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Galileo’s Manifesto for Science 
 
“To be placed on the title-page of my collected works: 
 

“Here it will be perceived from innumerable examples what is the use of 
mathematics for judgment in the natural sciences, and how impossible it is to 
philosophize correctly without it . . . 
 
“Philosophy is written in that great book which ever lies before our eyes –– I 
mean the universe –– but we cannot understand it if we do not first learn the 
language and characters in which it is written. This language is mathematics, 
and the characters are triangles, circles and other geometrical figures, without 
whose help it is impossible to comprehend a single word of it; without which 
one wanders in vain through a dark labyrinth.” 
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I. Prolog: On optimizing the design of introductory mathematics. 
 
Physics teachers are universally dismayed by the paltry understanding of mathematics that 
students bring from their mathematics courses. Blame is usually laid on faulty teaching. But I 
hold that the crux of the problem is deeply embedded in the curriculum. From the perspective of 
a practicing scientist, the mathematics taught in high school and college is fragmented, out of 
date and inefficient! 
 
The central problem is found in high school geometry. Many schools are dropping the course as 
irrelevant. But that would be a terrible mistake for reasons already clear to Galileo at the dawn of 
science. 
 

• Geometry is the starting place for physical science, the foundation for mathematical 
modeling in physics and engineering and for the science of measurement in the real 
world. 

 
• Synthetic methods employed in the standard geometry course are centuries out of date; 

they are computationally and conceptually inferior to modern methods of analytic 
geometry, so they are only of marginal interest in real world applications.  

 
• A reformulation of Euclidean geometry with modern vector methods centered on 

kinematics of particle and rigid body motions will simplify theorems and proofs, and 
vastly increase applicability to physics and engineering. 

 
A basic pedagogical principle: The depth and extent of student learning is critically dependent 
on the quality of the available mathematical tools.  

 
Therefore, we can expect a well-designed curriculum based on vector methods to produce 
significant improvements in the depth, breadth and usefulness of student learning. Further 
enhancements can be expected from software that facilitates application of vector methods. 
 
Whether or not the high school geometry course can be reformed in practice, the course content 
deserves to be reformed to make it more useful in applications. 
 
Objective of this workshop: To demonstrate with specific examples how geometric algebra 
unifies high school geometry with algebra and trigonometry and thereby simplifies and facilitates 
applications to physics and engineering. 
 
References for further study:  
D. Hestenes, “Oersted Medal Lecture 2002: Reforming the mathematical language of physics, “  

Am. J. Phys. 71: 104-121 (2003). 
D. Hestenes, New Foundations for Classical Physics (Kluwer, Dordrecht, 1986, 2nd ed. 1999) 
Website <modelingnts.la.asu.edu> 
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II. Standard algebraic tools for linear geometry: Vector Addition and scalar multiplication. 
 
The term scalar refers to a real number or variable, with properties taken for granted here. 
 
The concept of vector is defined by algebraic rules for combining vectors. 
 
In addition, geometric meaning is ascribed to vectors by depicting them as directed line 
segments. 
 Thus vector a is depicted by               
  
A. Rules for vector addition. 
 
• Closure  (The sum of vectors is also a vector) 
 
 a + b = c 
 
Exercise: As appropriate, sketch geometric depictions for the following algebraic rules: 
 
• Commutative 
 
 a + b = b + a 
 
• Associative 
 
 (a + b) + c = a + (b + c) 
 
• Additive inverse and zero vector (depicted by a point) 
 
 a + (–a) = 0 
 
 a + 0 = a 
 
• Subtraction 
 
 a – b = a + (–b) 
 

a  

c

b

a  
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B. Rules for multiplication by scalars (denoted by Greek letters and/or italics) 
 
• Additive and multiplicative identities 
 
 1a = a,          (–1)a = –a,          0a = 0 
• Distributive 
 
 α(a + b) = αa + αb 
 
 (α + β )a = αa + βa 
 
Example: Repeated vector addition as scalar multiplication 
 
 a + a + a = (1 + 1 +1 )a = 3a 
 
• Associative 
 
 α(βa) = (αβ)a  
 
• Commutative 
 
 αa = aα  
 
• Magnitude and direction: Every vector a has a unique scalar magnitude a= a  and (if 

a ≠ 0) a direction ˆ a  so that 
 
 a = aˆ a  
 
• Collinearity. Nonzero vectors a and b are said to be collinear or linearly dependent if there 

is a scalar β such that 
 
 b = βa 
 
• Linear independence. Nonzero vectors ��a1,a2,�,an  are said to be linearly independent if

