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Space-Time Structure of Weak and

Electromagnetic Interactions

David Hestenes

The generator of electromagnetic gauge transformations in the Dirac equation

has a unique geometric interpretation and a unique extension to the generators

of the gauge group SU(2)×U(1) for the Weinberg-Salam theory of weak and

electromagnetic interactions. It follows that internal symmetries of the weak

interactions can be interpreted as space-time symmetries of spinor fields in the

Dirac algebra. The possibilities for interpreting strong interaction symmetries in

a similar way are highly restricted.

1. INTRODUCTION

It has often been suggested that observed symmetries among elementary particles may well
reflect symmetries of some fundamental dynamical equation or system of equations. The
suggestion has gained credence with the recent successes of gauge theories, the Weinberg-
Salam (W-S) model in particular. However, in current theories no definite connection has
yet been established between the so-called internal symmetries of particle interactions and
space-time symmetries of Lorentz invariant fields. This paper aims to show that the basis
for a connection between internal symmetries and spacetime symmetries exists already in
the Dirac equation for an electron.

The key step in the argument is the recognition that the generator of electromagnetic
gauge transformations in the Dirac equation has a definite geometric interpretation. We
show, in fact, that it is the generator of local spatial rotations which leave the Dirac
current and spin invariant. All this is hidden in the conventional representation of the
Dirac equation, but we employ a representation that makes it explicit.

Having established that the generator of electromagnetic gauge transformations has a
geometric interpretation, we certainly expect the same for generators of weak gauge trans-
formations if the unification of weak and electromagnetic interactions in a gauge theory is
on the right track. Sure enough, we find that the group SU(2) × U(1) of the W-S model
exists already as a symmetry group of spinor fields in space-time.

We find that the W-S model can be accommodated by generalization of the conventional
spinors with a definite geometrical and physical meaning. The electron and its neutrino
can then be interpreted as orthogonal eigenstates of a single lepton in the same way that
orthogonal spin states are interpreted as distinct states of a single particle. This unification
of electron and neutrino by representing them as components of a single spinor field is
geometrically analogous to the unification of electric and magnetic fields by representing
them as components of a single-rank two-tensor.

By adhering to the geometrical interpretation of the generators, we are led to a repre-
sentation of the W-S model with new features. This provides some theoretical justification
for the W-S model by establishing an intrinsic connection to the Dirac theory. This in-
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cludes a justification for the gauge group in the W-S model by establishing a geometric
interpretation of the group and definite reasons for preferring it to others. On the other
hand, the experimental success of the W-S model provides some support for the argument
presented here, for it will be seen that the SU(2) × U(1) group of the W-S model is a unique
consequence of the argument, and competing groups which have been proposed cannot be
accommodated within this theoretical framework.

The new features attributed here to the W-S model do not alter any experimental pre-
dictions of the model. However, they do suggest new ways to generalize the model while
severely limiting the possibilities that need to be considered.

2. SPACE-TIME ALGEBRA

To help us identify and represent geometrical and physical properties of spinor fields,
we shall employ a somewhat unconventional formalism. The basic definitions and results
we need will merely be stated here, because the formalism and its rationale have been
expounded at length in Refs. 1–4. Its relation to conventional Dirac theory is summarized
in Ref. 4. An extensive mathematical development of the formalism is carried out in Ref.
5.

Let {γµ, µ = 0, 1, 2, 3} be an orthonormal set of vectors in space-time. We shall represent
all physical quantities as elements of the real Clifford algebra generated by the γµ. Let us
refer to this algebra as the Space-Time Algebra (STA), because all its elements have a
geometric interpretation.

Representations of the γµ by 4×4 matrices are called Dirac matrices. The Dirac Algebra
is the matrix algebra over the field of complex numbers generated by the Dirac matrices.
There are two good reasons for not formulating physics in terms of the Dirac algebra:
First, matrix representations of the γµ, are completely irrelevant to their interpretation as
vectors. Second, imaginaries in the complex number field have no designated geometrical
interpretation. Because it contains imaginary scalars the Dirac algebra has twice as many
degrees of freedom as STA, twice as many, it turns out, as are needed for the purposes of
physics. To see that this is so, we need a few definitions and relations.

