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Real Spinor Fields

David Hestenes

The Dirac equation is expressed entirely in terms of geometrical quantities by
providing a geometrical interpretation for the (−1)1/2 which appears explicitly
in the Dirac equation. In the modification of the Dirac electron theory which
ensues, the (−1)1/2 appears as the generator of rotations in the spacelike plane
orthogonal to the plane containing the electron current and spin vectors. This
amounts to a further “relativistic” constraint on the spinor theory and so may
be expected to have physical consequences. It does not, however, conflict with
well-substantiated features of the Dirac theory.

1. Introduction

In 1928, Dirac proposed a relativistically invariant first-order wave equation for the elec-
tron.1 Dirac’s theory has led to a complex of physical explanations and predictions at once
so surprising and convincing that it has gained general acceptance among physicists today.
The previously perplexing phenomena of electron spin was not only accounted for, but fine
details of the hydrogen spectra and an accurate value of the electron magnetic moment were
calculated without arbitrary assumptions. Moreover, after some theoretical trauma, it was
realized that Dirac’s equation entails the existence of a positively charged electron—at just
about the same time that such a particle was discovered experimentally. We do well to
understand precisely what features of the Dirac equation entail these remarkable results.

To produce a wave equation which is both first order in time and relativistically invariant,
Dirac constructed the matrix algebra which bears his name. As Dirac averred, this leads
to an explanation of electron spin “without arbitrary assumptions.” But one mysterious
feature of the electron wavefunction seems to be left unexplained. Why is it a complex
function? ln Dirac’s equation, which is largely determined by the requirement of relativis-
tic invariance, why does an uninterpreted (−1)1/2 appear explicitly? As the increasing
theoretical importance of antiparticle conjugation tends to show, the appearance of this
(−1)1/2 is no triviality.

We submit that the (−1)1/2 in Dirac’s equation can interpreted geometrically and that
the reason for appearance in physics is inseparable from that spin. To appreciate this
viewpoint it is necessary understand the full geometrical significance of the Dirac algebra.

The metrical properties of space-time can be represented by introducing appropriate
rules for the multiplication of space-time vectors. The result is a Clifford algebra which
can be thought of as an algebra of directions in space-time. It is conveniently called the
real Dirac algebra, because it is isomorphic to the algebra of Dirac matrices over the real
numbers. The requirements of relativity can be satisfied by writing all physical equations in
terms of the real Dirac algebra. Relativity provides no justification for the use of additional
“complex” numbers such as those in the “complex Dirac algebra.”

1 P. A. M. Dirac, Proc. Roy. Soc. (London) 117, 610 (1928).
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In contrast to the “complex matrix algebra of Dirac,” the real Dirac algebra has a thor-
oughly geometrical significance. By re-expressing Dirac’s theory in terms of the real Dirac
algebra, we find that the (−1)1/2 which appears explicitly in Dirac’s equation acquires a
geometrical interpretation as the generator of rotations in a spacelike plane. Moreover, the
orientation of this plane is described by the electron “spin.” In this way spin and “complex”
numbers are combined in a single geometric entity.

The theory presented in this paper is algebraically isomorphic to Dirac’s; it can be
provided with an equivalent physical interpretation as well. lt differs from Dirac’s in that
all its algebraic ingredients have a geometrical significance determined by properties we
attribute to space-time. This produces a clarification of the Dirac theory, especially as
regards the role of complex numbers. It also introduces new possibilities for modifying the
theory. But to avoid prejudging the issues, a fairly conservative approach is adopted in
this paper. Only a relatively minor amendment to the physical interpretation of the Dirac
theory is suggested. In subsequent papers, upon the firm base of the Dirac theory, more
general theories will be constructed which incorporate additional physical facts and exploit
the geometrical and physical interpretations of (−1)1/2 given here.

This paper is divided into three sections. In Sec. A the real Dirac algebra is briefly
described. In Sec. B the algebraic expression for a real spinor field is given. For a Dirac
particle, the wavefunction and its symmetries are provided with both physical and geomet-
rical interpretations. The only departure from Dirac theory is to be found in a new and
simple distinction between positive and negative energy states. This innovation requires a
new expression for the its charge-current density. However, since in the one-particle approx-
imation this current is the same as Dirac’s current, any consequences which this alteration
may entail is manifested only in quantum electrodynamical calculations—somewhat be-
yond the scope of this paper. Finally, connection with the Dirac theory is made in Sec. C.
Readers who are convinced that Sec. B is correct will not find it necessary to read Sec. C.

A. Space-Time Algebra

We use the geometric algebra developed by Hestenes.2 However, without assuming prior
familiarity with space-time algebra (STA), this section tries to give an explanation of the
algebra which will be sufficient for the purposes of this paper. To do it succinctly, it is
assumed that the reader is well acquainted with the matrix form of the Dirac algebra. He
is then asked to re-interpret this algebra geometrically in a prescribed way. If the reader
finds the treatment here excessively difficult to follow or too sparse to be satisfying, he is
referred to the more detailed discussion given in Ref. 2.

