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ABSTRACT. We construct geometric calculus on an oriented k-surface embedded in Eu-
clidean space by utilizing the notion of an oriented k-surface as the limit set of a sequence of
k-chains. This method provides insight into the relationship between the vector derivative,
and the Fundamental Theorem of Calculus and Residue Theorem It should be of practical
value in numerical finite difference calculations with integral and differential equations in
Clifford algebra.

0. Introduction

In 1968, D. Hestenes showed how Geometric Algebra can be used to advantage in refor-
mulating ideas from multivariable calculus [1], [2]. For example, he showed that the proof of
Stokes’ theorem becomes a one-line identity in geometric algebra, if the integral definition
of the vector derivative is adopted. In this paper, we systematically build up calculus on a
k-surface in order to more closely examine the content of these theorems.

Section 1 gives a brief introduction to the geometric algebra of Euclidean n-space, includ-
ing basic definitions and identities which are be used in later sections. The inner, outer,
and geometric products of vectors are discussed, as is the notion of a reciprocal frame of
vectors. The material in this section is taken from [3], [4], and, primarily [5].

In section 2 the concept of an oriented simplex is introduced and related notions from
homology theory are reviewed; more details can be found in [6], [7]. Peculiar to the present
approach are the concepts of the directed content of a simplex, made possible by the intro-
duction of geometric algebra, and the simplicial variable of a k-surface. These concepts are
the basic building blocks for our theory of simplicial calculus developed in later sections.

In section 3 a k-surface is defined to be the limit set of an appropriate sequence of chains
of simplices. A k-surface ϕ is said to be smooth if there exists a smooth k-vector field,
called the pseudoscalar field, at each point of ϕ. Our approach is most closely related to
[8].

In section 4 the directed integral on a k-surface is defined in terms of the directed content
of the limit of the sequence of chains which defines it. The theory of directed integrals is
first developed over a k-simplex, and then generalized. The most remarkable theorem of
this section, which has no counterpart in the related theory of scalar-valued differential
forms, expresses the directed moment of the boundary of a k-simplex as the inner product
of the directed content of the simplex with the direction of the axis.

In section 5 the vector derivative is defined in terms of the limit of the directed integral
over the boundary of the simplicial variable as this variable approaches zero. The vec-
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tor derivative is shown to be equivalent to the ordinary gradient when applied to scalar
functions.

Section 6 presents a simple proof of the Fundamental Theorem of Calculus using the
simplicial calculus developed in earlier sections. This theorem relates the directed integral
of the vector derivative of a function over a k-surface to the directed integral of the function
over the boundary of the k-surface.

In section 7 the Dirac delta function is introduced, [9], [10], to quickly obtain a powerful
Residue Theorem. Cauchy’s integral formula is shown to be a special case of this theorem.

1. The Geometric Algebra of Euclidean Space

Let En denote Euclidean n-space represented as an n-dimensional vector space with a
positive definite inner product, which we denote by

x · y for x, y ∈ E . (1.1)

The elements of En will alternatively be referred to as points or vectors, depending upon
their usage [3,p.15].

The geometric algebra Gn of En, is the associative algebra generated by geometric multi-
plication of vectors in En. In the literature it is often referred to as the Clifford algebra of the
quadratic form x2, [4]. The geometric product of the vectors x, y ∈ En can be decomposed
into

xy = x · y + x ∧ y , (1.2)

where the inner product

x · y = 1
2 (xy + yx) , (1.3)

is the symmetric part of the geometric product, and the outer product

x ∧ y = 1
2 (xy − yx) , (1.4)

is the antisymmetric part of the geometric product. The quantity x∧ y is called a 2-vector,
or bivector; it can be interpreted geometrically as a directed area.

Let x1, . . . , xk be k vectors in En. The outer product

x1 ∧ · · · ∧ xk =
1
k!