The signature of space-time is expressed by the equations

γ2
0 = 1, γ2

1 = γ2
2 = γ2

3 = −1

We use the usual convention for raising and lowering indices, so

γµ = gµνγν

where
gµν ≡ γµ · γν = 1

2 (γµγν + γνγµ)

An arbitrary element of STA will be referred to as a multivector. The special multivector

i = γ0γ1γ2γ3 = γ5

is called the unit pseudoscalar. We prefer the symbol i to γ5 for reasons which will become
apparent.

2



A multivector is said to be even (odd) if it commutes (anticommutes) with i. Any
multivector Ψ can be decomposed into even and odd parts; thus,

Ψ = Ψ+ + Ψ− (1a)

Ψ+ = 1
2 (Ψ − iΨi) (1b)

Ψ− = 1
2 (Ψ + iΨi) (1c)

Any odd multivector can be expressed as the product of an even multivector with the vector
γ0.

The even multivectors in STA form an algebra called the even subalgebra. This algebra
is itself a Clifford algebra generated by the three multivectors

σk ≡ γkγ0 for k = 1, 2, 3

Note that
σ1σ2σ3 = i = γ0γ1γ2γ3

It will be convenient to adopt the notation

a = akσk

for a linear combination of the σk with scalar coefficients ak. Then any even multivector
M can be put in the form

M = α + iβ + a + ib (2)

where α and β are scalars. Since i2 = −1 and ib = bi this has the mathematical form of a
complex scalar α + iβ plus a complex vector a + ib.

Since the STA is generated by the γµ, any multivector can be expressed as a polynomial
in the vectors γµ. The operation of reversing the order of vector in such a polynomial is
called reversion, and we write Ψ̃ to denote the result of this operation on a multivector Ψ.
The operation

Ψ† = γ0Ψ̃γ0 (3)

corresponds exactly to Hermitian conjugation in the Dirac Algebra. Applied to Eq. (2) it
gives

M† = α − iβ + a − ib (4)

so it can be regarded as a kind of “complex conjugation.”

3. THE DIRAC THEORY

The Dirac equation is one of the foundation stones of quantum electrodynamics. By
studying its structure, we can identify a geometrical basis for the unification of weak and
electromagnetic interactions.

In terms of STA the Dirac wave function can be represented as an even multivector ψ
for which the Dirac equation has the form (in natural units)

γµ(∂µψ − eAµψiσ3) = −mψγ0iσ3 (5)
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where e = | e | is the electron charge and the Aµ are components of the electromagnetic
vector potential. We shall see how this relates to the conventional form of the Dirac
equation below. It is most important to understand that on the right of (5) the vector γ0

is an arbitrarily chosen timelike vector while γ3 in σ3 = γ3γ0 can be any spacelike vector
orthogonal to it. Furthermore, γ0 and γ3 need not be related to the coordinate vectors γµ

in γµ∂µ on the left side of (5), though we choose to relate them for mathematical simplicity.
Two fundamental “observables” in the Dirac theory are the Dirac current

j ≡ ψ γ0ψ̃ (6)

and the spin current
s ≡ ψ γ3ψ̃ (7)

Components of these currents are related to conventional expressions in the Dirac theory
by

jµ = γµ · j = (γµψ γ0ψ̃)S = (ψ† γ0γµψ)S

and

sµ = γµ · (ψγ3ψ̃) = (σ3ψ̃ γ0γµψ)S = −(iσ3ψ
† γ0γµγ5ψ)S = −i′Ψ′† γ0γµγ5Ψ′

where Ψ′ is the column matrix representing a spinor, and i′ is the unit imaginary in the
conventional Dirac algebra. The subscript S in STA denotes scalar part, which corresponds
to the trace in the matrix theory.