1. Vectors

Physicists are accustomed to thinking of the γµ (µ = 0, 1, 2, 3) as four by four matrices
which are the four components of single world vector in space-time. Instead, the reader is
asked to think of the γµ as a frame of four orthonormal vectors in space-time. Think of γ0

as a unit vector in the forward light cone and the γi (i = 1, 2, 3) as a right-handed set of

2 D. Hestenes, Space-Time Algebra (Gordon and Breach Science Publishers, Inc., New
York, 1966).
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spacelike vectors. Thus, γ0 is the unit normal to the (3-dimensional) spacelike hyperplane
spanned by the γi. Moreover, any world vector A can be written as a linear combination
of the γµ,

A = Aµγµ . (1.1)

The Aµ are the components of the vector A with respect to the set of base vectors {γµ}.
Although the reader is asked to think of the γµ as vectors instead of matrices, they still

retain the multiplication rules possessed by the Dirac matrices. This makes new demands
on our understanding of geometry. Presumably, the matrix multiplication is clear enough,
but, in view of the geometrical significance of vectors, it would seem that, in order to justify
multiplication of vectors, we must supply it with a geometric interpretation. This can, in
fact, be done. Assuming that two vectors A and B can be multiplied “like matrices,”
the product AB can be understood geometrically by separating it into symmetric and
antisymmetric parts:

AB = (A · B + B ∧ A) (1.2a)

A · B = 1
2 (AB + BA) (1.2b)

A ∧ B = 1
2 (AB − BA) (1.2c)

A special notation has been introduced for the symmetric and antisymmetric products
because each has a geometrical interpretation independent of the other. The quantity A ·B
is a scalar; the dot signifies the familiar inner product of vectors. The quantity A ∧ B is
commonly called a bivector or 2-vector; the wedge signifies the outer product of vectors.
Although the outer product is not so familiar to physicists, it was invented and interpreted
geometrically many years before the invention of matrix algebra. For the purposes of this
paper, it is not so important that the reader appreciate the geometrical interpretation of
the outer product3; he need only believe that such an interpretation can be supplied, in
order to appreciate that by (1.1) the different geometrical products A · B and A ∧ B are
united in a single product AB. Thus, while the product AB of two vectors is not itself a
vector, it is nevertheless composed of quantities with geometrical significance every bit as
definite as that of vectors. Let the reader be assured that, in a similar way, the geometric
character of the product of any number of vectors can be divined.

It may help the reader to see (1.2) written out for the base vectors {γµ}. Then Eq. (1.2a)
becomes

γµγν = γµ · γν + γµ ∧ γν . (1.3a)

Because of the orthogonality of the γµ,

γµγν = γµ · γν , if µ = ν (1.3b)

γµγν = γµ ∧ γν , if µ �= ν (1.3c)

The set of inner products of the base vectors {gµν ≡ γµ ·γν} is the so-called “metric tensor”
expressed in the frame {γµ}. Using the metric tensor, (1.2b) allows us to write down an
equation which is familiar to everyone acquainted with the Dirac algebra,

gµν = 1
2 (γµγν + γνγµ) (1.4)

3 The geometrical significance of the outer product is discussed in Pt. I of Ref. 2.
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To display explicitly the signature we attribute to the metric of space-time, we write out
the nonvanishing components of (1.4),

γ2
0 = 1 , γ2

i = −1 (i = 1, 2, 3) . (1.5)

A word of warning is in order to help the reader guard against misunderstanding. It
is evident that the word“vector” is used in the algebraic sense (as an element of a linear
space) rather than in the tensor sense (as a set of elements with certain transformation
properties). The word “scalar” is also used in the algebraic sense (as an element of the
number field over which a linear space is defined) rather than in the tensor sense (as an
invariant of some group of transformations). For instance, we would call a component of
the vector in (1.1) a scalar; it is the inner product of two vectors.

Aµ = A · γµ = Aνgµν . (1.6)

(Note that we use the usual convention of tensor analysis to raise and lower indices.) It is
also worth saying that Aµ must be a real number (or function). We do not allow the field of
complex numbers, for this would introduce a (−1)1/2 without geometrical significance. Soon
it should be clear that we alread have many algebraic objects with a well-define geometrical
significance which can play the role of (−1)1/2.

By taking all linear combinations (over the real numbers) of all linearly independent
polynomials of the γµ, we obtain the elements of a geometric algebra with 16 linearly
independent elements. We can call it the “real Dirac algebra” to emphasize its similarity,
to Dirac’s matrix algebra except as regards the number field. Or, we can call it a “vector
algebra” to emphasize that all the elements can be constructed out of vectors. Perhaps it
is best to call it a “space-time algebra” to emphasize its use as an algebraic representation
of the primitive geometrical properties of space-time.

Once we have the space-time algebra, we need only define differentiation to have a com-
plete geometric calculus for space-time. Let {xµ;µ = 0, 1, 2, 3} be a set of inertial
coordinates4 in space-time. The fundamental vector differential operator, written as ,
can be introduced by the formula

= γµ∂µ , where ∂µ ≡ ∂/∂xµ . (1.7)

This operator was first introduced into physics by Dirac. In his effort to construct a
“relativistically invariant” first-order differential equation for the electron wavefunction, he
was led, in effect, to take the square root of the d’Alembertian 2. The appropriate square
root is , as our notation indicates. But, by now the reader needs hardly be reminded of
the difference between our interpretation of the γµ and Dirac’s.

It is preferable to call the gradient operator, because the name agrees with common
parlance when operates on scalars. For example, by (1.7), the gradient of the coordinate
function xµ is

xµ = γµ (1.8)

4 Among other names, these coordinates are sometimes called Minkowski, pseudo-Euclidean,
Euclidean, or Cartesian coordinates. We prefer the physical name, since in these coordi-
nates the graph of the world line of a point particle with no forces acting on it is a straight
line.
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This shows that γµ is a vector pointing in the direction of maximum increase in xµ; the
magnitude of γµ indicates the rate of change of xµ. It may be noted that the meaning of
γµ is surreptitiously altered to the point where γµ is to be thought of as a vector field,
assigning a tangent vector γµ(x) to each point x in space-time. However, to be consistent
with the definition of inertial coordinates, γµ must be a constant vector field, i.e.,

∂νγµ = 0 . (1.9)

So, in a sense, the γµ at different points are equivalent.
We are accustomed to think of the gradient of a scalar field as the normal to an “equipo-

tential” surface. The gradient of a vector field A is interpreted differently. To get at this
interpretation, we follow (1.2) and decompose A into symmetric and antisymmetric parts.