∑
λ

(−1)λxλ1xλ2 · · ·xλk
, (1.5)

is defined as the totally antisymmetric part of the geometric product of these vectors. The
sum in (1.5) is taken over all permutations λ of the indices λi; if λ is an even or odd
permutation we set λ = 0 or 1 respectively. The geometric number x1 ∧ · · · ∧ xk is called
a k-vector, it can be interpreted geometrically as a directed k-volume. The magnitude or
k-volume of x1 ∧ · · · ∧ xk will he denoted by |x1 ∧ · · · ∧ xk |. A systematic construction
of the geometric algebra G can be found in [5]. The notation and algebraic identities used
here are largely taken from this reference.
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We gather here a number of identities and relationships which are indispensable in this
work. For vectors b and ai,

b · (a1 ∧ a2 ∧ · · · ∧ ak) =
k∑

i=1

(−1)i+1(b · ai)(a1 ∧ · · · ∧ a
∨

i ∧ · · · ∧ ak)

= (−1)k−1(a1 ∧ a2 ∧ · · · ∧ ak) · b

(1.6)

The symbol over the ai in (1.6) means that a
∨

i is to be deleted from the product. Identity
(1.6) explicitly shows that when a k-vector is “dotted” with a vector, the result is a (k−1)-
vector. Dotting a k-vector with a vector is closely related to contracting an r-form by a
vector. For a complete discussion of the relationship between r-forms and r-vectors see
[5,p.33].

The following cancellation property will be used in a later section. If Ar and Br are
r-vectors where r < n, and

c ∧ Ar = c ∧ Br (1.7)

for all vectors c ∈ En, then Ar = Br.
Given a set of linear independent vectors, {ei : i = 1, . . . , k}, spanning a k-dimensional

subspace of En we can construct a reciprocal frame {ej : j = 1, . . . , k} spanning the same
subspace, and satisfying

ei · ej = δi
j and

k∑
i=1

ei ∧ ei = 0 , (1.8)

where δi
j = 1 or 0 according to whether i = j or i �= j, respectively. The explicit construc-

tion of the reciprocal frame is given in [5,p.28].
We close this section with a useful lemma regarding the volume of a regular k-simplex,

and its moment with respect to any of its coordinate axes. The proof, by induction, is
omitted.

LEMMA.
∫ s

0

∫ s−tk

0

· · ·
∫ s−tk−···−t2

0

dt1dt2 · · · dtk =
sk

k!
(1.9)

∫ s

0

∫ s−tk

0

· · ·
∫ s−tk−···−t2

0

ti dt1dt2 · · · dtk =
sk+1

(k + 1)!
(1.10)

2. Simplices

Let {a0, a1, . . . , ak} be an ordered set of points in En. The oriented k-simplex (a)(k) of
these points is defined by

(a)(k) ≡ (a0, a1, . . . , ak) =
{
a| a =

k∑
µ=0

tµaµ

}
, (2.1)

where
∑k

µ=0 tµ = 1 and 0 ≤ tµ ≤ 1, are the barycentric coordinates of the point a. We
say that the simplex (a)(k) is located at the point a = a0. Alternatively, we will use the
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symbolism (∆(k)a0) to denote a k-simplex at the point a0. By the boundary of (a)(k), we
mean the (k − 1) chain

∂(a)(k) =
k∑

i=0

(−1)i+1(a∨k−i)(k−1) (2.2)

where (a∨k−i)(k−1) is the (k − 1)-simplex defined by

(a∨k−i)(k−1) ≡ (a0, a1, . . . , a
∨

k−i, . . . ak) . (2.3)

As before, a
∨

j indicates that this point is omitted. It is not difficult to establish the basic
result of homology theory:

∂2(a)(k) = 0 (2.4)

For a discussion of simplices, chains, and their boundaries, see [6,p.57], [7,p.206].

By the directed content of the simplex (a)(k), we mean the k-vector (for k ≥ 1)

a(k) ≡ D[(a)(k)] =
1
k!

(a1 − a0) ∧ (a2 − a0) ∧ · · · ∧ (ak − a0) . (2.5a)

With the abbreviated notation ai = ai − a0, (2.5a) takes the form

a(k) =
1
k!

a1 ∧ · · · ∧ ak .

The simplex (a)(k) is said to be non-degenerate if its directed content a(k) �= 0. In the
special case that k = 0, we define

a(0) ≡ D[(a)(0)] = 1 . (2.5b)

More generally, it is possible to define D[(a0)] = ρ(a0), where ρ(a0) is the mass density at
the point a0, but we will not do this here. We have the following useful

LEMMA. a(k) =
1
k!