4. THE GAUGE GROUP OF THE DIRAC CURRENT

Dirac’s equation (5) is invariant under the electromagnetic gauge transformation

ψ → ψe
1
2 iσσσ3χ (8)

accompanied by eaµ → eAµ + 1
2∂µχ. The corresponding gauge transformation on the

conventional matrix representation of a Dirac spinor is

Ψ′ → e
1
2 i′χ Ψ′ (9)

The striking difference between (8) and (9) is that the generator i′ has no evident geomet-
rical interpretation, while iσ3 = iγ3γ0 = γ2γ1 is the generator of rotations in a spacelike
plane related to physical currents by (6) and (7). Furthermore, i′ has no evident relation
to the generators of any large group while iσ3 belongs to the set of generators iσ1, iσ2,
iσ3 of SU(2). However, we shall see that i′ really does correspond to iσ3, so its relation to
the larger group is merely hidden rather than absent.

Now the basic idea of a unified gauge theory of weak and electromagnetic interactions
is that the interactions are generated by a single gauge group. Since the generator iσ3 of
electromagnetic gauge transformations belongs to STA, we should expect the same of the
larger group. Thus we are led to consider

ψ → ψe
1
2 iσσσ1χ1 and ψe

1
2 iσσσ2χ2 (10)
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as candidates for gauge transformations of weak interactions.
The transformations (8) and (10) leave the Dirac current invariant. The most general

gauge transformation
ψ → ψU (11a)

leaving the Dirac current invariant must satisfy U†U = 1, from which it follows that

U = e
1
2 i(χχχ+β) (11b)

Thus the invariance group of the Dirac current is the group SU(2) × U(1) of the Weinberg-
Salam theory, but we have yet to relate it to weak interactions.

Note that the electromagnetic gauge transformation (8) leaves the spin current (7) in-
variant while the transformations (10) do not. Thus we can associate the spontaneous
symmetry breaking of SU(2) by the electromagnetic interaction with the physical existence
of a definite local spin direction.

5. IDEALS AND SPINORS

We can make (5) look more like the conventional form of the Dirac wave equation by
multiplying it on the right by (1 + γ0)(1 − σ3) so it becomes

γµ(∂µΨ + eΨiAµ) = Ψim (12)

where
Ψ = ψ 1

2 (1 + γ0)(1 − σ3) (13)

Note that
ΨΨ̃ = 0 = ΨiΨ̃

But
Ψγ0Ψ̃ = ψ(1 + γ0)ψ̃ = ΨΨ†γ0 (14)

and
Ψγ0iΨ̃ = iψ(γ3 + γ3γ0)ψ̃ = −ΨiΨ†γ0 (15)

Whence
jµ = (γµψ γ0ψ̃)S = (Ψ† γ0γµΨ)S (16)

and
sµ = (γµψ γ3ψ̃)S = (Ψ†γ0γµγ5Ψi)S (17)

To enhance similarity with conventional expressions, we write γ5 instead of i when multi-
plying a spinor Ψ the left as in (17).

The operation of antiparticle conjugation can be defined by

Ψ → ΨC ≡ iΨγ0i = −iΨiγ0 (18)

For applying it to the Dirac equation (12), we find that the equation for ΨC differs from that
of Ψ only by the sign of the charge. The same result would be obtained by the more general
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definition ΨC = iΨγ0ie
iα, but the choice α = π/2 made in (18) has an especially simple

algebraic interpretation. Considering (1a), (1b), (1c), we see that antiparticle conjugation
defined by (18) interchanges even and odd parts of the wave function and changes their
relative sign. This feature becomes important when we see that even and odd parts have
a distinct physical significance in the Weinberg-Salam model. We know already that the
distinction between even and odd multivectors has definite geometrical significance.

Now the easiest way to make contact with the conventional formulation of the Dirac
theory is to suppose that Ψ′ is the matrix representation of Ψ in the Dirac algebra and that
Ψ′ is an eigenfunction of the matrix i = γ5 on the right so that

Ψ′γ5 = Ψ′i′ = i′Ψ′ (19)

where the unit imaginary i′ is the eigenvalue of γ5. Then taking the matrix representation
of (12) and using (19) we obtain

γµ(∂µ + ei′Aµ)Ψ′ = mi′Ψ′ (20)

Consistent with (19), we may assume that all nonzero elements of the 4 × 4 matrix Ψ′ are
concentrated in a single row, because the operators in (20) do not mix rows. Therefore
(20) is indeed equivalent to the conventional Dirac equation, the only difference being that
the wave function is represented as an element of a minimal left ideal of the Dirac algebra
instead of a column matrix. This difference, however, suggests a generalization.

