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Abstract. Geometric algebra is used in an essential way to provide a coordinate-

free approach to Euclidean geometry and rigid body mechanics that fully inte-

grates rotational and translational dynamics. Euclidean points are given a homo-
geneous representation that avoids designating one of them as an origin of coordi-

nates and enables direct computation of geometric relations. Finite displacements

of rigid bodies are associated naturally with screw displacements generated by

bivectors and represented by twistors that combine multiplicatively. Classical

screw theory is incorporated in an invariant formulation that is less ambiguous,

easier to interpret geometrically, and manifestly more efficient in symbolic compu-

tation. The potential energy of an arbitrary elastic coupling is given an invariant

form that promises significant simplifications in practical applications.

1. Introduction

Modeling elastically coupled rigid bodies is an important problem in multibody dynamics. This work
concerns the problem of modeling what can be called flexural joints, where two essentially rigid bodies
are coupled by a substantially more elastic body. Such an idealized system is shown in Fig. 1. The
geometry of the elastic body is not important, even though the geometry depicted is that of an
axisymmetric beam.

This work sets the stage for modeling elastically coupled rigid bodies with a new homogeneous
formulation for mechanics introduced by Hestenes (2001). The term “homogeneous” refers to the fact
that all points of physical space are treated equally, without designating any one of them as the origin
of a coordinate system. The method can be regarded as refining the classical idea of homogeneous
coordinates. The homogeneous formulation is achieved by using geometric algebra in an essential
way. Geometric points are represented by null vectors in a 5-dimensional metric vector space with
Minkowski signature (4,1). The geometric algebra generated by this vector space provides the essential
mathematical apparatus for a completely coordinate-free treatment of finite rigid displacements and
motions that fully integrates rotations and translations. The notion of a twist introduced in screw
theory to describe a coupled rotation/translation is simply represented as a bivector variable, and the
Lie algebra of twists emerges automatically as a bivector algebra. The elastic strain potential energy
function can then be expressed as a function of the twist variable. However, we shall see that geometric
algebra suggests a better choice for dynamical variable.

For an in-depth review of prior work on elastically coupled rigid bodies, readers are referred to
(Fasse 2000; Fasse 2001). Briefly, the geometry of elastically coupled rigid bodies has been extensively
reported in the literature. Most of the literature is on (1) the analysis of linear elastic properties
(stiffness and compliance) and (2) the synthesis of arbitrary linear elastic properties using combinations
of simple compliant elements. Regarding geometrical methods, much of the relevant prior work has
used screw theory and matricies. Readers are directed to such works as (Griffis and Duffy 1991;
Patterson and Lipkin 1993; Lonc̆arić 1987; Huang and Schimmels 1998; Ciblak and Lipkin 1998;
Maschke 1996; Z̆efran and Kumar 1999; Fasse and Breedveld 1998). Happily, these methods and
results are easily translated into geometric algebra where they can be evaluated and often improved.
One purpose of this paper is to provide a guide for such translations.
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Figure 1. Elastically coupled rigid bodies shown in (a) Undeformed, relaxed configuration and (b)
Deformed, strained configuration. In this case two bodies are coupled by a compliant strut.

Most of the paper is devoted to elaborating the homogeneous method as a foundation for practical
applications. It introduces fundamentally new ways to formulate and analyze Euclidean geometry, rigid
body displacements, kinematics and dynamics. A general approach to elastic interactions is developed
with reference to practical applications to modeling and computer simulation of complex flexural
mechanisms. The reader is presumed to be familiar with the basics of geometric algebra presented in
the references and elsewhere in this book.

