , (192)

where A = Aµγµ is the electromagnetic vector potential, and the notation

i ≡ γ2γ1 = iγ3γ0 = iσ3 (193)

emphasizes that this bivector plays the role of the imaginary i′ that appears
explicitly in the matrix form (191) of the Dirac equation. To interpret the theory,
it is crucial to note that the bivector i has a definite geometrical interpretation
while i′ does not.

B. Lorentz invariance.
Equation (192) is Lorentz invariant, despite the explicit appearance of the

constants γ0 and i = γ2γ1 in it. These constants need not be associated with
vectors in a particular reference frame, though it is often convenient to do so.
It is only required that γ0 be a fixed, future-pointing, timelike unit vector while
i is a spacelike unit bivector that commutes with γ0. The constants can be
changed by a Lorentz rotation

γµ → γ′
µ = CγµC̃ , (194)

where C is a constant rotor, so CC̃ = 1,

γ′
0 = Cγ0C̃ and i′ = CiC̃ . (195)

A corresponding change in the wave function,

ψ → ψ′ = ψC̃ , (196)

induces a mapping of the Dirac equation (192) into an equation of the same
form:

�ψi′h̄ − eAψ′ = mψ′γ′
0 . (197)

This transformation is no more than a change of constants in the Dirac equation.
It need not be coupled to a change in reference frame. Indeed, in the matrix
formulation it can be interpreted as a mere change in matrix representation,
that is, a change in the particular matrices selected to be associated with the
vectors γµ, for (188) gives

Ψ = ψu = ψ′u′ , (198)

where u′ = Cu.
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For the special case

C = eiϕ0 , (199)

where ϕ0 is a scalar constant, (195) gives γ′
0 = γ0 and i′ = i, so ψ and

ψ′ = ψeiϕ0 (200)

are solutions of the same equation. In other words, the Dirac equation does not
distinguish solutions differing by a constant phase factor.

C. Charge conjugation.
Note that σ2 = γ2γ0 anticommutes with both γ0 and i = iσ3, so multiplica-

tion of the Dirac equation (192) on the right by σ2 yields

�ψC ih̄ + eAψC = mψCγ0 , (201)

where

ψC = ψσ2 . (202)

The net effect is to change the sign of the charge in the Dirac equation, there-
fore, the transformation ψ → ψC can be interpreted as charge conjugation. Of
course, the definition of charge conjugate is arbitrary up to a constant phase
factor such as in (200). The main thing to notice here is that in (202) charge
conjugation, like parity conjugation, is formulated as a completely geometrical
transformation, without any reference to a complex conjugation operation of
obscure physical meaning. Its geometric meaning is determined by what it does
to the “frame of observables” identified below.

D. Interpretation of the Dirac wave function.
As explained in Section II, since the real Dirac wave function ψ = ψ(x) is an

even multivector, we can write

ψψ̃ = ρeiβ , (203)

where ρ and β are scalars. Hence ψ has the Lorentz invariant decomposition

ψ = (ρeiβ)
1
2 R, where RR̃ = R̃R = 1 . (204)

At each spacetime point x, the rotor R = R(x) determines a Lorentz rotation
of a given fixed frame of vectors {γµ} into a frame {eµ = eµ(x)} given by

eµ = RγµR̃ . (205)

In other words, R determines a unique frame field on spacetime.
The physical interpretation given to the frame field {eµ} is a key to the in-

terpretation of the entire Dirac theory. Specifically, the eµ can be interpreted
directly as descriptors of the kinematics of electron motion. It follows from
(205), therefore, that the rotor field R = R(x) is a descriptor of electron kine-
matics.
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It should be noted that (205) has the same algebraic form as the comoving
frame (96) defined on classical partical histories. Thus, (205) is a direct general-
ization of (96) from frames on curves to frame fields on spacetime. Conversely,
as we shall see, probability conservation in the Dirac theory permits a decompo-
sition of the frame field into bundles of comoving frames on Dirac “streamlines.”
This provides a direct connection to the classical spinor particle mechanics in
Section V and thereby a natural approach to the classical limit of the Dirac
equation, as discussed in the next Section.

Anticipating that the factor (ρeiβ)
1
2 can be given a statistical interpreta-

tion, the canonical form (204) can be regarded as an invariant decomposition
of the Dirac wave function into a 2-parameter statistical factor (ρeiβ)

1
2 and a

6-parameter kinematical factor R.
From (204), (205) and (196) we find that

ψγµψ̃ = ψ′γ′
µψ̃′ = ρeµ . (206)

Note that we have here a set of four linearly independent vector fields which
are invariant under the transformation specified by (194) and (195). Thus these
fields do not depend on any coordinate system, despite the appearance of γµ on
the left side of (206). Note also that the factor eiβ/2 in (204) does not contribute
to (206), because the pseudoscalar i anticommutes with the γµ.

Two of the vector fields in (206) are given physical interpretations in the
standard Dirac theory. First, the vector field

ψγ0ψ̃ = ρe0 = ρv (207)

is the Dirac current, which, in accord with the standard Born interpretation,
we interpret as a probability current. Thus, at each spacetime point x the
timelike vector v = v(x) = e0(x) is interpreted as the probable (proper) velocity
of the electron, and ρ = ρ(x) is the relative probability (i.e. proper probability
density) that the electron actually is at x. The correspondence of (207) to the
conventional definition of the Dirac current is displayed in Table I.

The probability conservation law

� · (ψγ0ψ̃) = � · (ρv) = 0 (208)

follows directly from the Dirac equation. To prove that we can use (204) and
(205) to put the Dirac equation (192) into the form

h̄(�ψ)γ0ψ̃ = mρeiβe1e2 + ρAe1e2e0, (209)

from which it follows that

[(�ψ)γ0ψ̃](0) = 1
2 [(�ψ)γ0ψ̃ + ψγ0(�ψ)˜ ](0)

= 1
2γµ · (∂µψγ0ψ̃ + ψγ0∂µψ̃) = 0.