6. LEPTON ISOSPACE

A left ideal is a subset of an algebra which is invariant under left multiplication by all
elements of the algebra. It is minimal if it contains no smaller left ideals. The four columns
of a matrix Ψ′ in the Dirac algebra are four linearly independent minimal ideals spanning
the algebra. Now, the electron and its neutrino belong to a family of leptons obeying Dirac-
like equations. Formally, we could represent the wave functions of four distinct leptons as
columns of a Dirac matrix Ψ′ so that the columns constitute states in a “lepton isospace.”
Then matrices multiplying Ψ′ on the left, as in (20), couple spin and energy components
of individual lepton wave functions while matrices multiplying Ψ′ on the right must be
regarded as “isospace operators” coupling distinct leptons. So far all this is completely
formal, and representing the lepton family as a 4 × 4 square matrix has no more physical
significance than representing it as a 16-component column matrix. However, the situation
is different if we use STA instead of the Dirac algebra.

To begin with, STA has only two instead of four linearly independent minimal left ideals,
because it has only half as many elements as the Dirac algebra. Therefore, our proposed
lepton family can contain no other particles besides the electron and its neutrino. The
electron wave function Ψ in (13) belongs already to a minimal left ideal; let us now denote
it by Ψe to distinguish it from the neutrino wave function Ψν . Denoting the composite
lepton wave function by Ψ, we have

Ψ = Ψν + Ψe (21)
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According to (13) we must have
Ψeσ3 = −Ψe (22a)

The “orthogonality” of Ψν to Ψe is assured by

Ψνσ3 = Ψν (22b)

Then
Ψν = Ψ1

2 (1 + σ3) (23a)

and
Ψe = Ψ1

2 (1 − σ3) (23b)

Thus, the electron and its neutrino are eigenstates of σ3 in lepton isospace.
Now

σ± ≡ 1
2σ1(1 ± σ3) = 1

2 (σ1 ∓ iσ2) (24)

acting on the right side of the lepton wave function (21) are raising and lowering operators
in lepton isospace. The most general operator acting in this isospace is an even multivector
M , and it decomposes into the irreducible parts shown in (2), namely, an isoscalar α, an
isovector a, an isobivector (= isopseudovector) ib, and an isopseudoscalar iβ.

In contrast to a representation by Dirac matrices, our STA representation of isospace has
a definite physical significance. We have already seen that σ3 has a special relation to the
electron spin, so this explains the significance of identifying the electron and the neutrino as
eigenstates of σ3 rather than, say, σ1 or σ2. Note that the γµ in the isovectors σk = γkγ0

must be interpreted as space-time vectors rather than operators in some abstract “particle
space,” although the indices of γ0 and the σk are not to be associated with space-time
coordinates here; rather, they refer to structural features of the lepton wave function and
its differential equation.

We can see now that the appearance of i on the right of Ψ in the Dirac equation (12)
means that it is an operator in isospace. The i is formally an imaginary number, since it
commutes with the σk and i2 = −1. However, geometrically, it is the unit pseudoscalar
for isospace as well as for spacetime. This imbues complex conjugation with a geometrical
significance and relates inversion in isospace to inversion in space-time.

7. THE WEINBERG-SALAM MODEL

We are now in a position to show that STA provides an ideal basis for the Weinberg-
Salam model of weak and electromagnetic interactions. We can do this by translating into
STA some key features of the W-S model from the review article by Abers and Lee.(6)

The matrix representation Ψ′ of the lepton wave function can be separated into left- and
right-handed parts in the way; thus

Ψ′ = L′ + R′ (25a)

where
L′ = 1

2 (1 − i′γ5)Ψ′ (25b)
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R′ = 1
2 (1 + i′γ5)Ψ′ (25c)

According to (19),
i′γ5Ψ′ = γ5Ψ′i′ = iΨ′i

Comparison with (1a), (1b), (1c) shows, therefore, that left- and right-handed wave func-
tions in the Dirac algebra correspond respectively to even and odd multivectors in STA.
Now we have all the correlates with matrix algebra, and we can work exclusively with STA.