 
��x(α1,α2,�,αn) = α1a1 + α2a2 +� +αnan  

 
is not zero for any combination of scalars ��α1,α2,�,αn  (not all zero). The scalars {��α1,α2,�,αn } 
are said to be coordinates for the vector ��x(α1,α2,�,αn) with respect to the basis { ��a1,a2,�,an }. 
The set {��x(α1,α2,�,αn)} for all values of the coordinates is an n-dimensional vector space. 
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C. Parametric equations  
 
Exercise: As appropriate, identify and sketch the indicated geometric figures below. 
 When is it necessary to designate a particular point by the zero vector? 
 
• Line:  x(α) = αa + b 

Line segment for 0 ≤ α ≤1 
 

• Plane: x(α, β) = αa + βb + c 
 

Linear constraints: Sketch lines for α = 1, 2, 3 and then for β = 1, 2, 3. 
 

Quadratic constraints: (Choose the most symmetrical parametric form) 
 

1. α2 + β2 =1 

2. β = α2 

3. α2 − β2 = 1 
 
 Solutions 

1. x(θ) = acosθ + bsinθ + c 

2. x(α ) = aα + bα2 + c 

3. x(θ) = acoshθ + bsinhθ + c 
 
 
News Release: Physics Education Research in a large state university found that, after 
completing a semester of introductory physics, most students were unable to carry out graphical 
vector addition in two dimensions. The more complex skills of coordinating scalar multiplication 
with vector addition were not investigated. [Nguyen & Meltzer, AJP 71: 630-638 (2003)] 
 

Question: What are likely reasons for this unacceptable failure of mathematics instruction? 

Answers: 

• Failure of the math curriculum to provide timely instruction in vector methods. 

• Over reliance on coordinate methods in most courses. 

• Vectors are only sporadically employed and usually with orthogonal bases, so students 
have little opportunity to develop fluency with the general features of vector algebra 
listed above. 

• Students are unclear about the geometric interpretation of vectors (see below) 

• Vector algebra is incomplete without rules for multiplying vectors that encode 
information about magnitudes and relative direction (see GA below). 
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PART I. Introduction to Geometric Algebra and Basic Applications 
 
III. Defining and Interpreting the Geometric Product 
 
The algebraic properties of vector addition and scalar multiplication are insufficient to 
characterize the geometric concept of a vector as a directed line segment, because they fail to 
encode the properties of magnitude and relative direction. That deficiency is corrected by 
defining suitable algebraic rules for multiplying vectors. 
 
Geometric product: The product ab for vectors a, b, c is defined by the rules 

• Associative: (ab)c = a(bc) 

• Left distributive: a (b + c) = ab + ac 

• Right distributive: (b + c)a = ba + ca 

• Euclidean metric: a2 = a2,       

where a= a  is a positive scalar (= real number) called the magnitude of a. 

In terms of the geometric product ab we can define two other products, a symmetric 
inner product 

 (1)     a ⋅ b = 1
2 ab + ba( ) = b ⋅ a , 

and an antisymmetric outer product 

 (2)     a ∧ b = 1
2 ab− ba( ) = −b ∧ a  

Adding (1) and (2) we obtain the fundamental formula 

 (3)     ab = a ⋅b + a ∧ b  

called the expanded form for the geometric product. Our next task 
is to provide geometric interpretations for these three products. 
 
Problem: For a triangle defined by the vector equation a + b = c, 
derive the standard Law of Cosines:  

 a2 + b2 + 2a ⋅ b = c2, 
and so prove that the inner product a ⋅ b is always scalar-valued. 
Therefore, the inner product can be given the usual geometric 
interpretation as a perpendicular projection of one line segment 
on the direction of another. 
 
The outer product a ∧ b = −b ∧ a generates a new kind of geometric quantity called a 
bivector, that can be interpreted geometrically as directed area in the plane of a and b. 
 