(210)

The vector field

1
2 h̄ψγ3ψ̃ = ρ 1

2 h̄e3 = ρs (211)
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TABLE I: BILINEAR COVARIANTS

Scalar Ψ̃Ψ = Ψ†γ0Ψ = (ψψ̃)(0) = ρ cos β

Vector Ψ̃γµΨ = Ψ†γ0γµΨ = (ψγ0ψ̃γµ)(0) = (ψ†γ0γµψ)(0)

= (ψγ0ψ̃) · γµ = (ρv) · γµ = ρvµ

Bivector
e

m

i′h̄

2
Ψ̃

1
2
(
γµγν − γνγµ

)
Ψ =

eh̄

2m

(
γµγνψγ2γ1ψ̃

)
(0)

= (γµ∧γν) · (M) = Mνµ =
e

m
ρ(ieiβsv) · (γµ∧γν)

Pseudovector∗ 1
2 i′h̄Ψ̃γµγ5Ψ = 1

2 h̄(γµψγ3ψ̃)(0) = γµ · (ρs) = ρsµ

Pseudoscalar∗ Ψ̃γ5Ψ = (iψψ̃)(0) = −ρ sin β

∗Here we use the more conventional symbol γ5=γ0γ1γ2γ3 for the matrix representation
of the unit pseudoscalar i.

will be interpreted as the spin vector density, in exact correspondence with
the real PS theory. Justification for this interpretation comes from angular
momentum conservation treated below. Note in Table I that this vector quantity
is represented as a pseudovector (or axial vector) quantity in the conventional
matrix formulation. The spin pseudovector is correctly identified as is, as shown
below.

As we have noted before, angular momentum is actually a bivector quantity.
The spin angular momentum S = S(x) is a bivector field related to the spin
vector field s = s(x) by

S = isv = 1
2 h̄ie3e0 = 1

2 h̄Rγ2γ1R̃ = 1
2R(ih̄)R̃ . (212)

The right side of this chain of equivalent representations shows the relation of
the spin to the unit imaginary i appearing in the Dirac equation (192). Indeed,
it shows that the bivector 1

2 ih̄ is a reference representation of the spin that is
rotated by the kinematical factor R into the local spin direction at each space-
time point. This establishes an explicit connection between spin and imaginary
numbers that is inherent in the Dirac theory but hidden in the conventional
formulation, and, as we have already seen, remains even in the Schroedinger
approximation.

Explicit equations relating spin to the unit imaginary i′ in the PS theory are
given in GA1. They apply without change in the Dirac theory, so the argument
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need not be repeated here. The important fact is that for every solution of the
Dirac equation, at each spacetime point x the bivector S = S(x) specifies a
definite spacelike tangent plane, a spin plane, if you will.

Explicit identification of S with spin is not made in standard accounts of the
Dirac theory.8 Typically, they introduce the spin (density) tensor

ρSναβ =
i′h̄

2
Ψ̃γν ∧ γα ∧ γβΨ =

i′h̄

2
Ψ̃γµγ5Ψεµναβ = ρsµεµναβ , (213)

where use has been made of the identity

γν ∧ γα ∧ γβ = γµγ5ε
µναβ (214)

and the expression for sµ in Table I. Note that the “alternating tensor” εµναβ

can be defined simply as the product of two pseudoscalars, thus

εµναβ = −i(γµ ∧ γν ∧ γα ∧ γβ) = −(iγµγνγαγβ)(0)
= −(γ3 ∧ γ2 ∧ γ1 ∧ γ0) · (γµ ∧ γν ∧ γα ∧ γβ) .

(215)

γµ ∧ γν ∧ γα ∧ γβ = iεµναβ . (216)

From (213) and (215) we find

Sναβ = sµεµναβ = −i(s ∧ γν ∧ γα ∧ γβ) = −(is) · (γν ∧ γα ∧ γβ) . (217)

The last expression shows that the Sναβ are simply tensor components of the
pseudovector is. Contraction of (217) with vν = v · γν and use of duality gives
the desired relation between Sναβ and S:

vνSναβ = −i(s ∧ v ∧ γα ∧ γβ) = −[ i(s ∧ v) ] · (γα ∧ γβ)

= S · (γβ ∧ γα) = Sαβ .
(218)

Its significance will be made clear in the discussion of angular momentum con-
servation.

Note that the spin bivector and its relation to the unit imaginary is invisible
in the standard version of the bilinear covariants in Table I. The spin S is buried
there in the magnetization (tensor or bivector). The magnetization M can be
defined and related to the spin by

M =
eh̄

2m
ψγ2γ1ψ̃ =

eh̄

2m
ρeiβe2e1 =

e

m
ρSeiβ . (219)

One source for the interpretation of M as magnetization is the Gordon decom-
position of the Dirac current given below. Equation (219) reveals that in the
Dirac theory the magnetic moment is not simply proportional to the spin as
often asserted; the two are related by a duality rotation produced by the factor
eiβ . It may be appreciated that this relation of M to S is much simpler than any
relation of Mαβ to Sναβ in the literature, another indication that S is the most
appropriate representation for spin. By the way, note that (219) provides some
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justification for referring to β henceforth as the duality parameter. The name
is noncommittal to the physical interpretation of β, a debatable issue discussed
later.

We are now better able to assess the content of Table I. There are 1+4+6+4+
1 = 16 distinct bilinear covariants but only 8 parameters in the wave function,
so the various covariants are not mutually independent. Their interdependence
has been expressed in the literature by a system of algebraic relations known as
“Fierz Identities.”20 However, the invariant decomposition of the wave function
(204) reduces the relations to their simplest common terms. Table I shows
exactly how the covariants are related by expressing them in terms of ρ, β, vµ,
sµ, which constitutes a set of 7 independent parameters, since the velocity and
spin vectors are constrained by the three conditions that they are orthogonal
and have constant magnitudes. This parametrization reduces the derivation of
any Fierz identity practically to inspection. Note, for example, that

ρ2 = (Ψ̃Ψ)2 + (Ψ̃γ5Ψ)2 = (Ψ̃γµΨ)(Ψ̃γµΨ) = −(Ψ̃γµγ5Ψ)(Ψ̃γµγ5Ψ) . (220)

Evidently Table I tells us all we need to know about the bilinear covariants and
makes further reference to Fierz identities superfluous.

Note that the factor i′h̄ occurs explicitly in Table I only in those expressions
involving electron spin. The conventional justification for including the i′ is to
make antihermitian operators hermitian so the bilinear covariants are real. We
have seen however that this smuggles spin into the expressions. That can be
made explicit by using (212) to derive the general identity

i′h̄Ψ̃ΓΨ = Ψ̃ΓγαγβΨSαβ , (221)

where Γ is any matrix operator.
Perhaps the most significant thing to note about Table I is that only 7 of

the 8 parameters in the wave function are involved. The missing parameter is
the phase of the wave function. To understand the significance of this, note
also that, in contrast to the vectors e0 and e3 representing velocity and spin
directions, the vectors e1 and e2 do not appear in Table I except indirectly in
the product e2e1. The missing parameter is one of the six parameters implicit in
the rotor R determining the Lorentz rotation (205). We have already noted that
5 of these parameters are needed to determine the velocity and spin directions
e0 and e3. By duality, these vectors also determine the direction e2e1 = ie3e0

of the “spin plane” containing e1 and e2. The remaining parameter therefore
determines the directions of e1 and e2 in this plane. It is literally an angle of
rotation in this plane and the spin bivector Ŝ = e2e1 = R iR̃ is the generator
of the rotation. Thus, in full accord with PS theory we arrive at a geometrical
interpretation of the phase of the wave function that is inherent in the Dirac
theory. But all of this is invisible in the conventional matrix formulation.