2. Homogeneous Euclidean Geometry

Newtonian physics presumes that physical objects are composed of particles whose motions can be
represented as curves in a 3-dimensional Euclidean space E3. This has been called the Zeroth Law
of Newtonian Theory (Hestenes 1986, 1992), because Newton’s other Laws are ill-defined without it.
The “standard model” for E3 in classical physics and engineering is the real 3-dimensional vector space
R3 = R3,0 with Euclidean signature (3,0), as expressed by the isomorphism

E3 ∼= R3, (1)

where each point x in E3 corresponds to a unique vector x in R3. An advantage of this correspondence
is that the geometric product defined on R3 generates a geometric algebra R3,0 = G(R3,0). Geometric
Algebra greatly facilitates the description of geometric objects and inferences therefrom. An extensive
account of Newtonian physics in the language of R3 is given in (Hestenes 1986).

A drawback of the “vector space model” R3 for E3 is that it singles out a particular point, say e0,
to be designated as the origin and represented by the zero vector 0. Consequently, in the analysis of
mathematical models it is often necessary to shift the origin to simplify calculations, to avoid dividing
by zero, or to prove that results are independent of the origin choice. We avoid this drawback and find
many surprising benefits by employing the homogeneous model for E3 introduced in (Hestenes 2001).

As a foundation for modeling mechanical systems, we need to formulate the rudiments of Eu-
clidean geometry in terms of the homogeneous model. We begin with the Minkowski vector space
R4,1 and its geometric algebra R4,1 = G(R4,1). The reference to Minkowski recalls the similarity of
the signature (4,1) to the signature (3,1) introduced by Minkowski in his original vector space model
of spacetime. This brings to light subtle similarities of structure between spacetime geometry and
Euclidean geometry, especially as regards the null cone (often called the light cone in spacetime).
However, the physical interpretation is vastly different in the two cases. In our modeling with R4,1

none of the dimensions is associated with time.
A vector x is said to be a null vector if x2 = x · x = 0. The set of all null vectors in R4,1 is said

to be a null cone. Now, it is a remarkable fact that E3 can be identified with the set of all null vectors
in R4,1 satisfying the constraint

x · e = 1, (2)

where e is a distinguished null vector called the point at infinity. This constraint is the equation for
a hyperplane with normal e. Thus, we identify E3 with the intersection of a hyperplane and the null
cone in R4,1, as expressed by

E3 = {x |x2 = 0, x · e = 1}, (3)
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where each x designates a point in E3 and

(x − y)2 = −2x · y (4)

is the squared Euclidean distance between points x and y. It is not difficult to prove that the triangular
inequality and the Pythagorean theorem for Euclidean distances follow as theorems.

The first surprise is that eqn. (4) tells us that Euclidean distances can be computed directly from
inner products between points. Of course, this product vanishes if the points are one and the same.
The second surprise is that the (oriented) line A through two distinct points a and b is completely
characterized by the line vector

A = a ∧ b ∧ e. (5)

This conforms to the classical notion of a line vector or sliding vector as an oriented line (or axis)
with a magnitude. The simple trivector a∧ b∧ e can be regarded as the moment of line segment a∧ b
with respect to the point at infinity as well as a continuation of the line through infinity. The tangent
vector n for the line is

n ≡ (a ∧ b) · e = a − b . (6)

Using

(a ∧ b ∧ e)2 = (a ∧ b) · [e · (a ∧ b ∧ e)] = (a ∧ b) · [ e ∧ (e · (a ∧ b)) ] = [ (a ∧ b) · e ]2,

we see that the length of the line segment is given by

A2 = n2 = (a − b)2 = −2a · b. (7)

It can be shown that the line vector A is equivalent to the classical representation of a line by Plücker
coordinates with respect to an origin (Hestenes 2001), but we have no need for that fact.

A point x lies on the line A if and only if

x ∧ A = x ∧ a ∧ b ∧ e = 0. (8)

This is a non-parametric equation for the line. It can be solved for a parametric representation of the
line. Two different ways to do that are worth noting here. First, we can use (8) to write

xA = x · A = [x · (a ∧ b)] ∧ e + a ∧ b.

Whence

x = (x · A)A−1 =
[ (x · a)b ∧ e − (x · b)a ∧ e + a ∧ b ] · A

(a − b)2
, (9)

where further reduction of the right side is possible, but this suffices to express x as a function of its
distance from points a and b.