A = · A + ∧ A . (1.10)

The scalar part ·A is the usual divergence of a vector, and ∧A is the curl. If A is the
electromagnetic vector potential, then F = ∧ A is the electromagnetic field strength.5

2. Conjugation

We are familiar with the operations of transpose, complex conjugation, and Hermitian
conjugation in matrix algebra. Analogous “conjugation” operations can be defined for the
real Dirac algebra. But first we must get more insight into the structure of the algebra.

Consider the product A1A2 · · ·Ar of r-vectors A1, · · ·, Ar. The part of A1A2 · · ·Ar

which is antisymmetric under interchange of any two vectors is called an r-vector; it is a
generalization of (1.2c) and is written A1 ∧ · · · ∧ Ar. This quantity vanishes if the vectors
A1, A2, · · ·, Ar are linearly dependent. Since in space-time we can find at most four linearly
independent vectors, we must have r ≤ 4.

Let us call an element of the real Dirac algebra a d-number. lt can be proved that
any d-number is expressible as a linear combination of r-vectors simply by using linearly
independent r-vectors constructed from the γµ and the convention that scalars be called
0-vectors. Thus, any d-number ψ can be written

ψ = ψS + ψV + ψB + ψT + ψP , (2.1)

where the subscripts S, V , B, T , P mean, respectively, scalar (0-vector) part, vector
(1-vector) part, bivector (2-vector) part, trivector or pseudovector (3-vector) part, pseu-
doscalar (4-vector) part. The decomposition (2.1) is analogous to the separation of a
complex number into real and imaginary parts, which partly explains why ψ is sometimes
called a “hypercomplex” number.

By reversing the products of all vectors in the Dirac algebra, we obtain from ψ a new
d-number ψ̃

ψ̃ = ψS + ψV − ψB − ψT + ψP , (2.2)

5 The equations of electrodynamics are formulated in terms of the real Dirac algebra in
Pt. II of Ref. 2.
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This is an invariant kind of “conjugation” in the sense that it is independent of any basis
in the algebra. The unit pseudoscalar is so important that we represent it by the special
symbol i. We can express i in terms of the γµ,

i = γ0 ∧ γ1 ∧ γ2 ∧ γ3 = γ0γ1γ2γ3 . (2.3)

Reasons for using the symbol i for this quantity are apparent in the discussion that follows.
With the help of i we can define an operation which reverses the direction of all vectors

in space-time. We call space-time conjugation6 the operation which maps ψ into ψ , where

ψ = −iψi = ψS − ψV + ψB − ψT + ψP . (2.4)

A d-number ψ is called even if ψ = ψ and odd if ψ = −ψ.
The set of all even d-numbers ψ forms a subalgebra which can be identified as the Pauli

algebra. An inertial frame determines a right-handed set of base vectors σi (i = 1, 2, 3) in
the Pauli algebra by the definitions

σi = γiγ0 . (2.5)

From (2.3), it is clear that
σ1σ2σ3 = i . (2.6)

It is useful to introduce special symbols for two other kinds of conjugation,

ψ∗ = γ0ψγ0 (2.7)

ψ† = γ0ψ̃γ0 (2.8)

Clearly ψ∗ and ψ† depend on the choice of γ0. The dagger symbol in (2.8) is particularly
appropriate because ψ† corresponds to the Hermitian conjugate of ψ in the usual matrix
representations of the Dirac algebra.

Notice that the operation (2.7) changes {σi} and also {γi} into left-handed frames with-
out affecting γ0. For this reason, the operation which takes ψ into ψ∗ is called space
conjugation.6

3. Frames and Lorentz Rotations

It can be proved that every field of orthonormal frames {eµ(x)} with the same orientation
as {γ} can be obtained from {γµ} by a field of Lorentz rotations7 expressed as follows:

eµ(x) = R(x)γµR̃(x) ,

where R is a d-number field with the properties8

RR̃ = 1, and R = R .

6 The word “reflection” is reserved for an operation which inverts points of space-time.
The more general term “conjugate” is used for this operation which reverses the direction
of tangent vectors but leaves space-time points unchanged.
7 Lorentz rotations are discussed in detail in Part IV of Ref. 2.
8 We will usually suppress the argument x.
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It may help the reader to observe that (3.1) has the same form as a similarity transformation,
which in Dirac’s matrix algebra is used to transform from one matrix representation of the
{γµ} to another. Here, of course, the interpretation is different, and the operator R is
allowed to be a function of the space-time point x. Except for a sign, R is uniquely
determined by the eµ and the γµ.9 Because, by (3.1), R determines the transformation of
the γµ into the eµ, it is sometimes convenient to refer to R itself as a Lorentz rotation.

The conditions (3.2) imply that R can be written in the form

R = ±e−
1
2 φ, (3.3)

where φ is a bivector field. Conversely, every d-number of the form (3.3) represents a unique
Lorentz rotation.

We call (3.1) a spatial rotation if R = R∗ and a special timelike rotation (or a boost) if
R = R†. Any Lorentz rotation can be expressed as a spatial rotation followed by a special
timelike rotation. This means that R can always be written in the form

R = e−
1
2 χe−

1
2 iθ, (3.4)

where χ and θ are bivectors satisfying χ∗ = χ and θ∗ = −θ.
Any Lorentz transformation can be expressed as some combination of space-time conju-

gation (2.4) and space conjugation (2.7), and a Lorentz rotation (3.1).

B. Spinor Fields

At this point, it is hoped that the reader is sufficiently prepared to grapple with a reformu-
lation of Dirac’s electron theory in terms of our “space-time calculus.” This theory can, in
a certain sense, be derived from Dirac’s theory. But, the derivation is tedious. Moreover,
the end result is relatively simple and be set forth and understood as a physical theory
in its own right. Therefore, we present and discuss the reformulated theory directly. The
derivation has been relegated to the end of this paper where it can be studied separately.