The purpose of Table I is to explicate the correspondence of the matrix formu-
lation to the real (STA) formulation of the Dirac theory. Once it is understood
that the two formulations are completely isomorphic, the matrix formulation
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can be dispensed with and Table I becomes superfluous. By revealing the geo-
metrical meaning of the unit imaginary and the wave function phase along with
this connection to spin, STA challenges us to ascertain the physical significance
of these geometrical facts.

E. Conservation laws.
One of the miracles of the Dirac theory was the spontaneous emergence of

spin in the theory when nothing about spin seemed to be included in the as-
sumptions. This miracle has been attributed to Dirac’s derivation of his lin-
earized relativistic wave equation, so spin has been said to be “a relativistic
phenomenon.” However, we have seen that the “Dirac operator” � = γµ∂µ is
a generic spacetime derivative equally suited to the formulation of Maxwell’s
equation, and we have concluded that the Dirac algebra arises from spacetime
geometry rather than anything special about quantum theory. The origin of
spin must be elsewhere.

Our ultimate objective is to ascertain precisely what features of the Dirac
theory are responsible for its extraordinary empirical success and to establish
a coherent physical interpretation that accounts for all its salient aspects. The
geometric insights of STA provide us with a perspective from which to criticize
some conventional beliefs about quantum mechanics and so leads us to some
unconventional conclusions. However, our purpose here is merely to raise sig-
nificant issues by introducing suggestive interpretations. Much more will be
required to claim definitive conclusions.

The physical interpretation of standard quantum mechanics is centered on
meaning ascribed to the kinetic energy-momentum operators pµ defined in the
conventional matrix theory by

pµ = i′h̄∂µ − e Aµ . (222)

In the STA formulation they are defined by

pµ = i h̄∂µ − e Aµ , (223)

where the underbar signifies a “linear operator” and the operator i signifies
right multiplication by the bivector i = γ2γ1, as defined by

iψ = ψi . (224)

The importance of (223) can hardly be overemphasized. Above all, it embodies
the fruitful “minimal coupling” rule, a fundamental principle of gauge theory
that fixes the form of electromagnetic interactions. In this capacity it plays a
crucial heuristic role in the original formulation of the Dirac equation, as is clear
when the equation is written in the form

γµ pµψ = ψγ0m . (225)

However, the STA formulation tells us even more. It reveals geometrical proper-
ties of the pµ that provide clues to a deeper physical meaning. We have already
noted a connection of the factor ih̄ with spin. We establish below that this
connection is a consequence of the form and interpretation of the pµ. Thus,
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TABLE II: Observables of the energy-momentum operator,
relating real and matrix versions.

Energy-momentum tensor Tµν = Tµ · γν = (γ0ψ̃ γµ pνψ)(0)

= Ψ̃γµ pνΨ

Kinetic energy density T 00 = (ψ†p0ψ)(0) = Ψ†p0Ψ

Kinetic momentum density T 0k = (ψ†pkψ)(0) = Ψ†pkΨ

Angular Momentum tensor Jναβ =
[
T ν ∧ x + iρ(s ∧ γν)

]
· (γβ ∧ γα)

= T ναxβ − T νβxα − i′h̄

2
Ψ̃γ5γµΨεµναβ

Gordon current Kµ =
e

m
(ψ̃ pµψ)(0) =

e

m
Ψ̃pµΨ

spin was inadvertently smuggled into the Dirac theory by the pµ, hidden in the
innocent looking factor i′h̄. Its sudden appearance was only incidentally related
to relativity. History has shown that it is impossible to recognize this fact in
the conventional formulation of the Dirac theory. The connection of i′h̄ with
spin is not inherent in the pµ alone. It appears only when the pµ operate on the
wave function, as is evident from (212). This leads to the conclusion that the
significance of the pµ lies in what they imply about the physical meaning of the
wave function. Indeed, the STA formulation reveals that the pµ have something
important to tell us about the kinematics of electron motion.

F. Energy-momentum tensor.
The operators pµ or, equivalently, pµ = γµ · γν pν acquire a physical meaning

when used to define the components Tµν of the electron energy-momentum
tensor:

Tµν = Tµ · γν = (γ0ψ̃ γµ pνψ)(0) = (ψ†γ0 γµ pνψ)(0) . (226)

Its matrix equivalent is given in Table II. As mentioned in the discussion of
the electromagnetic energy-momentum tensor,

Tµ = T (γµ) = Tµνγν (227)

is the energy-momentum flux through a hyperplane with normal γµ. The
energy-momentum density in the electron rest system is

T (v) = vµTµ = ρ p . (228)
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This defines the “expected” proper momentum p = p(x). The observable p =
p(x) is a statistical prediction for the momentum of the electron at x. In gen-
eral, the momentum p is not collinear with the velocity, because it includes a
contribution from the spin. A measure of this noncollinearity is p ∧ v, which
should be recognized as defining the relative momentum in the electron rest
frame.

From the definition (226) of Tµν in terms of the Dirac wave function, mo-
mentum and angular momentum conservation laws can be established by direct
calculation from the Dirac equation. First, it is found that17

∂µTµ = F · J , (229)

where F = �∧ A is the electromagnetic field and

J = eψγ0ψ̃ = eρv (230)

is identified as the charge current (density), so charge conservation � · J = 0
is an immediate consequence of probability conservation. The right side of
(229) is exactly the classical Lorentz force, so using (169) and denoting the
electromagnetic energy-momentum tensor (168) by Tµ

EM , we can rephrase (229)
as the total energy-momentum conservation law

∂µ(Tµ + Tµ
EM ) = 0 . (231)

This justifies identifying the Dirac current with the charge current of the elec-
tron.