(a1 − a0) ∧ (a2 − a1) ∧ · · · ∧ (ak − ak−1) (2.6)

Proof . a(k) =
1
k!

(a1 − a0) ∧ (a2 − a0) ∧ · · · ∧ (ak − a0)

=
1
k!

(a1 − a0) ∧ · · · ∧ (ak−1 − a0) ∧ (ak − ak−1 + ak−1 − a0)

=
1
k!

(a1 − a0) ∧ · · · ∧ (ak−1 − a0) ∧ (ak − ak−1)

· · ·
=

1
k!

(a1 − a0) ∧ (a2 − a1) ∧ · · · ∧ (ak − ak−1) .

Lemma (2.6) is needed in establishing that the directed content of the boundary of a
simplex vanishes, as proven in the following
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THEOREM. D[∂(a)(k)] = 0 (2.7)

Proof. The method of proof is by induction. For k = 1, the boundary of the 1-simplex
(a)(1), by definition (2.2), is

∂(a)(1) = −(a0) + (a1) .

With the help of (2.5b), it follows that

D[∂(a)(1)] = −D[(a0)] + D[(a1)] = −1 + 1 = 0 .

Now assume true for k = r. Using (2.2) and (2.5a), this is equivalent to

(a1 − a0) ∧ · · · ∧ (ar−1 − ar−2) =
r∑

i=1

(−1)i+1(a1 − a0) ∧ · · · ∧ (ar−i−1 − ar−i−2) ∧ (ar−i+1 − ar−i−1) ∧ · · ·

· · · ∧ (ar − ar−1) ≡ S

Then, for k = r + 1, we have

D[∂(a)(r+1)] =
r+1∑
i=0

(−1)i+1D[(a∨r−i+1)(r)] = −(a1 − a0) ∧ · · · ∧ (ar − ar−1)

+(a1 − a0) ∧ · · · ∧ (ar−1 − ar−2) ∧ (ar+1 − ar−1) − S ∧ (ar+1 − ar)

= (a1 − a0) ∧ · · · ∧ (ar−1 − ar−2) ∧ (ar+1 − ar) − S ∧ (ar+1 − ar) = 0 ,

and the proof is complete.

Let (x)(k) be a k-simplex in En at the point x = x0. The directed content of (x)(k) is the
k-vector

x(k) = D[(x)(k)] =
1
k!

x1 ∧ · · · ∧ xk , (2.8)

where again we are employing the notation xi = xi −x0. By the mesh of the simplex (x)(k)

we mean
mesh [(x)(k)] ≡ max{|xi − xj | : for i, j = 0, 1, 2, . . . , k} . (2.9a)

If C =
∑r

i=1(∆xi) is a chain of simplices (∆xi) at the points xi, then

mesh [ C ] ≡ max
i

{mesh (∆xi)} . (2.9b)

3. Oriented k-Surfaces in En

Simplices are the building blocks of oriented surfaces. Just as an oriented curve from a
point a to b in En can be considered to be the limit set of a sequence of chords (chains
of 1-simplices), a k-surface is defined here to be the limit set of a sequence of chains of
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k-simplices. Instead of defining a manifold in terms of charts and atlases, and then proving
that such a manifold can be triangulated [8], we take as fundamental the sequence of chains
which has as its limit set the points of the surface ϕk. We now give the formal definitions
upon which we construct our theory.

DEFINITION. Let {Cj : j = 1, 2, . . .} be a sequence of k-chains in En with the
properties that

i) The vertices of the simplices of Cj are a subset of the vertices of the simplices of Cj+1,
for j = 1, 2, . . ..

ii) lim
j→∞

mesh [ Cj ] = 0. (3.1)

We say that ϕk is the k-surface of this sequence of chains if the limit set of points

ϕk ≡ lim
j→∞

Cj (3.2)

is well defined.
Let a point x ∈ ϕk be given. Since x is a limit point of the sequence of chains {Cj}, there

exist a subsequence of simplices (∆(k)x
j) ∈ Cj located at the points xj , such that

x = lim
j→∞

(∆(k)x
j) .

Employing the notation introduced in (2.1), we equivalently write

x = lim
x(k)→0

(x)(k) , (3.3)

to express x as the limit point of this simplicial variable. Thus, the domain of the simplicial
variable (x)(k) is the set of simplices (∆(k)x

j) belonging to the chains Cj which converge to
x.