The electron wavefunction has certain suggestive features which may have a physical
significance transcending the Dirac equation, so we begin by discussing the wavefunction
and its interpretation without reference to a “wave equation.” Then we write down the
reformulated Dirac equation and discuss some of the implications it has for interpretation
of the wavefunction. The theory given here is algebraically isomorphic to Dirac’s theory.
However, it differs in that all the algebraic quantities involved have a definite geometrical
signignificance determined by the properties already ascribe to space-time in our construc-
tion of the space-time algebra. This, in turn, suggests certain modification of the physical
theory, although, except for a relatively minor exception, we resist the temptation to pursue
them here and are content with showing how the physical features of the Dirac theory are
to be formulated in our new language.

4. The Wavefunction

We begin simply by writing down the most succinct expression for a spinor field,

ψ(x) = e
1
2 µ(x), (4.1)

9 This is shown explicitly by Eq. (17.24) of Ref. 2.
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where µ(x) is an even d-number field. Let us call ψ(x) the real spinor field to emphasize
that it is expressed in terms of the real Dirac algebra and so is susceptible to a geometrical
interpretation. “Real spinors” are equivalent to “Dirac spinors” in the sense that two can
be put into one-to-one correspondence. This is proved in Sec. C, but a simple check on
the asserertion can be made immediately by noting that since µ is an even d-number it has
eight linearly independent components. This agrees with the fact that a spinor is a column
matrix with four complex components.

While (4.1) may well be the most appropriate expression of a spinor field for certain
kinds of mathematical analysis, to explain its geometrical and physical significance we
must decompose a spinor into its “geometrically distinct” parts. Therefore, write µ in the
form

µ(x) = α(x) + iβ(x) + φ(x) , (4.2)

where α and β are scalars and φ is a bivector in the Dirac algebra. Also define

ρ(x) = eα(x) > 0 (4.3)

and use (3.3) to write ψ in the form

ψ = (ρeiβ)
1
2 R . (4.4)

Now observe that ψ determines four “current vectors” Jµ as follows:

Jµ ≡ ψγµψ̃ = ρeµ . (4.5)

The eµ are the orthonormal vectors defined by (3.1); J0 is a “positive” timelike vector, 10

equivalent to the probability current density of Dirac theory. Following Dirac, we must
interpret ρ(x) as the probability density in the instantaneous rest frame at the point x.
More briefly, ρ(x) is the proper probability density. To conserve probability, the divergence
of J0 must vanish, i.e.,

· J0 = 0 . (4.6)

This provides a restriction on the wave equation for ψ.
The vector J0 describes the orientation of the electron “spin.” In commonly used lan-

guage, it is “the expectation value of the electron spin.” The essential property of the “spin
vector” is that it is orthogonal to J0. The labeling of the “spin vector” with the subscript
three, rather than with one or two is merely a convention.

The vectors J1 and J2 do not inherit independent physical interpretations from the Dirac
theory. However, the plane containing J1 and J2, which can be described by the bivector
J1 ∧ J2, does have physical significance. The abstract complex plane in which the phase
factor of the Dirac wavefunction is defined corresponds to this plane. The (−1)

1
2 in the

electron wavefunction can now be interpreted geometrically as the generator of rotations
in the plane J1 ∧J2. Therefore, we propose that this plane be cal]ed the phase plane of the
wavefunction. It can also fairly be called the spin plane, because it is completely determined

10 “Positive” means that J0 is in the forward light cone. This then can be conveniently
expressed by J0 · γ0 > 0.
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by the spin and current vectors. This can be seen easily by noting that, by virtue of (2.3),
the generator e2e1 of rotations in the phase plane can be written

e2e1 = ie0e3 . (4.7)

The notions of spin and phase are now inextricably united. The “phase” describes the
magnitude of a rotation in the phase plane and the “spin” describes the orientation of the
phase plane.

So far we understand the factors ρ and R in the wavefunction (4.4). The scalar ρ describes
the probability density, and the Lorentz rotation R describes in a single unit the orientation
of the probability current vector and the spin and the phase of the wavefunction.

But what can be the meaning of the factor eiβ? Evidently, it does not play a role in
determining the observables just mentioned because it does not appear in the expression
(4.5) for the current vectors. Inversely, given the “observables” Jµ, we can find ρ and R,
but to determine ψ uniquely we need one more bilinear function of ψ, namely,

ψψ̃ = ρeiβ . (4.8)

Now there is one “observable” appearing in the Dirac theory of which we have given
no account, namely, the sign of the energy. This “observable” is described by the quantity
ρeiβ . We suppose that ρeiβ describes the relative admixture of positive and negative energy
components of ψ. More precisely, we take ρeiβ(x) to be the relative probability of observing
a particle at the point x; so that if ρeiβ = 1 everywhere, ψ describes a pure one-particle
state, and if ρeiβ = −1 everywhere ψ describes a pure antiparticle state. In view of the
interpretation we have given to ψ the scalar part of ψψ̃,

(ψψ̃)S = ρ cos β , (4.9)

can be interpreted as the proper particle density of the spinor field ψ. Thus, a negative
value of this quantity indicates the likelihood of observing an antiparticle. Of course, in a
quantized version of our theory all the physical observables we have discussed are vacuum
expectation values of quantum field operators.