G. Angular momentum conservation.
To derive the angular momentum conservation law, we identify Tµ ∧ x as

the orbital angular momentum tensor (See Table II for comparison with more
conventional expressions). Noting that ∂µx = γµ, we calculate

∂µ(Tµ ∧ x) = Tµ ∧ γµ + ∂µTµ ∧ x . (232)

To evaluate the first term on the right, we return to the definition (226) and
find

γµTµν = [ (pνψ)γ0ψ̃ ](1) = 1
2

[
(pνψ)γ0ψ̃ + ψγ0(pνψ)˜ ]

= (pνψ)γ0ψ̃ − ∂ν( 1
2 h̄ψiγ3ψ̃) .

(233)

Summing with γν and using the Dirac equation (225) to evaluate the first term
on the right while recognizing the spin vector (211) in the second term, we
obtain

γνγµTµν = mψψ̃ + �(ρsi) . (234)

The scalar part gives the curious result

Tµ
µ = Tµ · γµ = mρ cos β . (235)

However, the bivector part gives the relation we are looking for:

Tµ ∧ γµ = T νµγν ∧ γµ = � · (ρsi) = −∂µ(ρSµ) , (236)
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where

Sµ = (is) · γµ = i(s ∧ γµ) (237)

is the spin angular momentum tensor already identified in (213) and (217). Thus
from (232) and (229) we obtain the angular momentum conservation law

∂µJµ = (F · J) ∧ x , (238)

where

J(γµ) = Jµ = Tµ ∧ x + ρSµ (239)

is the bivector-valued angular momentum tensor, representing the total angular
momentum flux in the γµ direction. In the electron rest system, therefore, the
angular momentum density is

J(v) = ρ(p ∧ x + S) , (240)

where recalling (199), p∧x is recognized as the expected orbital angular momen-
tum and as already advertised in (212), S = isv can be identified as an intrinsic
angular momentum or spin. This completes the justification for interpreting S
as spin. The task remaining is to dig deeper and understand its origin.

H. Local observables.
We now have a complete set of conservation laws for the local observables

ρ, v, S and p, but we still need to ascertain precisely how the kinetic momentum
p is related to the wave function. For that purpose we employ the invariant
decomposition ψ = (ρeiβ)

1
2 R. First we need some kinematics. By differentiating

RR̃ = 1, it is easy to prove that the derivatives of the rotor R must have the
form

∂µR = 1
2 ΩµR , (241)

where Ωµ = Ωµ(x) is a bivector field. Consequently the derivatives of the eν

defined by (205) have the form

∂µeν = Ωµ · eν . (242)

Thus Ωµ is the rotation rate of the frame {eν} as it is displaced in the direction
γµ.

Now, with the help of (212), the effect of pν on ψ can be put in the form

pνψ = [ ∂ν( ln ρ + iβ) + Ων ]Sψ − eAνψ , (243)

whence

(pνψ)γ0ψ̃ = [ ∂ν( ln ρ + iβ) + Ων ]iρs − eAνρv . (244)

Inserting this in the definition (226) for the energy-momentum tensor, after
some manipulations beginning with is = Sv, we get the explicit expression

Tµν = ρ
[
vµ(Ων · S − eAν) − (γµ ∧ v) · (∂νS) − sµ∂νβ

]
. (245)
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From this we find, by (228), the momentum components

pν = Ων · S − eAν . (246)

This reveals that (apart from the Aν contribution) the momentum has a kine-
matical meaning related to the spin: It is completely determined by the compo-
nent of Ων in the spin plane. In other words, it describes the rotation rate of
the frame {eµ} in the spin plane or, if you will “about the spin axis.” But we
have identified the angle of rotation in this plane with the phase of the wave
function. Thus, the momentum describes the phase change in all directions of
the wave function or, equivalently, of the frame {eµ}. A physical interpretation
for this geometrical fact will be offered in the next Section.

The kinematical import of the operator pν is derived from its action on the
rotor R. To make that explicit, write (241) in the form

(∂νR)ih̄R̃ = ΩνS = Ων · S + Ων ∧ S + ∂νS , (247)

where (212) was used to establish that

∂νS = 1
2 [ Ων , S ] = 1

2 (ΩνS − SΩν) . (248)

Introducing the abbreviation

iqν = Ων ∧ S , (249)

and using (246) we can put (247) in the form

(pνR)R̃ = pν + iqν + ∂νS . (250)

This shows explicitly how the operator pν relates to kinematical observables,
although the physical significance of qν is obscure. Note that both pν and ∂νS
contribute to Tµν in (245), but qν does not. By the way, it should be noted
that the last two terms in (245) describe energy-momentum flux orthogonal to
the v direction. It is altogether natural that this flux should depend on the
component of ∂νS as shown. However, the significance of the parameter β in
the last term of (245) remains obscure.

An auxiliary conservation law can be derived from the Dirac equation by
decomposing the Dirac current as follows. Solving (225) for the Dirac charge
current, we have

J = eψγ0ψ̃ =
e

m
γµ(pµψ)ψ̃ . (251)

The identity (250) is easily generalized to

(pµψ)ψ̃ = (pµ + iqµ)ρeiβ + ∂µ(ρSeiβ) . (252)

The right side exhibits the scalar, pseudoscalar and bivector parts explicitly.
From the scalar part we define the Gordon current:

Kµ =
e

m
[ (pµψ)ψ̃ ](0) =

e

m
(ψ̃ pµψ)(0) =

e

m
(pµρ cos β − qµρ sin β) . (253)
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Or in vector form,

K =
e

m
ρ(p cos β − q sin β) . (254)

When (252) is inserted into (251), the pseudovector part must vanish, and the
vector part gives us the so-called “Gordon decomposition”

J = K + � · M, (255)

where the definition (219) of the magnetization tensor M has been introduced
for the last term in (252) This is ostensibly a decomposition into a conduction
current K and a magnetization current � · M , both of which are separately
conserved. But how does this square with the physical interpretation already
ascribed to J? The possibility that it arises from a substructure in the charge
flow is considered in the next Section.

So far we have supplied a physical interpretation for all parameters in the
wave function (204) except the “duality parameter” β. To date, this parameter
has defied all efforts at physical interpretation, because of its peculiar “duality
role.” For example, a straightforward interpretation of the Gordon current in
(254) as a conduction current is confounded by β �= 0. Similarly, equation (219)
tells us that the magnetization (magnetic moment density) M is not directly
proportional to the spin (as commonly supposed) but “dually proportional.”
The duality factor eiβ has the effect of generating an effective electric dipole
moment for the electron, as is easily shown by applying the spacetime split
(181) to M. This seems to conflict with experimental evidence that the electron
has no detectable electric moment, but the issue is subtle. We are forced to
leave the problem of interpreting β as unresolved, though it rises again in the
next Section.