Alternatively, we recognize (8) as saying that x is linearly dependent on the three vectors a, b, e,
so we can write x = αa + βb + γe, where α, β, γ are scalar coefficients subject to the following two
constraints: x · e = 1 = α + β, and x2 = 0 = 2γe · (αa + βb) + 2αβa · b, so γ = −αβa · b. Eliminating
redundant parameters, we obtain a one-parameter equation for the line:

x = b + α(a − b) + 1
2α(1 − α)(a − b)2e. (10)

For α in the interval [0, 1], this parametrizes the line segment from b to a.
To relate our homogenous methods to the vast literature on geometry and mechanics, we need to

relate our homogeneous model for E3 to the standard vector space model. Happily, this can be done
in a straightforward way with an elegant device called the conformal split. The essential idea is to
parametrize all the points in Euclidean space by the family (or pencil) of lines through a single point.

The pencil of lines through a fixed point e0 can be characterized by the variable line vector
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x = x ∧ e0 ∧ e = x ∧ E. (11)

where

E = e0 ∧ e =⇒ E2 = 1 (12)

This determines a unique correspondence between each Euclidean point x and a line segment x. That
can be proved by inverting (11) to express x as a function of x in much the same way that (9) was
obtained from (8). Thus,

xE = (x ∧ e0 ∧ e) · (e0 ∧ e) = (x ∧ e0) · e + (x ∧ e0) · (e0 ∧ e)e = x − e0 − (x · e0)e .

Since x2 = (x ∧ e0 ∧ e)2 = (x − e0)2 = −2x · e0, we have the desired result

x = xE − 1
2x

2e + e0. (13)

The line vectors specified by (11) form a 3-dimensional vector space

R3 = {x}, (14)

which can be identified with the standard vector space model of E3, wherein the distinguished point
e0 is represented by the zero vector.

The conformal split of Euclidean points specified by (13) generates a split of the entire geometric
algebra into a commutative product of subalgebras:

R4,1 = R3 ⊗R1,1, (15)

where R3 = G(R3) as before, and R1,1 is the Minkowski geometric algebra generated by the vectors
e0 and e. The identification in (14) of certain 3-vectors in R4,1 with vectors in R3 can be described
as regrading a subalgebra, that is, redesignating generating elements of the subalgebra as vectors.

The conformal split (14) has deep similarities with the spacetime split of the geometric algebra
R3,1 for spacetime, originally introduced by Hestenes (1966) and given its name in (Hestenes 1974).
Just as the conformal split refers homogeneous Euclidean geometry to a single point, the spacetime
split refers homogeneous spacetime geometry to a single inertial reference frame. In both cases, the
split introduces unnecessary complications, so it should be avoided whenever possible. Long experience
with the spacetime algebra shows that it is invariably best practice to carry out all calculations with
invariant equations and perform a spacetime split only at the end if it is needed to compare with
other results in the literature or to relate to empirical data. Likewise, we shall see how homogeneous
methods can simplify the formulation and solution of problems in geometry and mechanics without
resorting to the conformal split.

3. Rigid Displacements

By definition, a rigid displacement Dof points in a material body leaves the Euclidean distance between
body points invariant, as expressed by (x − y)2 = −2x · y in our homogeneous model. Invariance of
the inner product x ·y is the defining property of orthogonal transformations on the vector space R4,1.
It is a general theorem of geometric algebra (Hestenes 1991, Hestenes and Sobczyk 1984) that every
such transformation D taking a generic point x0 to the point x can be expressed in the canonical form

x = Dx0 = Dx0D
−1 (16)

where D is an invertible multivector in R4,1 called a versor. The great advantage of this result is
that rotations and translations have simple representations as versors, and the composition of rigid
displacements is reduced to versor multiplication. Our main problem will be to determine the form of
D for various rigid body motions.
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To represent rigid displacements uniquely, we must impose some general restrictions on the form of
D. To exclude reflections, which are also orthogonal transformations, D must be an even multivector.
Since (16) is bilinear in D, we can normalize D to unity and identify D−1 with its reverse D†, so that

DD† = DD−1 = 1. (17)

One consequence of this is that D can be written in the exponential form

D = e
1
2 S with D† = e−

1
2 S , (18)

where S is a bivector called a twist or screw. Screws are often normalized to unity, so twists are scalar
multiples of screws.