 
 
 

a 

b 

c 

∧∧∧∧
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We have shown that the geometric product interrelates three kinds of algebraic entities:  scalars 
(0-vectors), vectors (1-vectors), and bivectors (2-vectors) that can be interpreted as geometric 
objects of different dimension. Geometrically, scalars represent 0-dimensional objects, because 
they have magnitude and orientation (sign) but no direction. Vectors represent directed line 
segments, which are1-dimensional objects. Bivectors represent directed plane segments, which 
are 2-dimensional objects. It may be better to refer to a bivector B = BB̂  as a directed area, 

because its magnitude B = B  is the ordinary area of the plane segment and its direction B̂  

represents the plane in which the segment lies, just as a unit vector represents the direction of a 
line. The shape of the plane segment is not represented by any feature of B, as expressed in the 
following equivalent geometric depictions (with clockwise orientation): 
 
 
 
 
Prove the following: 
 
 Given any non-zero vector a in the plane of bivector B, one can find a vector b such that 
 
  B = ba = –ab, 
 

  B2 = − B 2 = −a2b2 , 
 
  aB = –Ba,            that is, B anticommutes with every vector in the plane of B. 

 Every vector a has a multiplicative inverse:  a−1 =
1

a
=

a
a2  

  that is, geometric algebra makes it possible to divide by vectors. 
 
 
Prove the following theorems about the geometric meaning of commutivity 
and anticommutivity: 
 
          0⋅ = ⇔ = −a b ab ba    Orthogonal vectors anticommute!! 
 
 
          a = λb ⇔ a ∧ b = 0 ⇔ ab = ba      Collinear vectors commute!! 
 
The problem remains to assign geometric meaning to the quantity ab without expanding it into 
inner and outer products. 
 

a 

b 

a 

b 

B B B = = = 
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IV. Rotors and rotations in the Euclidean plane 
Let i denote the unit bivector for the plane. As proved above, i2 = −1, so i has the properties of 
the unit imaginary in the complex number system. However, by relating it multiplicatively to 
verctors, GA endows i with two new geometric interpretations: 
 
• Operator interpretation: We can assign an orientation to i so that left multiplication by i 
rotates vectors in its plane through a right angle. Thus, any vector a is 
rotated into a vector b given by the equation 
 
 ia = –ai = b, 
 
with the action of i depicted by the directed arc in the diagram: 
 
• Object interpretation: Bivector i represents a unit plane segment, as 
expressed by the following equations and depictions (for a2 = b2 =1 ): 

 
 i = ba−1      (counterclockwise sense) 
 

 −i = a−1b       (clockwise sense) 
 
 
 
The operator interpretation of i generalizes to the concept of rotor  Uθ , the entity produced by 
the product ba of unit vectors with relative direction θ. 
 
Rotor Uθ = ba is depicted as a directed arc on the unit circle. Reverse †Uθ = ab . 

  

    
 
Defining sine and cosine functions from products of unit vectors. 
 

a2 = b2 =1, i2 = −1 
 
b ⋅ a ≡ cosθ  
 
b ∧ a ≡ isinθ  
 

Rotor: 
 

     Uθ = ba = b ⋅a + b ∧ a = cosθ + i sinθ ≡ eiθ  
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Rotor equivalence of directed arcs is like 
 
 vector equivalence of directed line segments: 
 
 
 
 
 
 
 
 
 
 
Product of rotors is equivalent to addition of angles: UθUϕ = Uθ +ϕ    or    eiθeiϕ = ei(θ +ϕ) . 

 
 
 
 
 
 

Rotor-vector product = vector:     Uθ v = eiθ v = u  
 
 
 
 
 
 
 
 
Thus rotor algebra represents the algebra of 2d rotations !  
 
The concept of rotor generalizes to the concept of  
 
 complex number interpreted as a directed arc. 
 

 z= λU = λeiθ = ba  
 
Reversion = complex conjugation 
 
 † †z U e θλ λ −= = =i ab  
 

 
2† 2 2 2( )( )zz zλ= = = =ba ab a b  

 
Modulus: z = λ = a b  
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Relation to standard complex number notation:    z= Rez+ i Imz= ba  
 
   with         †1

2Re ( )z z z= + = ⋅b a       †1
2Im ( )z z z= − = ∧i b a  

 
(Note: this representation of complex numbers in a real GA is a special case of spinors for 3d). 
 
Note the new GA 
 Roots of unity:   Two roots of –1:          −1= ±i  
  Many roots of +1:        +1 = ˆ a , 1. 
 
 
V. Vector identities and plane trigonometry with GA 
 
Exercise: Prove the following vector identities and show that they are equivalent to trig 
identities for unit vectors in a common plane. 
 