VIII. Interpretation of Quantum Mechanics

Quantum mechanics has been spectacularly successful over an immense range
of applications, so there is little doubt about the efficacy of its mathematical
formulation. However, the physical interpretation of quantum mechanics has
remained a matter of intense debate. Two prominent alternatives have emerged
in the literature: the Copenhagen interpretation championed by Niels Bohr, and
the causal interpretation championed by David Bohm. These two interpretations
are so radically different as to constitute different physical theories, though they
share the same mathematical formulation. The essential difference is that the
causal theory asserts that electrons have continuous paths in spacetime, whereas
the Copenhagen theory denies that.

James Cushing21 has traced the history of the dispute between these theories
and critically reviewed arguments in support of the causal theory. In agreement
with many other commentators, he concludes that the causal theory is perfectly
viable, and every objection from the Copenhagen camp has been adequately
answered in the literature. He traces the dispute from the inception of quantum
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mechanics and comes to the surprising conclusion that the dominance of the
Copenhagen theory in the physics literature is a historical accident that could
easily have been deflected in favor of the causal theory instead.

Our real formulation of Schroedinger-Pauli-Dirac theory puts the causal-
Copenhagen dispute in new light by making the geometric structure of the
equations more explicit. The causal theory admits to a much more detailed
physical interpretation of this structure than the Copenhagen theory, including
hidden structure revealed by the real formulation. However, since real QM is
mathematically isomorphic with standard QM, our analysis does not contradict
successes of the Copenhagen theory.

Real QM does raise some questions for Copenhagen theory though. First,
questions about the relation of observables to operators in QM are raised by
the realization that both hermiticity and noncommutivity of Pauli and Dirac
matrices have clear geometric meanings with no necessary connection to QM.
Second, any interpretation of uncertainty relations should account for the fact
that Planck’s constant enters the Dirac equation only as the magnitude of the
spin. What indeed does spin have to do with limitations on observability?

The causal theory does not resolve all the mysteries of QM. Rather it replaces
the mysteries of Copenhagen theory with a different set of mysteries. As the
two theories are mathematically equivalent, the choice between them could be
regarded as a matter of taste. However, they suggest very different directions
for research that could lead to testable differences between them.

Our discussion here is concentrated on the geometry of the single particle
Dirac theory as a guide to physical interpretation. Many particle theory raises
new issues. We merely note that Bohm and his followers have extended the
causal theory to the many particle case22,23 and demonstrated its use in ex-
plaining such mysterious QM effects as entanglement. As real QM is so similar
to Bohm’s theory in the one-particle case, it has a straightforward extension to
the many-particle case by following Bohm. No position on the validity of that
extension is taken here.

A. Electron trajectories.
In classical theory the concept of particle refers to an object of negligible size

with a continuous trajectory. Copenhagen theory asserts that it is meaningless
or impossible in quantum mechanics to regard the electron as a particle in this
sense. On the contrary, Bohm argues that the difference between classical and
quantum mechanics is not in the concept of particle itself but in the equation
for particle trajectories. From Schroedinger’s equation he derived an equation
of motion for the electron that differs from the classical equation only in a
statistical term called the “quantum force.” He was careful, however, not to
commit himself to any special hypothesis about the origins of the quantum
force. He accepted the form of the force dictated by Schroedinger’s equation,
and he took pains to show that all implications of Schroedinger theory are
compatible with a strict particle interpretation. Adopting the same general
particle interpretation of the Dirac theory, we find a generalization of Bohm’s
equation that provides a new perspective on the quantum force.

The Dirac current ρv assigns a unit timelike vector v(x) to each spacetime
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point x where ρ �= 0. In accordance with the causal theory, we interpret v(x) as
the expected proper velocity of the electron at x, that is, the velocity predicted
for the electron if it happens to be at x. The velocity v(x) defines a local
reference frame at x called the electron rest frame. The proper probability density
ρ = (ρv) · v can be interpreted as the probability density in the rest frame. By a
well known theorem, the probability conservation law (208) implies that through
each spacetime point there passes a unique integral curve that is tangent to v
at each of its points. Let us call these curves (electron) streamlines. In any
spacetime region where ρ �= 0, a solution of the Dirac equation determines a
family of streamlines that fills the region with exactly one streamline through
each point. The streamline through a specific point x0 is the expected history
of an electron at x0, that is, it is the optimal prediction for the history of
an electron that actually is at x0 (with relative probability ρ(x0), of course!).
Parametrized by proper time τ , the streamline x = x(τ) is determined by the
equation

dx

dτ
= v(x(τ)) . (256)

The main objection to a strict particle interpretation of the Schroedinger and
Dirac theories is the Copenhagen claim that a wave interpretation is essential to
explain diffraction. The causal theory claims otherwise, based on the fact that
the wave function determines a unique family of electron trajectories. For dou-
ble slit diffraction these trajectories have been calculated from Schroedinger’s
equation,24,25 and, recently, from the Dirac equation.15 Sure enough, after flow-
ing uniformly through the slits, the trajectories bunch up at diffraction maxima
and thin out at the minima. According to Bohm, the cause of this phenomenon
is the quantum force rather than wave interference. This shows at least that the
particle interpretation is not inconsistent with diffraction phenomena, though
the origin of the quantum force remains to be explained. The obvious objections
to this account of diffraction have been adequately refuted in the literature.21 It
is worth noting, though, that this account has the decided advantage of avoid-
ing the paradoxical “collapse of the wave function” inherent in the “dualist”
Copenhagen explanation of diffraction. At no time is it claimed that the elec-
tron spreads out like a wave to interfere with itself and then “collapses” when
it is detected in a localized region. The claim is only that the electron is likely
to travel on one of a family of possible trajectories consistent with experimental
constraints; which trajectory is known initially only with a certain probabil-
ity, though it can be inferred more precisely after detection in the final state.
Indeed, it is possible then to infer which slit the electron passed through.24

These remarks apply to the Dirac theory as well as to the Schroedinger theory,
though there are some differences in the predicted trajectories,15 because the
Schroedinger current is the nonrelativistic limit of the Gordon current rather
than the Dirac current.29

Now let us investigate the equations for motion along a Dirac streamline
x = x(τ). On this curve the kinematical factor in the Dirac wave function (204)
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can be expressed as a function of proper time

R = R(x(τ)) . (257)

By (205), (207) and (256), this determines a comoving frame

eµ = R γµR̃ (258)

on the streamline with velocity v = e0, while the spin vector s and bivector S
are given as before by (211) and (212). In accordance with (241), differentiation
of (257) leads to

Ṙ = v ·�R = 1
2ΩR , (259)

where the overdot indicates differentiation with respect to proper time, and

Ω = vµΩµ = Ω(x(τ)) (260)

is the rotational velocity of the frame {eµ}. Accordingly,

ėµ = v ·� eµ = Ω · eµ . (261)

But these equations are identical in form to those in Section V for the classical
theory of a relativistic rigid body with negligible size. This is a consequence
of the particle interpretation. In Bohmian terms, the only difference between
classical and quantum theory is in the functional form of Ω. Our main task,
therefore, is to investigate what the Dirac theory tells us about Ω.