To preserve our definition of homogeneous Euclidean space, the point at infinity must be an
invariant of any rigid displacement, as expressed by

DeD† = e or De = eD, (19)

or, equivalently, by

S · e = 0 or Se = eS. (20)

In other words, e commutes with every twistor and its twist. This completes our list of general
restrictions on rigid displacement versors. Henceforth, it will be convenient to designate such versors
by the suggestive name twistor, as there is little danger of confusion with Roger Penrose’s use of the
same term in relativity theory.

To enable comparison with other works on screw theory and robotics, we need the conformal split
of a twist (or screw) S. As before, we pick a convenient point e0 to serve as origin and employ the
bivector E = e0 ∧ e to make the split. The product SE is decomposed into scalar (0-vector), bivector
(2-vector) and quadravector (4-vector) parts by the identity

SE = S · E + S × E + S ∧ E, (21)

where S × E ≡ 1
2 (SE − ES) is the commutator product. We consider each term in turn. It follows

from (20) that the scalar part vanishes, as shown by

S · E = S · (e0 ∧ e) = e0 · (e · S) = 0. (22)

When working with bivectors, it is often helpful to express inner and outer products with vectors as
commutator products so we can use the Jacobi identity like this:

S × E = S × (e0 × e) = (S × e0) × e + e0 × (S × e) = (S · e0)e, (23)

where the term with S×e = S·e again vanishes. The right side of (23) determines a vector n = S·e0+λe
up to a scalar component λ along e. Note that

ne = n ∧ e = −en or n · e = 0, (24)

so the vector n cannot represent a point. Nevertheless, we can apply the conformal split (13) to get

n = nE + (n · e0)e where n = n ∧ E. (25)

Using

eE = e = −Ee, (26)

we see that

en = en = ne = −ne. (27)

In general, we can write S∧E = a∧b∧E = (a∧b)E, where a and b are vectors satisfying a·E = b·E = 0
(so, like n, they cannot be regarded as points). Treating a and b like n in (25) to (27), we have
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(S ∧ E)E = a ∧ b = a ∧ b = −ia × b, (29)

where the last term involves the conventional cross product (Hestenes 1986), and i is the the unit
pseudoscalar for R3, which a conformal split identifies with the unit pseudoscalar for R4,1 as well.

Writing m = a × b and combining splits for each or the terms in (21), we obtain

S = (S ∧ E + S × E)E = −im − en. (30)

This is the general form for the conformal split of any twist, indeed, of any bivector satisfying S ·e = 0.
Thus, we can write (18) in the form

D = e−
1
2 (im+en), (31)

but it must be remembered that the values for m and n depend on the arbitrary choice of base point
e0.

When n = 0, the twistor (31) reduces to a rotor

R = e−
1
2 im (32)

representing a rotation through angle |m | about an axis directed along m, as explained in (Hestenes
1986). The minus sign in (32) is to conform to the usual right hand rule for representing rotation
angles by vectors.

When m = 0, the twistor (32) reduces to the special form

T = e−
1
2 en = e

1
2 ne = 1 + 1

2ne, (33)

which represents a translation, as we shall see.
If m and n are collinear, that is, if mn = n · n = nm, then we recover the displacement

TR = RT = e−
1
2 ime−

1
2 en = e−

1
2 (im+en) = D. (34)

This represents a screw displacement along a line with direction n = nE through the point e0. It
consists of a translation through distance |n| = |n| composed with a rotation through angle |m| about
the line. Every displacement can be expressed as a screw displacement along some line, but finding a
point e0 on that line to give it the screw form (34) is often impractical or unnecessary.