We can now define a smooth, orientable k-surface.

DEFINITION: Let ϕk be the k-surface of the sequence of chains {Cj}. ϕk is said to
be smooth and orientable if the unit k-vector I(x), specified by

I(x) = lim
x(k)→0

x(k)

|x(k) | , (3.4)

is well defined and smooth for each x ∈ ϕk. In this case, I(x) is the pseudoscalar field of
ϕk.

4. Calculus on a k-Surface

Let ϕk be a k-surface in En and let F = F (x) and G = G(x) be G-valued functions
defined on ϕk. By the directed two sided integral of F and G over ϕk, we mean

∫
ϕk

G dkx F ≡ lim
j→∞

l(j)∑
i=1

G(xj
i ) ∆(k)x

j
i F (xj

i ) (4.1)
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where ϕk is the limit set of the sequence of chains of simplices {Cj} where

Cj =
l(j)∑
i=1

(∆(k)x
j
i ) and ∆(k)x

j
i ≡ D[(∆(k)x

j
i )] (4.2)

provided, of course, that this limit exists. Note that as j → ∞ the simplicial element of
directed k-content ∆(k)x → dkx which is the infinitesimal element of directed k-content at
the point x of the surface ϕk. The element of directed k-content dkx in general does not
commute with F or G; hence the need for the two sided integral (4.1). By the directed
content of the k-surface ϕk we mean

D[ϕk ] ≡
∫

ϕk

dkx . (4.3)

Before we develop the theory of directed integrals over a k-surface ϕk, we will prove a
number of theorems regarding directed integrals over a k-simplex (a)(k)

THEOREM.
∫

(a)(k)

dkx = a(k) (4.4)

Proof. In terms of the barycentric coordinates of a point x ∈ (a)(k)

x = a0 + t1(a1 − a0) + · · · + tk(ak − a0) .

From this expression we define the differentials

dix ≡ dti (ai − a0) = dti ai ,

and construct the element of content

dkx ≡ d1x ∧ · · · ∧ dkx = k! a(k)dt1 · · · dtk .

With the help of lemma (1.9), we integrate to get

∫
(a)(k)

dkx = k! a(k)

∫ 1

0

∫ 1−tk

0

· · ·
∫ 1−tk−···−t2

0

dt1dt2 · · · dtk = k!
a(k)

k!
= a(k) ,

and the proof is complete.

Theorem (4.4) shows that (4.3) is consistent with (2.5).
The next theorem finds the moment of the simplex (a)(k) with respect to an axis having

the direction of the vector b.

THEOREM.
∫

(a)(k)

dkx (x · b) =
a(k)

k + 1

k∑
i=1

ai · b , where x = x − a0 . (4.5a)
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Proof. Using barycentric coordinates, we write

x =
k∑

i=1

tiai ,

where x = x − a0, and ai = ai − a0. Using the element of content found in the proof of
theorem (4.4), and lemma (1.10), we carry out the integration as follows:

∫
(a)(k)

dkx (x · b) =
k∑

i=1

∫
(a)(k)

dkx ti (ai · b)

= k! a(k)

k∑
i=1

∫ 1

0

∫ 1−tk

0

· · ·
∫ 1−tk−···−t2

0

ti dt1dt2 · · · dtk(ai · b)

=
a(k)

k + 1

k∑
i=1

ai · b .

We have the following easy

COROLLARY.
∫

(a)(k)

dkx x =
a(k)

k + 1

k∑
i=1

ai . (4.5b)

The next theorem shows that the directed content of the boundary of a k-simplex is zero.

THEOREM.
∫

∂(a)(k)

dk−1 x = 0 . (4.6)

Proof. With the help of theorems (4.3) and (2.7), we get

∫
∂(a)(k)

dk−1 x = D[ ∂(a)(k) ] = 0 .

We close this section with a basic theorem which directly relates the moment of the
boundary of a simplex, with respect to the vector b, to the dot product of its directed
content with b. This theorem has no direct counterpart in the related theory of differential
forms. It provides the key to the proof of the generalized fundamental theorem of calculus
in section 6.