Separation of the lepton wave function (21) into left/right (even/odd) parts gives

Ψ = L + R = Lν + Le + Rν + Re (26)

In the W-S model
Rν = R 1

2 (1 + σ3) = 1
4 (Ψ + iΨi)(1 + σ3) = 0 (27)

and L and R are assumed to behave differently under gauge transformations. The gauge
group of the left-handed part is

L → Le
1
2 i(χχχ+β) (28)

This is the invariance group SU(2) × U(1) of the lepton current Lγ0L̃ . Since L is even,
the gauge transformation of L and its invariant Lγ0L̃ are mathematically equivalent to the
gauge transformation (11a), (11b) of the electron wave function ψ and its invariant, the
Dirac current ψγ0ψ̃. Physically, of course, L and ψ describe different things, although they
are related.

The lepton wave function L determines four currents in lepton isospace,

γ0L̃γµL = L†γ0γµL = l 0µ + lµ (29a)

where
l0µ = 1

2 (γ0L̃γµL + L̃γµLγ0) = (γ0L̃γµL)S = γµ · (Lγ0L̃) (29b)

is an isoscalar current and
lµ = 1

2 (γ0L̃γµL − L̃γµLγ0) (29c)

is an isovector current.
The transformation of the right-handed wave function R corresponding to (28) is

R → Reiβ (30)

It is the invariance group of Rγ0R̃ = Reγ0R̃e corresponding to the isoscalar current r0
µ =

γµ · (Rγ0R̃) = (γ0R̃γµR)S .
The gauge invariant derivatives of L and R are

DµL = ∂µL + L
i

2
(Bµ g′ − Aµ g) (31a)

DµR = ∂µR + RiBµ g′ (31b)
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where g′ and g are coupling constants, Bµ is an isoscalar (space-time) vector field, and Aµ

is an isovector. This corresponds to the gauge invariant lepton lagrangian

Lleptons = (iγ0R̃γµ(∂µR + RBµig′))S

+
(

iγ0L̃γµ
(
∂µL + LBµ

i

2
g′ − LAµ

i

2
g
))

S

= (iΨ†γ0γ
µ∂µΨ)S + 1

2g lµ · Aµ − g′( 1
2 l 0µ + r0

µ)Bµ (32)

The invariant lagrangian for the gauge fields has the usual form, namely

Lgauge = −1
4BµνBµν − 1

4Fµν · Fµν (33)

where

Bµν = ∂µBν − ∂νBµ (34)

Fµν = ∂µAν − ∂νAµ + gAµ × Aν (35)

and
Aµ × Aν = − i

2
(AµAν − AνAµ)

It is now a trivial matter to complete the transcription of the W-S model into STA, so the
reader may be referred to Abers and Lee.(6)

8. DISCUSSION

We have seen that the algebraic ingredients of the W-S model are already present in
the Dirac theory. In particular, the generators of the gauge group SU(2) × U(l) can be
identified as elements of the Dirac algebra, which relates them to the space-time structure
of a spinor field. Thus, we have formulated the W-S model as a generalization of the Dirac
equation entirely within the context of the Dirac algebra, or rather, within its geometric
representation STA. To accomplish this, we have been led to identify the electron-neutrino
doublet as a pair of orthogonal left ideal components of a single lepton wave function. This
has a number of implications for model building and interpretation in elementary particle
theory.

To begin with, in the geometric representation of the W-S model, the doublet wave
function (21) is necessarily an irreducible unit, because there are no more than two linearly
independent ideals in the algebra. Therefore, the doublet cannot be generalized to, say, a
triplet, and the gauge group SU(2) × U(1) cannot be generalized to SU(3) without giving
up the geometric representation along with its unique relation to space-time. Thus, the
geometric representation imposes severe constraints on possible generalizations of the W-S
model.

The composition of electron and neutrino wave functions into a single lepton wave func-
tion Ψ = Ψν + Ψe is geometrically akin to the composition of electric and magnetic fields
into a single skew tensor of rank two. This becomes rather obvious on noting that the mul-
tivector Ψ has its values in the space of skew tensors on space-time. The even (left-handed)
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part L of Ψ is composed of tensors with even rank; thus, we can write the Lorentz invariant
expansion

L = α + 1
2Lµνγνγµ +

1
4!