Any displacement D can be decomposed into a rotation R about a line through a given point x0

followed by a translation T, as expressed by the operator equation

D = TR. (35)

Given D defined by (16), we want to express (36) as a twistor equation

D = TR. (36)

Displacement of a given body point from x0 to x determines a translation defined by

x = Tx0 = Tx0T
†. (37)

Assuming that T has the canonical form (33), from (37) we obtain

xT = x(1 + 1
2ne) = (1 + 1

2ne)x0. (38)

This can be solved for n, with the help of ex0 + x0e = 2e · x0 = 2, to get the expected result:

n = x − x0. (39)

Finally, with D and T known, we can find R easily from (37). Since Dx0 = Tx0 by definition, we have

Rx0 = Rx0R
† = x0 or Rx0 = x0R. (40)
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In other words, x0 is a fixed point for the rotation.
For practical applications we need general methods for determining the twistor D from measure-

ments on body points. As shown in the preceding paragraph, position measurements on a conveniently
chosen body point enable one to compute a translation versor T . According to (37), therefore, this
reduces the problem of finding D to finding R. Identifying x0 with e0 in our conformal split of a twist,
it is easy to show that (40) implies that R can be parametrized by an angle vector m as in (32). Many
other parametrizations of R, such as Euler angles, are are given in (Hestenes 1986). In general, the
best choice of parameters is determined by the problem-at-hand, especially by the form in which data
is given and by symmetries of the system being modeled. It is most important to recognize that R
itself is a computationally-efficient, coordinate-free representation of a rotation, so we aim to relate it
to data as directly as possible.

The most commonly used representations for rotations are matrices of direction cosines. However,
the matrix method is computationally inefficient, largely because matrices are redundant representa-
tions of the information. Its main advantage is the availability of highly developed software for matrix
computations. For these reasons alone, we need efficient algorithms for interconverting rotation ma-
trices and rotors. That has been fully worked out by (Hestenes 1986), but a brief review is in order
here.

For a given rigid body, a body frame {ek, k = 1, 2, 3} can be defined by

ek = T−1(xk − x)T = T−1xkT − x0, (41)

where the xk and x are four distinct points affixed to the body. The ek are related to a reference frame
σk based at the point x0 by the rotation

ek = Rσk = RσkR† =
∑

j

αjkσj . (42)

Though by no means essential, it is often convenient to select the body points so that {ek} is an
orthonormal set. Then the

αjk = σj · ek = 〈σjRσkR† 〉 (43)

are direction cosines relating the two frames. Equation (42) gives each element of the rotation matrix
as a function of the rotor R. Equation (43) can be inverted to express R as a function of the ek or the
αjk, with the elegant result

±4αR = 1 + Σ, (44)

where

Σ =
∑

k

σkek =
∑

jk

αjkσjσk, (45)

and

α = 〈R 〉 = 1
2 (1 +

∑

k

αkk)1/2. (46)

It bears repeating, though, that there are more direct ways to relate rotors to data.

4. Kinematics

The orbit x = x(t) of any particle in a rigid body is determined by a time dependent twistor D = D(t)
in equation (16). Therefore, the kinematics of a rigid body is completely characterized by a twistor
differential equation of the form

Ḋ = 1
2V D, (47)

where the overdot indicates a time derivative. From
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V = 2ḊD† = −2DḊ† = −V †, (48)

it follows that V is necessarily a bivector, and (19) implies that

V · e = 0. (49)

By differentiating (16) and using (48), we obtain a kinematical equation for the motion of a body
point:

ẋ = V · x. (50)

Its equivalence to the usual vectorial equation is easily established by a conformal split.
Since their algebraic properties are analogous, the conformal split of V must have the same form

as the conformal split (31) for a twist, so we can write

V = −iωωω − ev. (51)

Inserting this along with (13) into (50), we obtain

ẋ = ẋE − (ẋ · x)e = −[iωωω + ev] × [xE + e0 − 1
2x

2e]
= (−iωωω ∧ x)E − v(e ∧ e0) − (v · x)eE = [ωωω × x + v]E − (v · x)e.