THEOREM.
∫

∂(a)(k)

dk−1 x (x · b) = a(k) · b . (4.7)

Proof. Using (2.2) and (4.5a),

∫
∂(a)(k)

dk−1 x (x · b) =
1
k

k∑
i=0

(−1)i+1D[(a∨k−i)(k−1)](a0 + · · · a∨k−i · · · + ak) · b (*)
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so we need only show that the starred expression is equal to a(k) · b. We do this by using
the cancellation property (1.7). Wedging a(k) · b with ai − ai−1 for i = 1, . . . , k, gives, with
the help of (1.6),

(a(k) · b) ∧ (ai − ai−1) = a(k)(ai − ai−1) · b

Wedging the expression (*) with (ai − ai−1) gives only the two surviving terms

(−1)k−i

{
D[(a∨i−1)k−1] ∧ (ai − ai−1)(a0 + · · · a∨k−i · · · + ak) · b

−D[(a∨i)k−1] ∧ (ai − ai−1)(a0 + · · · a∨i · · · + ak) · b

}
= a(k)(ai − ai−1) · b .

Since the two expressions are the same when wedged with (ai−ai−1), the proof is complete.

It is easy to prove the following, so its proof is omitted.

COROLLARY.
∫

∂(a)(k)

dk−1 x x = k a(k) . (4.8)

5. The Vector Derivative

Let ϕk be a smooth, oriented k-surface. In (4.1) we defined the two sided directed integral
of functions F and G over ϕk. Now we define the (two-sided) vector derivative of F and
G in terms of a directed integral over the boundary of a k-simplex. First, given a G-valued
function H on ϕk, and a simplicial variable (a)(k) of ϕk, we introduce an auxiliary function
h(x) called the affine mapping of H on the simplex (a)(k).

DEFINITION. h(x) ≡ H0 +
k∑

i=1

(x · ai) Hi , (5.1)

where x = x − a0, and Hi ≡ H(ai) − H(a0) are the differences of the values of H on the
vertices of the simplex (a)(k), and {ai} is the reciprocal frame to {ai} satisfying (1.8).

It follows from (5.1) and (1.8) that the finite differences

hi = Hi, for i = 1, . . . , k . (5.2)

The affine mapping h(x) is the linear approximation to H(x) on (a)(k) which agrees with
H(x) on the vertices of this simplex. Note that the domain of h is the points of the simplex
(a)(k) and that this is a subset of ϕk only when ϕk is flat.

If {Cj} is a sequence of chains converging to the surface ϕk, then we may define a corre-
sponding sequence of functions {hj}, where each hj is the piecewise affine approximation to
H on the chain of simplices Cj . If H is continuous on ϕk, then the sequence {hj} converges
to H at each point x ∈ ϕk. We have the following important

THEOREM. If ϕk is compact, then∫
ϕk

G(x) dkx F (x) = lim
j→∞

∫
Cj

gj(x) dkx f j(x), and (5.3)
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∫
∂ϕk

G(x) dk−1x F (x) = lim
j→∞

∫
∂Cj

gj(x) dk−1x f j(x), (5.4)

where f j and gj are the respective piecewise affine approximations to F and G on the chain
of simplices Cj .

Proof. We will only prove (5.3) since the proof of (5.4) is essentially the same. Let {Cj}
be a sequence of chains converging to ϕk. By definitions (4.1) and (5.1), we have∫

ϕk

G dkx F ≡ lim
j→∞

l(j)∑
i=1

G(x)∆(k)x F (x) = lim
j→∞

n(j)∑
i=1

gi
j∆(k)xi

j fi
j

= lim
j→∞

∫
Cj

gjdkx f j ,

since fi
j = F (xi

j) at each of the vertices of the simplices of the chain Cj .

We are now ready to define the two-sided vector derivative G∂F of the functions F and
G at the point x ∈ ϕk. Recalling (3.3), let (a)(k) be a simplicial variable of the surface ϕk

at the point x = a0.

DEFINITION. G∂F = lim
a(k)→0

∫
∂(a)(k)

g(x) a(k)
−1 dk−1 x f(x) , (5.5)

where a(k)
−1 ≡ 1/a(k), and f and g are the affine mappings of F and G on a(k).