This is a good place to summarize once again the relation of our theory to Dirac’s. The
theories are equivalent algebraically, but our theory admits a geometrical interpretation of
physical quantities which is absent in Dirac’s theory. We can, if we wish, give a physical
interpretation of our theory which is precisely equivalent to Dirac’s. However, the geometric
significance which our theory endows to physical quantities suggests other possibilities.
Just the same, in this paper we proffer only a relatively minor amendment to Dirac’s
interpretation by identifying a particular factor in the wavefunction as responsible for the
admixture of positive and negative energy states. In all honesty, it must be admitted that
this idea seems to produce some difficulty with the “superposition principle” which is not
fully understood. On the other hand, we encounter more to be said in its favor when we
study the Dirac equation in the next section.

With the notions we already have at our disposal, we can discuss the nonrelativistic
limit of the electron wavefunction without reference to a specific wave equation. Earlier we
identified the γµ with an inertial frame. To “fix the phase” of ψ, we can identify the γµ in
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(4.5) with the “laboratory frame.” Now suppose the electron is in a pure positive energy
state, so eiβ = 1, and use (3.3) to write the wavefunction in the form

ψ = ρ
1
2 e−

1
2 iφ . (4.10)

The factor ρ
1
2 is the amplitude of the wavefunction and the bivector 1

2φ may be thought
of as a “relativistic phase.” The “relativistic phase factor” can be decomposed by using
(3.4) to express it as a spatial rotation e−

1
2 iθ(x) in the laboratory frame followed by a

Lorentz transformation e−
1
2 χ(x) which, without rotation, takes the laboratory frame into

the instantaneous rest frame of the electron:

ψ = ρ
1
2 e−

1
2 χe−

1
2 iθ . (4.11)

In the nonrelativistic approximation, the factor e−
1
2 χ is negligible, so the state of the

electron can be described by the effective wavefunction

ψ′ = ρ
1
2 e−

1
2 iθ . (4.12)

This is equivalent to the Pauli wavefunction. The bivector 1
2 iθ(x) has an orientation which

describes the orientation of the electron “spin” and magnitude which is just the “scalar
phase” of the wavefunction. If, as a furlher approximation, it is supposed that the precession
of the spin plane is negligible, then we can write

1
2 iθ(x) = iσ3δ(x) = γ2γ1δ(x) , (4.13)

where δ(x) is a “scalar phase.” The effective wavefunction can be written as

ψ′′(x) = ρ
1
2 exp [−γ2γ1δ(x) ] . (4.14)

This is equivalent to the Schrödinger wavefunction. However, in (4.14) the phase factor is
to be thought of as a rotation in a spacelike plane (the spin plane) rather than as a function
in some abstract complex space. In the “Schrödinger approximation” the orientation of the
spin plane is a constant.

5. Symmetries of the Wavefunction

For ψ the equivalent of the Dirac equation for an electron is

ψ = (mψγ0 + eAψ)iσ3 . (5.1)

Here, m is the mass, e is the charge of the electron, and A is the electromagnetic vector
potential. In this section, we discuss certain symmetries of ψ associated with the Dirac
equation. A symmetry of a spinor field ψ(x) is a mapping of the field ψ onto itself which
preserves the wave equation for ψ or changes it in a definite and physically meaningful way.

We have already seen that ψ determines a frame of tangent vectors Jµ(x) = ψγµψ̃ at
each point x of space-time, and inversely, except for a factor eiβ , the Jµ determine ψ.
A transformation on ψ induces a corresponding transformation on the Jµ. Because we
are familiar with the representation of directions by vectors, a transformation of the Jµ
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can be interpreted geometrically. This enables us to give a geometric interpretation to
transformations of ψ.

There are two distinct kinds of geometrical transformations. First, there is a transforma-
tion of the tangent vectors Jµ(x) at a point x of space-time into a new set of vectors J ′

µ(x)
at the same point x. As we see, charge conjugation is a transformation of this kind. Second,
there is a transformation of points in space-time, wherein the tangent vectors at a point of
space-time are mapped into “equivalent” vectors at a different point x′. Displacements are
the simplest transformations of this kind. Symmetries of a spinor field can be interpreted
geometrically as some combination of these two kinds of transformations.

First note that (5.1) is invariant under

ψ → ψγ0 , (5.2)

which induces
J0 → J0 , Ji → −Ji . (5.3)

This transformation tells us that the Dirac equation does not distinguish (or couple) even
and odd spinor fields—a fact which is not discovered and so is not interpreted in the usual
form of the Dirac theory. Because of this equivalence of even and odd fields, we may,
without further comment, confine the rest of our discussion to transformations which leave
ψ even.

An operation which changes the sign of the electromagnetic coupling while leaving the
rest of the Dirac equation invariant is called charge conjugation. By inspection, this can be
accomplished only by multiplying (5.1) on the right by some linear combination of σ1 and
σ2. Therefore, charge conjugation has the general form

C : ψ → ψC = ψσ2 exp (iσ3φC)
= ψ exp (−iσ2

1
2π) exp (iσ3φC i) , (5.4)

where φC is a constant scalar. This induces a rotation of π of the Ji about some axis
orthogonal to J3. For instance, if φC = 0, π,

J0 → J0 , J1 → −J1 , J2 → J2 , J3 → −J3 . (5.5)

We can interpret (5.4) itself as a rotation of the Jµ but this is not the whole truth, because
(5.4) does not leave ψψ̃ invariant,

ψC ψ̃C = −ψψ̃ . (5.6)

This is an important point, for it shows that charge conjugation changes the sign of the
particle density (4.7). To be more specific, note that the factor

exp(iσ2
1
2π) = −iσ2

in (5.4) reverses the direction of the spin vector J3 in (5.5) but does not affect the expression
ψψ̃, while the factor i changes the sign of the particle density but does not affect J3.
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In Minkowski space-time, a point x with coordinates xµ can be represented by a “position
vector” x = xµγµ. “Space reflection” of points in the hyperplane orthogonal to γ0 can be
represented by the mapping

P : x → x∗ = γ0xγ0 . (5.7)