Equating linearly independent parts, we obtain

ẋ = ωωω × x + v (52)

as well as ẋ · x = v · x which, of course, is not an independent equation. Equation (52) confirms an
interpretation of ωωω as angular velocity and v as translational velocity, expressed in (51) as components
of a generalized velocity V . Henceforth, it will be convenient to refer to V as the screw velocity of the
rigid displacement.

With the relation to conventional kinematics established, we can deal directly with the fundamen-
tal twistor equation (48) without resorting to conformal splits. The first problem is to decide what
form for the twistor D is most suitable for computational purposes. The exponential form D = e

1
2 S

has the drawback that it is defined by a power series, so it is computationally expensive to apply and
invert. Secondly, the simple relation V = Ṡ holds only when Ṡ commutes with S.

Heinz Krüger (private communication to DH) has demonstrated how these problems can be ad-
dressed by putting D in the form

D =
1 + B

1 − B
, (53)

where B is a bivector. First, note that this form automatically ensures the normalization DD† = 1
whatever the value of B. Second by differentiating (51) with due attention to noncommutivity of B
and Ḃ, we find a closed algebraic relation between V and Ḃ:

V = 2ḊD† =
4

1 − B
Ḃ

1
1 + B

. (54)

For dynamics we need one more derivative, which can be put in the form

1
4 (1 − B)V̇ (1 + B) = B̈ − Ḃ(

2B

1 − B2
)Ḃ. (55)

This makes it possible to express the dynamical equation for a rigid body in terms of B and its
derivatives.

Equation (53) can be solved for

B =
D − D†

2 + D + D† =
〈D 〉2

1 + 〈D 〉0 + 〈D 〉4
(56)
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This will be recognized as generalizing the trigonometric formula for the tangent of a half angle. It
can be shown that 〈D 〉4 is proportional to ie = ei, so it commutes with 〈D 〉2 and plays the role of
a null pseudoscalar. Accordingly, we say that (56) expresses B as dually proportional to the bivector
part of D.

5. Dynamics

For the purposes of dynamics a comomentum P for the rigid body is defined by

P = MV = iI ωωω − mve0 = i�� − pe0. (57)

This also defines a generalized “mass tensor” M in terms of the inertia tensor I and the body mass
m. The conformal split for P is given to define its relation to standard quantities. Note that this split
differs in form from the split (51) for V in having the null point e replaced by e0. This difference is
necessary to express the invariant kinetic energy by

K = 1
2V · P = 1

2 (ωωω · �� + v · p). (58)

The coforce or wrench F acting on a rigid body is defined in terms of the torque ΓΓ and net force f by

F = iΓΓ + fe0. (59)

The dynamical equation for combined rotational and translational motion then takes the compact
form:

Ṗ = F. (60)

An immediate consequence is the energy conservation law

K̇ = V · F = ωωω · ΓΓ + v · f (61)

The problem remains to specify a net wrench F on the body so that (60) becomes a well-defined
equation of motion.

6. Elastic Coupling

Previous sections characterize the motion of a single rigid body with respect to a fixed reference body.
This generalizes immediately to a theory of two interacting rigid bodies by identifying the second body
with the reference body. Then the twistor equation D = D(t) describes the relative motion of the first
body with respect to the second. The reverse twistor D† describes the motion of the second body
with respect to the first. Since we are concerned here only with relative motion, we may continue to
regard the second body as fixed and concentrate on the motion of the first.