We begin by examining the special case of a free particle and the simplest
approach to the classical limit. Then we formulate the causal theory in the
most general terms and discuss its extension to a more detailed interpretation
of Dirac theory.

B. Solutions of the Dirac equation.
This is not the place for a systematic study of solutions to the Dirac equation.

Suffice it to say that every solution in the matrix theory has a corresponding
solution in the real theory. To show what a “real solution” looks like and the
physical insight that it offers, we consider the simplest example of a free particle.

For a free particle with proper momentum p, the wave function ψ is an eigen-
state of the “proper momentum operator” (223), that is,

pψ = pψ, (262)

so the Dirac equation (225) reduces to the algebraic equation

pψ = ψγ0m. (263)

The solution is a plane wave of the form

ψ = (ρeiβ)
1
2 R = ρ

1
2 eiβ/2R0e

−ip·x/h̄ , (264)

where the kinematical factor R has been decomposed to explicitly exhibit its
spacetime dependence on a phase satisfying �p · x = p. Inserting this into (223)
and solving for p we get

p = meiβRγ0R̃ = mve−iβ . (265)
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This implies eiβ = ±1, so

eiβ/2 = 1 or i , (266)

and p = ±mv corresponding to two distinct solutions. One solution appears to
have negative energy E = p · γ0, but that can be rectified by changing the sign
in the phase of the “trial solution” (264).

Thus we obtain two distinct kinds of plane wave solutions with positive energy
E = p · γ0:

ψ− = ρ
1
2 R0e

−ip·x/h̄ , (267)

ψ+ = ρ
1
2 iR0e

+ip·x/h̄ . (268)

We identify these as electron and positron wave functions. Indeed, the two
solutions are related by charge conjugation. According to (202), the charge
conjugate of (267) is

ψC
− = ψ−σ2 = ρ

1
2 iR′

0e
+ip·x/h̄ , (269)

where

R′
0 = R0(−iσ2) . (270)

The factor −iσ2 represents a spatial rotation that just “flips” the direction of
the spin vector. Evidently (268) and (269) are both positron solutions, but with
oppositely directed spins.

Determining the comoving frame (258) for the electron solution (267), we find
that the velocity v = R0γ0R̃0 and the spin s = 1

2 h̄R0γ3R̃0 are constant, but,
for k = 1, 2,

ek(τ) = ek(0)e−p·x/S = ek(0)ee2e1ωτ , (271)

where τ = v · x is the proper time along the streamline and frequency ω is given
by

ω =
2m

h̄
= 1.6 × 1021 s−1 . (272)

Thus, the streamlines are straight lines along which the spin is constant, and
e1 and e2 rotate about the “spin axis” with the ultrahigh frequency (272) as the
electron moves along the streamline. A similar result is found for the positron
solution.

For applications, the constants in the solution must be specified in more detail.
If the wave functions are normalized to one particle per unit volume V in the
γ0-system, then we have

ρ0 = γ0 · (ρv) =
1
V

or ρ =
m

EV
=

1
γ0 · vV

. (273)
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To separate velocity and spin variables, we follow the procedure beginning with
(80) to make the spacetime split

R = LU where U = U0e
−ip·x/h̄ . (274)

Inserting this into (263), we can express L in terms of p and γ0, as already
shown in (88). The rotor U describes the spin direction in the same way as in
the Pauli theory in GA1.

C. The classical limit.
One way to get a classical limit is through an “eikonal approximation” to the

Dirac equation. Accordingly, the wave function is set in the form

ψ = ψ0e
−iϕ/h̄ . (275)

Then the “amplitude” ψ0 is assumed to be slowly varying compared to the
“phase” ϕ, so the derivatives of ψ0 in the Dirac equation can be neglected to a
good approximation. Thus, inserting (275) into the Dirac equation, say in the
form (192), we obtain

(�ϕ − eA)eiβ = mv . (276)

As in the plane wave case (265) this implies eiβ = ±1, and the two values
correspond to electron and positron solutions. For the electron case,

�ϕ − eA = mv . (277)

This defines a family of classical histories in spacetime. For a given external
potential A = A(x), the phase ϕ can be found by solving the “Hamilton-Jacobi
equation”

(�ϕ − eA)2 = m2 , (278)

obtained by squaring (277). On the other hand, the curl of (277) gives

m�∧ v = −e�∧ A = −eF . (279)

Dotting this with v and using the identity

v̇ = v · (�∧ v) = v ·�v, (280)

we obtain exactly the classical Lorentz force for each streamline.
Inserting (279) into (287), we obtain

Ω =
e

m
F + (m + eA · v)S−1 . (281)

Whence the rotor equation (259) assumes the explicit form

Ṙ =
e

2m
FR − Ri(m + eA · v)/h̄ . (282)

This admits a solution by separation of variables:

R = R0e
−iϕ/h̄ , (283)
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where

Ṙ0 =
e

2m
FR0 (284)

and

ϕ̇ = v ·�ϕ = m + eA · v . (285)

Equation (284) is identical with the classical rotor equation (99) with Lorentz
torque, while (285) can be obtained from (277).

Thus, in the eikonal approximation the quantum equation for a comoving
frame differs from the classical equation only in having additional rotation in
the spin plane. Quantum mechanics also assigns energy to this rotation, and
an explicit expression for it is obtained by inserting (281) into (246), with the
interesting result

p · v = m +
e

m
F · S . (286)

This is what one would expect classically if there were some sort of localized
motion in the spin plane. Note that the high frequency rotation rate (272)
due to the mass is shifted by a magnetic type interaction. That possibility is
considered below.