(a)  (a ⋅b)2 − (a ∧ b)2 = a2b2  
 

(b)  (a ∧ b)(b ∧ c) = b2a ⋅ c − (a ⋅ b)b ⋅ c  
 
 Hint: Expand abbc in two different ways 
 
Exercise: Use rotor products to derive the trigonometric double angle formulas: 
 

(c)  cos(θ + ϕ ) =  ?? 
 

(b)  sin(θ + ϕ) =  ?? 
 
Plane (Euclidean) Trigonometry can be reduced to two basic problems: 
 
 (a) Solving a triangle 
 
 (b) Solving the circle (composition of rotations). 
 
A triangle relates six scalars: 3 sides (S) & 3 angles (A). 
 
 Given 3 of these scalars 
             (SSS, SAS, SSA, ASA, AAS, AAA)  
 
 “solving the triangle” consists of determining the other 3 sides. 
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Laws of the triangle follow directly from the geometric product: 
 

(a) Law of cosines (scaled projection) 
 
       a2 + b2 − 2abcosγ = c2  
 

(b) Law of sines (areas) 
 

       
sinα

a
=

sinβ
b

=
sinγ

c
 

 
(c) Angle laws: 

• Complementary angles (interior/exterior) 

• Sum of interior angles 

• Sum of exterior angles 
 

Exercise: Derive these laws with GA and interpret with  
 Diagrams, such as the one on the right: 
 
 
VI. Modeling real objects and motions with vectors. 
 
News Bulletin: The World Health Organization has announced a world-wide epidemic of the 
Coordinate Virus in mathematics and physics courses at all grade levels. Students infected with 
the virus exhibit compulsive vector avoidance behavior, unable to conceive of a vector except as 
a list of numbers, and seizing every opportunity to replace vectors by coordinates. At least two 
thirds of physics graduate students are severely infected by the virus, and half of those may be 
permanently damaged so they will never recover. The most promising treatment is a strong dose 
of Geometric Algebra. 
 
It may be surprising that the concept of vector is so difficult for students, since intuitive notions 
of direction and distance are essential for navigating the everyday world. Surely these intuitions 
need to be engaged in learning the algebraic concept of vector, as they are essential for 
applications. The necessary engagement occurs only haphazardly in conventional instruction, 
and that is evidently insufficient for most students. 
 
One barrier to developing the vector concept is the fact that the correspondence between vector 
and directed line segment has many different interpretations in modeling properties of real 
objects and their motions: 
 

• Abstract depiction of vectors as manipulatable arrows has no physical interpretation, 
though it can be intuitively helpful in developing an abstract geometric interpretation. 
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• Vectors as points designate places in a Euclidean space or with respect to a physical 
reference frame. Requires designation of a distinguished point (the origin) by the zero 
vector.  

• Position vector x for a particle which can “move” along a particle trajectory x = x(t) 
must be distinguished from places which remain fixed. 

• Kinematic vectors, such as velocity v = v(t) and acceleration are “tied” to particle 
position x(t). Actually, they are vector fields defined along the whole trajectory. 

• Dynamic vectors such as momentum and force representing particle interactions.  
• Rigid bodies. It is often convenient to use a vector a as a 1d geometric model for a rigid 

body like a rod or a ruler. Its magnitude a= a  is then equal to the length of the body, and 
its direction ˆ a  represents the body’s orientation or, better, its attitude in space. The 
endpoints of a correspond to ends of the rigid body, as expressed in the following 
equation  

 x(α ) =  x0 + αa { 0≤ α ≤ 1}   
for the position vectors of a continuous distribution of particles in the body. Note the 
crucial distinction between curves (and their parametric equations) that represent particle 
paths and curves that represent geometric features of physical bodies.   

 
Exercises with Barycentric coordinates: 
 
(1) Discuss and sketch values of the parametric equationx = αa + βb  with the 
constraintα + β =1. 
 
(2) For the parametric equation x = αa + βb +γc with α + β +γ =1, discuss values of the 
parameters that give vertices, edges and interior points of a triangle. 
 
(3) Discuss the relation of barycentric coordinates to center of mass 
 
VII. High school geometry with geometric algebra 
 
Nonparametric equation for a line {x} through point a with direction u: 
 
 (x − a) ∧ u = 0 . 
 