The integral over the boundary of the simplex in (5.5) can be evaluated to identify G∂F
as the limit of a generalized difference quotient. We have the following

THEOREM. G∂F = lim
a(k)→0

k∑
i=1

[Gia
iF0 + G0a

iF i ] . (5.6)

Proof. Using (5.5), (4.6), (4.7), we have

G∂F = lim
a(k)→0

∫
∂(a)(k)

g(x) a(k)
−1 dk−1 x f(x)

= lim
a(k)→0

∫
∂(a)(k)

[G0 + x · aj Gj ] a(k)
−1dk−1 x [F0 + x · aiF i ]

= lim
a(k)→0

Gj a(k)
−1

∫
∂(a)(k)

x · aj dk−1x F0

+ lim
a(k)→0

G0 a(k)
−1

∫
∂(a)(k)

dk−1 x x · ai F i

+ lim
a(k)→0

Gj

∫
∂(a)(k)

x · aj x · ai a(k)
−1 dk−1 x F i

= lim
a(k)→0

k∑
i=1

[Gia
iF0 + G0a

iF i ] + lim
a(k)→0

Gj a(k)
−1

∫
∂(a)(k)

x · aj x · ai dk−1 x F i
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Note that in using (5.5), in the above steps, the summation convention over upper and
lower indicies i and j has been utilized. The proof is completed by using lemma (6.2) from
the next section, and corollary (5.7) below, to show that

lim
a(k)→0

Gj a(k)
−1

∫
∂(a)(k)

x · aj x · ai dk−1 x F i = lim
a(k)→0

Gj a(k)
−1 [ a(k)(aj + ai)/k ]F i

= (1/k) lim
a(k)→0

Gj(aj + ai) F i = 0 .

Although the proof of (5.6) depends in the last step upon the proof of corollary (5.7)
below, this last step is not needed in the special case when either F or G are constant
functions, in which case Gi ≡ 0 or F i ≡ 0, giving the following

COROLLARY. If G(x) ≡ 1 then ∂F = lim
a(k)→0

k∑
i=1

aiF i . (5.7)

An immediate consequence of Theorem (5.6) and Corollary (5.7) is the Leibniz product
rule for the vector derivative:

COROLLARY. G∂F = G∂̇Ḟ + Ġ∂̇F , (5.8)

where the dots indicate the direction of differentiation and what is being differentiated.
The vector derivative ∂ is necessarily a two-sided operator because of the lack of universal
commutivity in the geometric algebra G.

In doing calculations with finite differences it is sometimes helpful to use the following
corollary whose proof is omitted.

COROLLARY. G∂F = lim
a(k)→0

k∑
i=1

[Gia
iFi − G0a

iF0 ] . (5.9)

Now let xi(x) be a set of coordinates on ϕk, and suppose that the vertices of the simplicial
variable (a)(k) contract to zero along the axes defined by these coordinates. We have the
following

THEOREM. ∂F =
k∑

i=1

ei∂iF (x) , (5.10)

where ∂iF (x) are the partial derivatives of F with respect to these coordinates, and ei = ∂i x
are the basis vectors along the coordinate axes xi at x = x(x1, . . . , xk).

Proof. From corollary (5.7),
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∂F = lim
a(k)→0

k∑
i=1

ai(Fi − F0)

= lim
a(k)→0

k∑
i=1

ai ∆xi F (x1, . . . , xi + ∆xi, . . . , xk) − F (x1, . . . , xk)
∆xi

=
k∑

i=1

ei∂i F (x) ,

where

ei ≡ lim
a(k)→0

k∑
i=1

ai ∆xi .

Theorem (5.10) identifies the vector derivative ∂ as the ordinary gradient when applied
to a scalar-valued function. Basic properties and differentiation formulas for the vector
derivative as applied to more general functions can be found in [5;51].

6. The Fundamental Theorem of Calculus

The most important theorem in calculus is the Fundamental Theorem of Calculus. Gen-
eralized to k-dimensions, this theorem relates the integral of the vector derivative of a
function over a k-surface ϕk to the integral of the function over the (k − 1)-surface ∂ϕk

which is the boundary of ϕk.