The form of the Dirac equation will be preserved if the point transformation (5.7) induces
the following transformation of fields:

P : A(x) → A∗(x∗) , (5.8)

P : ψ(x) → ψP (x) = ψ∗(x∗)eiσσσ3φP . (5.9)

We must have φP = 0 or π, if we require that successive applications of (5.9) map ψ(x)
back to itself. The transformation P is commonly called parity conjugation. It induces the
transformations,

P : J0(x) → J∗
0 (x∗) , (5.10)

P : J3(x) → −J∗
3 (x∗) . (5.11)

Because the components of the tangent vector J0 in (5.10) transform in the same way as
the components of the position vector x in (5.7), J0 is usually said to “transform as a
vector” under parity conjugation. Because J3 transforms with opposite sign it is said to
“transform as an axial vector.” It is not necessary for us to subscribe to this distinction
between “vector” and “axial vector,” first, because it is not needed to distinguish J0 from
J3, and second, because it is purely gratuitous, for by using (5.2) we can keep J0 fixed and
change the sign of J3 at will without affecting the Dirac equation.

A time-reversal transformation T can be constructed in analogy to parity conjugation.
The transformation

T : x → x̃∗ = −x∗ . (5.12)

The corresponding transformation of the wavefunction is

T : ψ(x) → ψT (x) = iψ∗(−x∗) exp (iσ3φT ) . (5.13)

As long as A is unique, the Dirac equation determines ψ to within a factor of a constant
Lorentz rotation which can be fixed by a choice of the γµ, so that (4.5) yields definite Jµ.
But Maxwell’s equation determines A only up to a gauge transformation,

A → A′ = A + χ . (5.14)

If the Dirac equation is to be left invariant, then (5.14) must be accompanied by the
transformation

ψ → ψ′ = ψ exp (iσ3χ) . (5.15)

This induces the transformation

J0 → J0 , J3 → J3 ,

J1 → J1 cos 2χ − J2 sin 2χ ,
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J2 → J2 cos 2χ + J1 sin 2χ ,

which shows that electromagnetic interactions do not distinguish J1 from J2.
Closely related to the electromagnetic gauge transformations are the conservation laws

found by calculating the divergence of the Jµ using (5.1) to evaluate

[( ψ)γµψ̃ + ψγµ( ψ)˜ ]S = ( ψγµψ̃)S = · Jµ ,

we find that
· Jµ = eiA ∧ e3 ∧ e0 ∧ Jµ (5.17)

The expression on the right vanishes identically if µ = 0 or 3. Therefore, the “probability
current” J0 and the “spin current” J3 are conserved.

If, as has been suggested, the expression (4.9) is interpreted as the proper particle density,
then the charge-current density J(x) must be

J(x) = eJ0(x) cos β(x) . (5.18)

If the total charge is to be conserved, then the divergence of J must vanish, i.e.,

· J = 0 . (5.19)

Since, as (5.17) shows, the Dirac equation implies that the divergence of J0 also vanishes,
(5.19) implies that

J0 · β = 0 . (5.20)

Let us see what this condition means.
Imagine that we begin with a charge distribution eρ(x) in the rest frame at the point x.

As the electromagnetic interaction is turned on, there is a redistribution of charge due to
the creation of particle-antiparticle pairs. The new charge density is eρ(x) cos β(x). Thus,
insofar as the problem of renormalization is to calculate the redistribution of charge due to
interaction, it is the problem of calculating β(x). Equation (5.20) says that the gradient
of β is orthogonal to J0, which is just the reasonable condition that the redistribution of
charge is orthogonal to the direction of the current.

Heretofore J0 has been the only invariant of the Dirac field used in the definition of
the charge-current density. Naturally, difficulties were encountered because J0 is a posi-
tive timelike vector and does not change sign under charge conjugation. In the past these
difficulties have been surmounted by reinterpreting the wavefunction as a quantized field
operator. By contrast, the current vector J defined in (5.18) achieves the proper behavior
under charge conjugation without resorting to the strenuous expedient of second quantiza-
tion. Whether or not the added condition on the wavefunction which this approach entails
will conspire to give a correct account of renormalization is a matter ultimately to be deter-
mined by calculation. Unfortunately, such a calculation is a many-particle problem which
is beyond the scope of this paper.

6. Expansion in Plane Waves

The Dirac equation for a free field is

ψ = mψγ0iσ3 . (6.1)
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The two positive energy solutions to this equation can be written

ψ
(+)
i = uie

iσσσ3p·x, (6.2)

where the ui (i = 1, 2) are constant Lorentz rotations. Substituting (6.2) into (6.1) we find

pui = muiγ0 ,

or, since uiũi = 1,
p = muiγ0ũi . (6.3)

The solutions u1 and u2 described as “spin up” and “spin down,” respectively, can be
written in the explicit form

u1 = e−
1
2 χ , (6.4)

u2 = e−
1
2 χiσ2 . (6.5)

Corresponding to these solutions, the spin vector is

e3 = u1γ3ũ1 = −u2γ3ũ2 . (6.6)

The negative energy solutions to (6.1) can be written

ψ
(−)
i = vie

iσσσ3p·x, (6.7)

where i = 1, 2, and
v1 = iu∗

1 = ie
1
2 χ , (6.8)

v2 = iu∗
2 = ie−

1
2 χiσ2 . (6.9)

Substituting (6.7) into (6.1), we get

pvi = mviγ0 , pu∗
i = −muiγ0 ,

or
p = −m(uiγ0ũi)∗ . (6.10)

Since uiγ0ũi is a positive timelike vector, the energy p0 = p · γ0 is negative in (6.10).
A general “free-particle” solution ψ(x) of the Dirac equation can be expanded in terms

of the plane-wave solutions,

ψ(x) =
∫

d3p

(2π)3/2

(
m

p0

) 1
2 2∑

i=1

(uiaie
iσσσ3p·x + vibie

−iσσσ3p·x) . (6.11)

In this expression p0 = p · γ0 > 0, and the ai (and bi) are “complex numbers” of the form

ai = αi + iσ3βi ,

where αi and βi are scalars. It is clear that here role of (−1)
1
2 in the usual form of the

Dirac theory taken over by iσ3 = γ1γ2, the generator of rotations in the 12-plane. The
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plane-wave “phase factor” exp(iσ3p · x) is literally a rotation in the plane containing γ1

and γ2. It induces a rotation in the plane of J1 and J2. The expansion (6.11) is basically
an expansion of ψ(x) in terms of rotations in the 12-plane.