We are interested in modeling an elastic interaction between the two bodies. Assume that the
state of elastic deformation is determined solely by the relative configuration of the rigid bodies. In
this case the potential function of elastic deformation (strain energy) is a function of the relative
displacement of the rigid bodies from the unstressed equilibrium configuration. Assume that such an
unstressed equilibrium configuration exists and is locally unique. The displacement from equilibrium
can be represented by the twist variable S, so the elastic potential U has the general form

U(S) = 1
2S · (KS) + ..., (62)

where K is a linear stiffness operator characterizing first order deviation from equilibrium (Hooke’s
Law). The potential determines an elastic wrench, which for small twists has the form

F (S) = −∂SU = −KS. (63)
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Fasse (2000) gives a general method for determining the wrench from a potential for arbitrary twists.
Note that the potential must be an even function U(−S) = U(S) so that the wrench is an odd function
F (−S) = −F (S) in accord with Newton’s 3rd Law.

As argued in a preceding section, it may be better to use the variable B instead of S when solving
the equations of motion. Just as B is dually proportional to the bivector part of the twistor D, it is
dually proportional to the twist S, so the first order potential (62) can be re-expressed as a function
of B with the same functional form:

U(B) = 1
2B · (KB), (64)

This being noted, we continue the discussion in terms of the twist variable S.
Inserting the conformal split (31) into (62) splits the first order potential into

U(S) = U(−im − en) = m · KOm + n · KCm + m · KCn + n · Ktn, (65)

where KO represents the rotational stiffness, Kt the translational stiffness and KC with adjoint KC

the coupling stiffness. This potential function is equivalent to the one introduced in (Fasse and Zhang
1999; Fasse, Zhang and Arabyan 2000).

If tr(Kt) is not an eigenvalue of Kt, then there exist unique points xa and xb (coincident in
equilibrium) on the two bodies at which the coupling stiffness KC is symmetric (Lonc̆arić 1987; Brockett
and Lonc̆arić 1986). It is not assumed here that axes of the body frames ‘a’ and ‘b’ intersect at the
center of stiffness. Nonetheless it is advisable to choose the center of stiffness as a reference. First, it
is a unique, unambiguously defined point for most systems. Second, as shown by Ciblak (1998), any
compliant axis decoupling translation and rotation must intersect the center of stiffness. It must also
intersect the centers of compliance and elasticity. If two compliant axes exist, then the three centers
coincide. Many manufactured compliant joints have compliant axes by design. Thus for these systems
the center of stiffness has an intuitive physical significance.

Empirical estimation of the stiffness tensor K is nontrivial. Briefly, the following experimental
procedure is envisioned: One of the two bodies is kept stationary while the other is displaced by some
mechanism (Fig. 1), and measurements of the resulting displacements are correlated with the applied
torque.

Viscous forces can be modeled to first order in analogy to elastic forces by introducing the gener-
alized Rayleigh dissipation potential

Π(Ṡ) = 1
2 Ṡ · Π Ṡ, (66)

which generates the damping wrench

FΠ(Ṡ) = −∂ṠΠ = −Π Ṡ. (67)

This general form for damping forces has yet to be implemented in engineering design.

7. Conclusions

The homogeneous method introduced in this paper holds great promise for the design and analysis of
mechanical devices. Geometric algebra provides an ideal language for the ideas of screw theory that
evolved more than a century ago, but were imperfectly expressed in the coordinate-based mathematics
of the day. The coordinate-free, homogeneous equations for twistor kinematics and dynamics determine
the time evolution of a finite screw displacement in a way that leaves nothing to be desired. The
formulation of twists as elements of a 6-dimensional bivector algebra automatically incorporates all
the advantages of Lie algebra into rigid body theory, and it suggests that this is the best choice for
the 6-dimensional configuration space of a rigid body.

Besides providing an optimally compact formulation for rigid body equations of motion, the
homogeneous method provides complete flexibility in the choice of parameters for specific problems,
and it opens up new computational possibilities. The task remains to develop software for modeling
and simulation that takes full advantage of homogeneous methodology. The theory is sufficiently
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developed to make applications to problems throughout engineering fairly straightforward, but many
details remain to be worked out.

Note: David Hestenes and Alyn Rockwood have applied for a patent on use of the homogeneous
method in software for modeling and simulation.
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