THEOREM (Fundamental Theorem of Calculus). Let ϕk be a compact k-surface,
and let F = F (x) be a function differentiable almost everywhere on ϕk. Then∫

ϕk

dkx ∂F =
∫

∂ϕk

dk−1x F . (6.1a)

∫
ϕk

G dkx ∂ F =
∫

∂ϕk

G dk−1x F , (6.1b)

where ∂ is understood to differentiate both to the left and right, but does not differentiate
the k-surface element dkx.

Proof. The proof of part a) is direct. Using (4.1), (5.5), and (5.4):

∫
ϕk

dkx ∂F = lim
j→∞

j∑
∆(k)x

1
∆(k)x

∫
∂(∆(k)x)

dk−1x f j = lim
j→∞

j∑ ∫
∂(∆(k)x)

dk−1x f j

= lim
j→∞

j∑ ∫
∂Cj

dk−1x f j =
∫

∂ϕk

dk−1x F ,
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where Cj =
∑j ∆(k)x. The proof of part b) is similar to part a) and is omitted.

The two-sided form of the fundamental theorem given in part b) is useful in proving the
general residue theorem in the next section. Further discussion of the fundamental theorem
and its special cases can be found in [2] and [5;256].

We can now prove the lemma needed in the proof of theorem (5.6).

LEMMA.
∫

∂(a)(k)

dk−1x (x · ai)(x · aj) =
1

k + 1
a(k)[ ai + aj ] (6.2)

Proof. The vector derivative ∂F for F (x) = (x · ai)(x · aj) is

∂F = (x · ai)aj + (x · aj)ai ;

this can be either calculated directly from Corollary (5.7), or can be found in [5,Chp. 2].
Using this result, the Fundamental Theorem (6.1a), and (4.5a), we then find∫

∂(a)(k)

dk−1x (x · ai)(x · aj) =
∫

(a)(k)

dkx [ (x · ai)aj + (x · aj)ai ]

=
a(k)

k + 1

k∑
l=1

[ (al · ai)aj + (al · aj)ai ] =
a(k)

k + 1
[ aj + ai ] .

7. Residue Theorem

Introduction of the Dirac delta function into the class of integrable functions on a k-
surface allows an approach to the powerful residue theorems which is intuitive and at the
same level of rigor as the more standard approaches, [9], [10]. We begin with the definition
of the Green’s function.

DEFINITION. Let ϕk be a smooth, compact k-surface, and let x, x0 ∈ ϕk and ∂ = ∂x

be the vector derivative at x. A function G(x), where x = x − x0, is said to be a Green’s
function for ϕk provided

∂G(x) = δ(x) = G(x)∂ (7.1a)

where δ(x) is the Dirac delta function having the property∫
R

dkx δ(x)F (x) = I(x0)F (x0) , (7.1b)

where R is any region in ϕk containing the point x0, I(x0) is the unit pseudoscalar (3.4)
at x0, and F (x) is any function which is continuous in R.

We will restrict our discussion to k-planes in which case our candidate for the Green’s
function is

G(x) =
Ωx

|x |k , (7.2)
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where Ω is a constant scalar to be determined. With the help of the vector differentiation
formula [5;2-(1.36)], we obtain the result

∂G(x) = 0 for all x �= 0 , (7.3)

as is required.
The functions G(x) and δ(x) = ∂G are singular at x = 0, i. e., when x = x0, so we must

exercise caution when integrating over any region R containing the point x0.
To define the meaning of integrals containing G(x) and/or δ(x), we introduce a sequence

of functions gm(x) by

gm(x) ≡
{

G(x) for |x | > 1/m

Ω mkx for |x | ≤ 1/m

}
. (7.4)

Differentiating gm(x), we get

∂gm(x) ≡
{

∂G(x) = 0 for |x | > 1/m

k Ω mk for |x | < 1/m

}
. (7.5)

The function gm(x) and ∂gm(x) are differentiable almost everywhere, except on a set of
k-content 0, and it is easy to see that

G(x) = lim
m→∞ gm(x) for all x �= 0 . (7.6)

Improper integrals involving G and δ = ∂G, can now be defined:

DEFINITION.
∫
R

dkx ∂G = lim
m→∞

∫
R

dkx ∂gm . (7.7)

We now choose the constant Ω = 1/
 where 
 is the surface area of the unit k-
dimensional ball. Let R be a k-region containing the point x0. We have the following