C. Connection with Dirac Theory

7. Bilinear Forms

In STA the Dirac equation for an electron interacting with an electromagnetic field was
written

Ψ = (m + eA)Ψi , (7.1)

where
Ψ = Ψ1

2 (m + σ3) . (7.2)

Equation (7.1) is algebraically equivalent to the Dirac equation in its matrix form.11 But
there is a significant difference in that the uninterpreted (−1)

1
2 which appears in the Dirac

theory has been replaced by a geometrically significant “root of minus one,” namely the
pseudoscalar i. This substitution in no way abrogates the well-known and verified features
of the Dirac equation. However, it does give all elements of Dirac equation a well-defined
geometrical meaning, and it is just this feature which enables us to replace Ψ by the simple
wavefunction ψ which we have already discussed in detail. Actually, as we have seen, it is
iσ3 rather than i which is properly identified as the (−1)

1
2 which appears in the Dirac and

Schrödinger equations. In the form (7.1), iσ3 and i seem indistinguisable for, according to
(7.2), Ψi = Ψiσ3. But as we take Ψ apart, the difference between these two roots of minus
one will become important.

We begin our study of Ψ by analyzing the structure of certain bilinear forms of Ψ which
are given physical interpretation in the Dirac theory. The vector part of Ψγ0Ψ̃ is just that
vector which was identified by Dirac as the probability current J0 of the electron field. Note
that (Ψγ0Ψ̃)̃ = (Ψγ0Ψ̃), so by virtue of (2.2) Ψγ0Ψ̃ has only scalar, vector, and pseudoscalar
parts. Hence, we can write

Ψγ0Ψ̃ = ΨΨ†γ0 = J0 + ρeiβ . (7.3)

Here the scalar part is ρ cos β and the pseudoscalar iρ sin β.
Now note that (Ψ̃Ψ)̃ = Ψ̃Ψ so that Ψ̃Ψ can have only scalar, vector, and pseudoscalar

parts. But, because of (7.2),

Ψ̃Ψ = 1
2 (1 − σ3)Ψ̃Ψ1

2 (1 + σ3) ,

11 A spinor can be defined as a solution to the equations ΨΨ̃ = ΨiΨ̃ = 0. For every such
solution, there is a bivector σ3 (with σ2

3 = 1) so that (7.2) holds. Equation (7.1) implies
that σ3 must be constant. The definition of spinor given here is equivalent to the definition
(given in Ref. 2) of a spinor as an element of a minimal ideal in the Dirac algebra. Actually,
there are an infinite number of minimal ideals. The electron wavefunction is an element
of a particular minimal ideal characterized by σ3, as (7.2) shows. As our analysis in this
paper shows, the significance of σ3 is to be found in its relation to the spin of the electron.
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which implies that the scalar and pseudoscalar parts of Ψ̃Ψ must vanish. By taking the
inner product of Ψ̃Ψ with γ0 and comparing with (7.3), we find

γ0 · (Ψ̃Ψ) = (γ0Ψ̃Ψ)S = (Ψγ0Ψ̃)S = ρ cos β .

It follows that
Ψ̃Ψ = ρ cos βγ0(1 + σ3) = ρ(γ0 − γ3) cos β . (7.4)

Obviously, Ψ̃Ψ is a null vector.
Now, using (7.3) and (7.4), we can evaluate Ψγ0Ψ̃Ψ in two different ways,

Ψγ0Ψ̃Ψ = (J0 + ρeiβ)Ψ = Ψ2ρ cos β .

Hence
(J0 − ρe−iβ)Ψ = 0 . (7.5)

Multiplying (7.5) on the left by (J0 + ρeiβ), we find

J2
0 = ρ2 . (7.6)

If J2
0 �= 0 then ρ2 �= 0 and we can write

J0 = ρv . (7.7)

where v is a unit timelike vector. Let us follow out the implications of (8.7) and afterwards,
at the end of Sec. 8, discuss the case when J2

0 = 0 but J0 �= 0. ¿0 If ρ is identified with the
proper probability of the field, then ρ > 0. It follows J0 > 0 (i.e., when J0 does not vanish,
it is a positive timelike vector). 12 We now write (7.3) in the form

Ψγ0Ψ̃ = ρ(eiβ + v) , (7.8a)

where
ρ > 0 , v > 0 , v2 = 1 . (7.8b)

We can also construct bivector and trivector quantities which are bilinear in Ψ. Observe
that, by virtue of (2.2), (Ψiγ0Ψ̃)˜ = −Ψγ0Ψ̃ shows that Ψiγ0Ψ̃ can have only bivector and
trivector parts. By using (7.4) and (7.8) to reduce Ψiγ0Ψ̃Ψγ0Ψ̃ in two different ways, we
find that Ψiγ0Ψ̃ can be written in the following form:

Ψiγ0Ψ̃ = ρis(veiβ + 1) , (7.9a)

where the only new quantity s is a spacelike vector orthogonal to v, i.e.,

s2 = −1 , s · v = 0 . (7.9b)

The vector s describes the orientation of the electron spin.