Lµναβγβγαγνγµ (36)

where the γµ can be regarded as the vector basis for a coordinate system in space-time, so
that the scalar α is a tensor of rank zero, the Lµν are scalar components of a rank-two skew
tensor (bivector), and the Lµναβ are components of a rank-four skew tensor (pseudoscalar).
For orthogonal coordinates, the last term in (36) reduces to

1
4!

Lµναβγβγαγνγµ = L3210γ0γ1γ2γ3 ≡ βi

In a similar way, the odd (right-handed) part R of Ψ is the composite of tensors with the
odd ranks one and three.

It may be thought that the decomposition (36) of a spinor doublet into tensors blurs
the distinction between tensors and spinors and is without physical meaning. The tensor
components such as Lµν are not directly observable, because observables are bilinear func-
tions of L and R. Also, the gauge transformation (28) mixes tensor components of different
rank. However, the distinguished roles of L and R in the W-S model show that there is
physical significance to the decomposition of a spinor into tensors of even and odd ranks,
so a further decomposition into tensor components might also have some significance. The
fact that antiparticle conjugation (18) interchanges even and odd parts provides additional
physical meaning to the even-odd decomposition.

Note that the decomposition of (36) into electron and neutrino spinors by applying the
projection operators 1

2 (1 ± σ3) as in (23a), (23b) is a decomposition of the 8-dimensional
space of even-rank skew tensors into two 4-dimensional subspaces by singling out a preferred
timelike plane specified by σ3 = γ3γ0. Alternatively, the 6-dimensional space of bivectors
can be decomposed into 3-dimensional subspaces by singling out a preferred timelike vector
γ0 as in (2). This, of course, is how the electromagnetic field tensor is decomposed into
electric and magnetic parts.

We have shown that any Dirac spinor can be represented as a multivector in the space of
skew tensors on space-time, so it is admissible to refer to the multivector-valued lepton wave
function Ψ as a spinor field on space-time. Lepton dynamics is expressed by the structure
of the spinor field Ψ which, in turn, is determined by the structure of a differential equation
describing its interaction with other fields. In a pure gauge theory the structure of the
interactions is determined by a gauge group. Since we have shown how to formulate the
W-S model entirely in terms of the Space-Time Algebra, we can interpret the W-S model as
a geometric theory in which leptonic interactions are described by the gauge structure of a
spinor field in space-time. This suggests the hypothesis that all interactions of elementary
particles can be described by gauge structures of spinor fields in space-time. The last words
“in space-time” deserve emphasis, because most gauge theories describe gauge structures
in some abstract “internal space” rather than in the space of skew tensors on space-time
as here. The restriction of gauge theories to space-time structures severely limits the
theoretical possibilities.

A few words should be said about possibilities for generalizing the W-S model to achieve
a more comprehensive theory of interactions described by space-time structures. We have
seen that the group SU(2) × U(1) of the W-S model is the invariance group of Lγ0L̃ , so
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this is the largest gauge group for an even spinor field. It is natural, therefore, to consider
the invariance group of Ψγ0Ψ̃width0pt where Ψ has both odd and even parts. This group
has the structure of the orthogonal group O(4), though its generators are elements of STA;
its gauge invariant derivative is2

DµΨ = ∂µΨ + Ψ[i(Aµ + Bµ) + γ0(Cµ + iDµ)] (37)

Here we have six new isovector vector bosons Cµ − iDµ, in addition to the W-S bosons
Aµ + Bµ. Of course, equation (37) is inconsistent with the W-S model, because it couples
Aµ and Bµ in the same way to both even and odd parts of Ψ. But it is of interest to consider
larger gauge groups from which the W-S model might arise by symmetry breaking. The
explicit appearance of γ0 in (37) implies that the bosons Cµ + iDµ couple even and odd
parts of Ψ, so they would contribute directly to the lepton mass and might provide an
alternative to the Higgs mechanism. On the other hand, the Cµ + iDµ might be considered
for a role in strong interactions. The role of γ0 in antiparticle conjugation (18) should also
be taken into account in developing a theory along this line.