The two kinds of solutions distinguished by the values of β in (266) and
(276) suggest that β parametrizes an admixture of particle–antiparticle states.
Unfortunately, that is inconsistent with more general solutions of the Dirac
equation, such as the Darwin solutions for the Hydrogen atom. One way out of
the dilemma is simply to assert that it shows the need for second quantization,
but that solution is too facile without further argument.

D. Quantum torque
Having gained some physical insight from special cases, let us turn to the

derivation of a general equation for a Dirac streamline. For this purpose, we
know that the rotor equation (259) is optimal. All we need is an explicit form
for the rotational velocity Ω defined by (260). A general expression for Ω in
terms of observables has been derived from the Dirac equation in two steps.17

The first step yields the interesting result

Ω = −�∧ v + v · (i�β) + (m cos β + eA · v)S−1 . (287)

But this tells us nothing about particle streamlines, because it gives us the
identity (280) for the velocity. The second step yields

−�∧ v + v · (i�β) = m−1(eFeiβ + Q) , (288)

where Q has the complicated form

Q = −eiβ{ ∂µWµ +
1
2
(γµ ∧ γν)[(Wµ × W ν)S−1 ]}(2) , (289)

where A × B is the commutator product and

Wµ = (ρeiβ)−1∂µ(ρeiβS) = ∂µS + S∂µ( ln ρ + iβ) . (290)
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Hence,

Ω =
e

m
Feiβ + m−1Q + (m cos β + eA · v)S−1 . (291)

This is the desired result in its most general form.
Again we see the Lorentz torque in (291), but multiplied by the duality factor

eiβ . Again the cases with opposite charge are covered by cos β = ±1, and that
assignment simplifies the other terms in (291) as well. However, the value of β
is set by solving the Dirac equation, and in solutions for the Hydrogen atom,
for example, β is a variable function of position that so far has defied physical
interpretation.

The term Q in (291) generalizes the “quantum force” term that Bohm iden-
tifies in Schroedinger theory as responsible for quantum effects on particle mo-
tion.22 Like the “Lorentz torque” it exerts a torque on the spin as well as a
force on the motion, so let us call Q the quantum torque. From (290) we see
that Q is independent of normalization on the probability density ρ, as Bohm
has observed for the quantum force. However, the striking new insight brought
by the Dirac theory and made explicit by (289) and (290) is that the quantum
torque is derived from spin. To put it baldly: No spin! No quantum torque!
No quantum force! No quantum effects! This may be the strongest theoretical
evidence that spin is an essential ingredient of QM, not simply an “add-on” to
more basic quantum behavior.

Though Bohm never noticed it, the quantum force is spin dependent even in
Schroedinger theory, provided it is derived from Dirac theory.29

The expression (291) for Ω may be the best starting place for studying the
classical limit. The classical limit can be characterized first by ∂µ ln ρ → 0 and,
say, cos β = 1; second, by ∂µS = vµṠ, which comes from assuming that only
the variation of S along the history can affect the motion. Accordingly, (289)
reduces to Q =

..
S , and for the limiting classical equations of motion for a particle

with intrinsic spin we obtain

mv̇ = (eF −
..
S ) · v , (292)

mṠ = (eF −
..
S )×S . (293)

These coupled equations have not been seriously studied. Of course, they should
be studied in conjunction with the spinor equation (259).

E. Zitterbewegung.
Many students of the Dirac theory including Schroedinger26,27 and Bohm22

have suggested that the spin of a Dirac electron is generated by localized par-
ticle circulation that Schroedinger called zitterbewegung (= trembling motion).
Schroedinger’s original analysis applied only to free particles. However, the real
Dirac theory provides a natural extension of the interpretation to all solutions of
the Dirac equation. Since the Dirac equation is the prototypical equation for all
fermions, the interpretation extends broadly to quantum mechanics. It has been
dubbed the the zitterbewegung (zbw) interpretation of quantum mechanics.28
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The zbw interpretation can be regarded as a refinement of the causal in-
terpretation of QM, so it needs to be evaluated in the same light. Its main
advantage is the simple, coherent picture it gives for electron motion. Here is a
brief introduction to the idea.

We have seen that the kinematics of electron motion is completely character-
ized by the “Dirac rotor” R in the invariant decomposition (204) of the wave
function. The Dirac rotor determines a comoving frame {eµ = R γµR̃} that ro-
tates at high frequency in the e2e1-plane, the “spin plane,” as the electron moves
along a streamline. Moreover, according to (286) there is energy associated with
this rotation, indeed, all the rest energy p · v of the electron. These facts sug-
gest that the electron mass, spin and magnetic moment are manifestations of
a local circular motion of the electron. Mindful that the velocity attributed to
the electron is an independent assumption imposed on the Dirac theory from
physical considerations, we recognize that this suggestion can be accommodated
by giving the electron a component of velocity in the spin plane. Accordingly,
we now define the electron velocity u by

u = v − e2 = e0 − e2 . (294)

The choice u2 = 0 has the advantage that the electron mass can be attributed
to kinetic energy of self interaction while the spin is the corresponding angular
momentum.28

This new identification of electron velocity makes the plane wave solutions
more physically meaningful. For p · x = mv · x = mτ , the kinematical factor for
the solution (267) can be written in the form

R = e
1
2ΩτR0 , (295)

where Ω is the constant bivector

Ω = mS−1 =
2m

h̄
e1e2 . (296)

From (295) it follows that v is constant and

e2(τ) = eΩτe2(0) . (297)

So u = ż can be integrated immediately to get the electron history

z(τ) = vτ + (eΩτ − 1)r0 + z0 , (298)

where r0 = Ω−1e2(0). This is a lightlike helix centered on the Dirac streamline
x(τ) = vτ + z0 − r0. In the electron “rest system” defined by v, it projects to a
circular orbit of radius

| r0 | = |Ω−1 | =
h̄

2m
= 1.9 × 10−13m . (299)

The diameter of the orbit is thus equal to an electron Compton wavelength. For
r(τ) = eΩτr0, the angular momentum of this circular motion is, as intended,
the spin

(mṙ) ∧ r = mṙr = mr2Ω = mΩ−1 = S . (300)
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Finally, if z0 is varied parametrically over a hyperplane normal to v, equation
(298) describes a 3-parameter family of spacetime filling lightlike helixes, each
centered on a unique Dirac streamline. According to the causal interpretation,
the electron can be on any one of these helixes with uniform probability.

Let us refer to this localized helical motion of the electron by the name zit-
terbewegung (zbw) originally introduced by Schroedinger. Accordingly, we call
ω = Ω · S the zbw frequency and λ = ω−1 the zbw radius. The phase of the wave
function can now be interpreted literally as the phase in the circular motion, so
we can refer to that as the zbw phase.