12 See Theorem 6 of Appendix B in Ref. 2.
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8. Structure of Dirac Spinors

We can take advantage of the fact that, because v and s are orthogonal unit vectors, there
exists a field of Lorentz rotations which enables us to identify v with the e0 and s with the
e3 in Eq. (3.1). We write

v = e0 = Rγ0R̃ , (8.1)

s = e3 = Rγ3R̃ . (8.2)

So far, since we have not specified e1 and e2, R is not uniquely determined; Eqs. (8.1) and
(8.2) are unchanged if R is replaced by R′ = Reiσσσ2χ, where χ is any scalar function.

Now define ψ by
ψ = (ρeiβ)

1
2 R (8.3)

and write
Ψ = ψU . (8.4)

Using (7.2) and (7.5), we can write

1
2 (1 + v)e−

1
2 iβΨ 1

2 (1 + σ3) (8.5)

which, when translated into a condition on U , becomes

U = 1
2 (1 + γ0)U 1

2 (1 + σ3) . (8.6)

By separating U into an even part UE = 1
2 (U + U ) and an odd part UO = 1

2 (U − U ), we
see that (8.6) can be written

U = 1
2 (1 + γ0)M 1

2 (1 + σ3) , (8.7)

where M = UE + γ0UO is even. By separating M into a part M1 = 1
2 (M + M∗) which

commutes with γ0, and a part M2 = 1
2 (M −M∗) which anticommutes with γ0, we see that

U = 1
2 (1 + γ0)(M1 + M2σ3) 1

2 (1 + σ3)
= 1

4 (M1 + M2σ3)(1 + γ0)(1 + σ3) . (8.8)

By writing N = (M1 + M2σ3), substituting (8.8) into (8.4), and using the condition that
(7.3) must be satisfied, we find that

NÑ = NN † = 1 (8.9)

which means that N is a spatial rotation. Therefore, we can absorb N in the Lorentz
rotation R of (8.3) and write Ψ in the canonical form

Ψ = ψ 1
4 (1 + γ0)(1 + σ3) . (8.10)

It should be emphasized that (8.10) has been derived from the definition of Ψ as a spinor
and independent of any particular form for the Dirac equation.
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To replace the Dirac equation for Ψ by an equation for the simpler wavefunction ψ,
substitute (8.10) into (7.1), separate the equation into even and odd parts, multiply the
odd part on the right by γ0, and add it again to the even part. The result is Eq. (5.1).

We have one piece of unfinished business. To analyze the case where J0 is a null vector
we return to Eq. (7.6) and argue as in the non-null case. We find that if

J2
0 = 0 , J0 �= 0 (8.11)

then Ψ can be written in the canonical form

Ψ = ρ
1
2 Rγ0 2−

1
2 (1 + σ3) = ρ

1
2 R2−

1
2 (γ0 − γ3) , (8.12)

where R is a Lorentz rotation and ρ is a positive scalar. It is important to study the
difference between (8.10) and (8.12). By the algebraic operations described in the last
paragraph, (8.10) can be reduced to (8.3). But an analogous reduction of (8.12) is not
possible. We can do no more than rewrite it in the equivalent even form

ψ = ρ
1
2 R2−

1
2 (1 − σ3) . (8.13)

This quantity has perhaps as much right to be called a spinor as the quantity (8.3). In fact
it can be written as the sum of two spinors of the type (8.3)

ρ
1
2 R2−

1
2 (1 − σ3) = (1

2ρ)
1
2 R + ( 1

2ρeiπ)
1
2 Re−iσσσ2

1
2 π .

Therefore, if the sum of any two spinors is again a spinor, then both (8.3) and (8.13) must
be spinors. Still, we have not discussed spinors of the type (8.13) because they cannot
be solutions of the Dirac equation for an electron. The Dirac equation does allow (8.11)
to be satisfied. Spinors of the type (8.13) are equivalent to the “two-component spinors”
commonly used to describe neutrinos.

D. Prospects

To bring the program initiated here to its logical conclusion, it is necessary to carry out a
general reassessment of the role of complex numbers in elementary particle theory. The fact
that the (−1)

1
2 has a geometrical interpretation in electron theory strongly suggests that a

similar interpretation can be given to every appearance of (−1)
1
2 in the basic equations of

physics, though it is by no means evident that the (−1)
1
2 will have the same meaning in each

instance. We have learned that the (−1)
1
2 in the electron wavefunction is inextricably tied

up with the spin. Yet the (−1)
1
2 which seems to play an essential role in the quantization of

fermion fields has no evident connection with spin. It will take a careful analysis of quantum
electrodynamics to resolve this apparent conflict. Again, the tie up of (−1)

1
2 and spin

suggests that analytic continuation of scattering amplitudes cannot be properly understood
without taking spin into account.13 On the other hand, there may be geometrically different
kinds of analytic continuation, for there are several different geometical roots of minus one
in the Dirac algebra.

13 A formulation of the “complex” Lorentz group in terms of the real Dirac algebra is given
in Sec. 19 of Ref. 2.

18



Anyone who plays the game of theoretical physics with the rules suggested here will not
allow a (−1)

1
2 in his theory unless it has a geometrical significance grounded in space-time.

This may be regarded as another constraint imposed by space-time on permissible physical
equations which had already been restricted by the requirement of relativistic covariance
or invariance.

We have exhihited several bilinear “observables” of a spinor field ψ. The Dirac theory
supplies a physical interpretation of J0 = ψγ0ψ̃ and of the general orientation of the frame
{Ji = ψγiψ̃}. We have suggested an interpretation of ψψ̃ which awaits final justification.
To supply a more detailed interpretation of the Jµ, we must go well beyond the Dirac
theory. This possibility will be explored in another paper.
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