If we are right to interpret the W-S model as specifying a particular space-time structure
for spinor fields, then we have established a geometrical basis for weak and electromagnetic
interactions. Indeed, these interactions can then be represented in various ways as an affine
connection for the space-time manifold.3 One can hardly avoid asking whether it is also
possible to represent strong interactions by a space-time structure of spinor fields, for then
the classification of physical interactions would correspond to a classification of geometric
structures on space-time.

The local space-time representation of isospace employed in this article was first intro-
duced in Ref. 1 and further developed in Ref. 8. However, in those articles it was identified
with the isospace of strong interactions. In this article we have adduced better reasons
for identifying it with lepton isospace, but the possibility remains that the two kinds of
isospace are geometrically related in some way. The concept of “lepton isospace” can be
generalized immediately to “weak isospace” which applies to baryons as well as leptons, for,
as explained by Abers and Lee,(6) the W-S model can be successfully applied to quarks if a
“charmed quark” is introduced to form “weak quark doublets.” From our geometric version
of the W-S model it follows that the arrangement of quarks into weak doublets associates
the quarks with a space-time structure like that of the electron-neutrino doublet. It also
suggests relations between the gauge groups for weak and strong interactions which are still
unexplored.

If strong interactions are to be given a geometric interpretation related to that for weak
interactions, then there should be a natural representation of the group SU(3) in terms of
STA. So there is! Any even multivector M can be expressed as the sum

M = F + φ (38a)

of a bivector F and a “complex” scalar-pseudoscalar

φ = α + iβ (38b)

2 Proved in Section 24 and Appendix C of Ref. 1, where gravitational interactions are also derived from

gauge invariance.
3 An unconventional way to relate the structure of spinor fields to geometry of a space-time manifold is

discussed in Ref. 7.
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TABLE 1. SU(3) Generators λk on the Space of Bivectors {F = a + ib}

Linear opeators Matrix representation

λ1(F ) = 1
2 (σ1Fσ2 + σ2Fσ1)


 0 1

1 0
0




λ2(F ) = 1
2 (σ3F − Fσ3)


 0 −i

i 0
0




λ3(F ) = 1
2 (σ1Fσ1 − σ2Fσ2)


 0 0

0 −1
0




λ4(F ) = 1
2 (σ1Fσ3 + σ3Fσ1)


 1

0
1




λ5(F ) = 1
2 (σ2F − Fσ2)


 −i

0
i




λ6(F ) = 1
2 (σ2Fσ3 + σ3Fσ2)


 0

0 1
1 0




λ7(F ) = 1
2 (σ1F − Fσ1)


 0

0 −i
i 0




λ8(F ) = − 1
2
√

3
(F + 3σ3Fσ3)

1√
3


 1

1
−2




If a timelike vector γ0 is singled out, then, as expressed already in (2), the bivector F has
the induced decomposition

F = a + ib (38c)

furthermore, M has the natural norm

(M†M)S = (F †F )S + φ†φ = a2 + b2 + α2 + β2 (39)

The invariance group of this norm is SU(4), and the subgroup SU(3) is the invariance
group of (F †F )S . Thus, a timelike vector determines a unique decomposition of an even
multivector into an SU(3) triplet F and a singlet φ. It is interesting and perhaps not totally
irrelevant to note that the energy density of an electromagnetic field can be expressed in
the form4 (F †F )S so it has SU(3) as an invariance group. The eight generators of SU(3)

4 Section 9 of Ref. 1.
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λ1, λ2, . . . , λ8 are linear operators λk = λk(F ) on the space of bivectors, and they can be
expressed solely in terms of STA as shown in Table 1. The table also gives the “standard
matrix representation” of the λk with matrix elements

λkij ≡ (σiλk(σj))C (40)

where the subscript C means “complex” (scalar + pseudoscalar) part.
The above remarks suggest that we associate quark states with even multivectors. This

might be done by representing the basic quark multiplet by a pair of even spinor fields Ψ
and Φ so that

Mµ ≡ γ0Φ̃γµΨ = Φ†γ0γµΨ = Fµ + φµ

is a set of quark currents in isospace. A theory developed along these lines will not be
attempted here. These remarks are intended only to indicate the possibility of handling
strong interactions within the present geometric framework.
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