Although the frequency and radius ascribed to the zbw are the same here as
in Schroedinger’s work, its role in the theory is quite different. Schroedinger
attributed it to interference between positive and negative energy components
of a wave packet,26,27 whereas here it is associated directly with the complex
phase factor of a plane wave. From the present point of view, wave packets and
interference are not essential ingredients of the zbw, although the phenomenon
noticed by Schroedinger certainly appears when wave packets are constructed.
Of course, the present interpretation was not an option open to Schroedinger,
because the association of the unit imaginary with spin was not established (or
even dreamed of), and the vector e2 needed to form the spacelike component
of the zbw velocity u was buried out of sight in the matrix formalism. Now
that it has been exhumed, we can see that the zbw may play a ubiquitous role
in quantum mechanics. The present approach associates the zbw phase and
frequency with the phase and frequency of the complex phase factor in the
electron wave function. This is the central feature of the the zitterbewegung
interpretation of quantum mechanics.

The strength of the zbw interpretation lies first in its coherence and com-
pleteness in the Dirac theory and second in the intimations it gives of more
fundamental physics. It will be noted that the zbw interpretation is completely
general, because the definition (294) of the zbw velocity is well defined for any
solution of the Dirac equation. It is also perfectly compatible with everything
said about the causal interpretation of the Dirac theory. One need only recog-
nize that the Dirac velocity can be interpreted as the average of the electron
velocity over a zbw period, as expressed by writing

v = u . (301)

Since the period is on the order of 10−21s, it is v rather than u that best describes
electron motion in most experiments.

Perhaps the strongest theoretical support for the zbw interpretation is the
fact that it is fundamentally geometrical; it completes the kinematical interpre-
tation of R, so all components of R, even the complex phase factor, characterize
features of the electron history.

The key ingredients of the zbw interpretation are the complex phase factor
and the energy-momentum operators pµ defined by (223). The unit imaginary
i appearing in both of these has the dual properties of representing the plane in
which zbw circulation takes place and generating rotations in that plane. The
phase factor literally represents a rotation on the electron’s circular orbit in the
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spin plane. Operating on the phase factor, the pµ computes the phase rotation
rates in all spacetime directions and associates them with the electron energy-
momentum. Thus, the zbw interpretation explains the physical significance of
the mysterious “quantum mechanical operators” pµ.

The key ingredients of the zbw interpretation are preserved in the nonrelativis-
tic limit and so provide a zitterbewegung interpretation of Pauli-Schroedinger
theory. The nonrelativistic approximation to the STA version of the Dirac
theory, leading through the Pauli theory to the Schroedinger theory, has been
treated in detail elsewhere.18 But the essential point can be seen by a split of
the Dirac wave function ψ into the factors

ψ = ρ
1
2 eiβ/2LUe−i(m/h̄)t . (302)

In the nonrelativistic approximation three of these factors are neglected or elim-
inated and ψ is reduced to the Pauli wave function ψP = ρ

1
2 U , where the rotor

U retains the portion of the phase that is influenced by external interactions.
It follows that even in the Schroedinger theory the phase ϕ/h̄ describes the

zbw, and ∂µϕ describes the zbw energy and momentum. This implies that the
physical significance of the complex phase factor e−i(ϕ/h̄) is kinematical rather
than logical or statistical as so often claimed.

The zbw interpretation has the potential to explain much more than the elec-
tron spin and magnetic moment,28,30,31 but it remains to be seen if that is a
fruitful direction for research.

One interesting direction for future research is application of Feynman’s path
integral methods in real quantum theory. Suppose that the electron state at
each point x is characterized by a spacetime rotor Rk(x) for each path to the
point. Feynman’s complex phase factor can then be incorporated in the Rk(x)
as part of the zbw path, and spin will be included automatically. It is easy to
prove that the sum over paths will then produce a wave function of the general
form

ψ(x) =
∑

k

Rk(x) = (ρeiβ)
1
2 R (303)

Thus, the factor(ρeiβ)
1
2 arises from superposition, which supports its interpreta-

tion as a statistical factor and may thereby explain the origin of the troublesome
parameter β.

IX. STA in the physics curriculum

I claim that the physics curriculum at all levels can be thoroughly unified and
considerably simplified by adopting STA as the core mathematical language
of physics. The language is fully developed and ready to use. Setting the
politics of curriculum reform aside, let us consider how a forward-looking physics
department could incorporate STA into its curriculum.
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In GA1 I made the case for adopting GA as the mathematical language of
physics from the outset of the first course. For the sake of argument, let us sup-
pose that has been done. Presumably, the students will have developed some
proficiency with GA by the end of the first semester, or the first year, at least.
That, I propose, is the ideal time to introduce the rudiments of STA, with the
objective of developing student capacity for spacetime thinking as early as pos-
sible. This step is not so radical as might be supposed, for the fundamental
geometric product defining STA in Section II is nearly the same as the defining
product introduced in GA1 for classical physics, the main difference being the
signature of spacetime and its geometric role in characterizing the light cone.
Moreover, the spacetime split in Section III makes it possible to interrelate rel-
ativistic and nonrelativistic physics without appeal to Lorentz transformations.
That enables students immediately to reason with relativistic invariants and ac-
quire a working knowledge of such important physical cancepts as mass-energy
equivalence, energy-momentum conservation and time dilation. This portion of
the curriculum is easily constructed from available materials.3

Early introduction to STA will make it available throughout the rest of the
curriculum, so it will be possible to move fluently between relativistic and non-
relativistic treatments of any topic, whatever is most appropriate. Wasted time
in treating a topic both relativistically and nonrelativistically in different courses
will be eliminated. The usual junior level course in electrodynamics will be able
to take full advantage of the simplifications brought by the STA treatment in
Sections V and VI. Finally, the senior level quantum mechanics course will be
able to deal with the real Dirac equation from the outset. I daresay that this
would be an eyeopener to many physicists.15

It should be recognized that this unprecedented simplification of classical,
relativistic and quantum physics is enabled by two profound STA innovations:
First, a common spinor method for rotations and rotational dynamics. Second,
a universal concept of vector derivative.

Of course, the wholesale reconstruction of the physics curriculum proposed
here will be a formidable task, though all the pieces are at hand. Who will
volunteer to get it started?!

Note. Most of the papers listed in the references are available on line at
<http://modelingnts.la.asu.edu> or <http://www.mrao.cam.ac.uk/˜clifford/>.
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