THEOREM. i)
∫
R

dkx ∂G = I(x0) , ii)
∫
R

dkx (∂G)F (x) = I(x0)F (x0) . (7.8)

Proof. i) Using (7.7) and (6.1a), we find∫
R

dkx ∂G = lim
m→∞

∫
R

dkx ∂gm = lim
m→∞

∫
Bm

dk−1x kΩmk

= lim
m→∞


(1/m)kI(x0)mk


 = I(x0) ,

where Bm is the k-ball of radius 1/m centered at x0.

ii) In light of i), it is sufficient to show that

∣∣ ∫
R

dkx ∂G [F (x) − F (x0) ]
∣∣ = 0 .

14



By definition (7.7)∫
R

dkx ∂G [F (x) − F (x0) ] = lim
m→∞

∫
R

dkx (∂gm) [F (x) − F (x0) ]

= lim
m→∞ k(1/
) mk

∫
Bm

dkx [F (x) − F (x0) ] .

But ∣∣ ∫
Bm

dkx [F (x) − F (x0) ]
∣∣ ≤ (
/mk)ε ,

where ε = max
x∈Bm

{ |F (x) − F (x0) |
}
. It follows that

∣∣ ∫
Bm

dkx (∂G) [F (x) − F (x0) ]
∣∣ ≤ lim

m→∞
kmk


 (
/mk)ε = lim
m→∞ kε .

Since F (x) is continuous, as m → ∞, ε → 0, so the integral goes to zero as claimed.

We can now prove the following

RESIDUE THEOREM.

F (x0) =
(−1)k−1


 I

∫
∂R

x

|x |k dk−1x F +
(−1)k


 I

∫
R

x

|x |k dkx ∂F . (7.9)

Proof. We have∫
∂R

G dkx F =
∫
R

G dkx ∂ F =
∫
R

G dkx (∂F ) + (−1)k−1

∫
R

(Ġ∂̇) dkx F

=
∫
R

G dkx (∂F ) + (−1)k−1I(x0)F (x0) .

The first equality in the steps above is a consequence of (6.1b), the second equality is a
consequence of the Leibniz product rule and (1.6), and the third is a consequence of (7.8ii).
The remainder of the proof is a straight forward substitution for G, using (7.2).

Let us examine theorem (7.9) in the case when k = 2. In this case, 
 = 2π, i = e2e1,
and we have

F (x0) =
1

2πi

∫
R

1
x − x0

d2x ∂F − 1
2πi

∫
∂R

1
x − x0

dx F . (7.10)

We can translate (7.10) into an equivalent statement in the complex number plane of the
bivector i = e2e1 by writing

dz = dx e1,
d

dz
= 1

2e1∂x,
1

x − x0
= e1

1
z − z0

, and idxdy = d2x .
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Letting
f(z) = e1F (x) = F (x)e1 ,

we have,

f(z0) =
1

2πi

∫
∂R

f(z)
z − z0

dz − 1
π

∫ ∫
R

(d/dz )f(z)
z − z0

dxdy (7.11)

which is valid over any region R for which f(z) is differentiable. When f(z) is analytic in
R,

(d/dz )f(z) = 0 ,

and (7.11) reduces to Cauchy’s Integral Formula,

f(z0) =
1

2πi

∫
∂R

f(z)
z − z0

dz . (7.12)

8. Concluding Remarks

There are many advantages to the simplicial calculus on an oriented k-surface advocated
in this work. Whereas it is coordinate free in its development, relevant coordinates are
easily introduced whenever specific calculations are called for, such as in (4.4) and (5.10).
Introducing geometric algebra into n-dimensional analysis makes possible the concept of
a directed measure (2.5), whose fundamental significance is revealed in the one-line proof
of the Fundamental Theorem of Calculus (6.1). A more comprehensive treatment of the
theory of directed integration as well as the development of geometric algebra as a unified
language for mathematics and physics can be found in [5].

The author would like to thank Dr. Bernard Jancewicz for carefully reading this work,
Dr. Zbigniew Oziewicz for many stimulating conversations, and Professor David Hestenes
for making specific suggestions for its improvement. The author would also like to recognize
the support of Lander College and Professor A. Micali for making it possible for him to take
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