Exercises: 
 
 (1) Sketch the line. 
 (2) Derive an equivalent parametric equation for the line with u2 =1. 

 (3) Find the directed distance d from the origin 0 to the line and sketch. 

 (4) Find the directed distance from an arbitrary point y to the line. 
 
Hints: 
 
 (2) Write (x − a) ⋅ u = α  and solve for x = αu + a  
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 (3) x ∧ u = a ∧ u = du.   Sketch the directed areas and solve for d. 
Rigid displacements: Congruence and measurement 
 

 
 
Equations for a rigid displacement of particles in a body or points in a reference frame. 
 
 x → ′ x = Rx + a R= eiθ  
 
 y → ′ y = Ry + a   R

y = e−iθ  
 
Rigid displacement of an interval 
 

 r = x − y → ′ r = ′ x − ′ y = R(x − ′ y )       or   ′ r = Rr = r Ry  
 

Invariants  of rigid displacements: Euclidean distance:   (′ x − ′ y )2 = (x − y)2 
 
VIII. Basic kinematic models of particle motion 
 
Kinematics: The geometry of motion 
 
A. Free particle. Sketch a motion map for the algebraic model: 
 
 x(t) = x0 + vt  
 

[Note that including the origin or coordinates in the map introduces arbitrary and 
unnecessary complications.] 

 
 Derive a nonparametric equation for this model, and relate it to angular momentum. 
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B. Constant acceleration model. 
 (without coordinates!!) 
 
dv
dt

= g � v = v0 + gt  

 (hodograph) 
 
dx
dt

= v � x = x0 + v0t + 1
2 gt 2

 (trajectory) 
 
 
 
 

 
 
 
Vector algebraic model: 
 

 1
2(v + v0) =

r
t

≡ v  

 
    v − v0 = gt  
 
 
Reduces all projectile problems to 
 
 “solving a parallelogram!!” 
 
Problem: Determine  
 (a) the range r of a target sighted in a direction ˆ r  that has been hit by a projectile  
  launched with velocity v0;  
 (b) launching angle for maximum range;  
 (c) time of flight  
 
 Simplest case:   ̂ r  is horizontal. 
 
  Hint:  Consider (v - v0)(v +v0)  
 
 General case: Elevated target. 
 
  Complicated solution with rectangular coordinates published in AJP. 
  Much simpler GA solution in NFCM. 
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Solving a parallogram with GA: 
 

v − v0 = gt  v + v0 =
2r
t

 

 
We eliminate t by multiplication, to get: 
 
 v − v0( ) v + v0( )= 2rg  

 
Expanding, we obtain 
 
 ( )2 2

0 0 0

0

2

2

v v− + − = ⋅ + ∧
∧

vv v v r g r g

v v
�����

 

Separately equating scalar and bivector parts, we get: 
 

 
For r = r r̂  horizontal, we have 
 
     2 2

00 v v⋅ = � =r g . 
 
So v ∧ v0 = r ∧ g = rg  
 
gives    v0

2 sin2θ = rg  
 

Hence the range formula:    r =
v0

2

g
sin2θ  

 
 
The general GA solution for an elevated target and time of flight is derived in NFCM. 
 
 
 
 
 
 
 
 

v2 − v0
2 = 2r ⋅ g v ∧ v0 = r ∧ g

2r/ tv0

v

gt

 

2r/ t

v0

v

gt

θ
θ

 



 17 

C. Circular motion. Motion on a circle of radius r = r  centered at point c: 
 
 Trajectory:  x = c + r (t)  [Sketch motion map including unit circle] 
 

 Radius vector:  r = eiθ (t )r0   
 

 Velocity:   v =
dr
dt

= ΩΩΩΩr = ωir  

 

 Angle:θ > 0 for counterclockwise motion Angular speed: ω =
dθ
dt

 

 
 Path length:  s= rθ  speed  v = rω  
 
 Rotor: R= eiθ    Angular velocity:  ΩΩΩΩ = iω  
 

 Rotor eqn. of motion:    
dR
dt

= ΩΩΩΩR 

 

 UCM   �    θ = ωt     �    r = eiω tr0  
 
D. General kinematic theorem.  
 
 x = x(s) = parametric eqn. for particle path. [Sketch general motion map] 
 
 x = x(t) = parametric eqn. for particle trajectory. 
 
 Path length: s = s(t) 
 

 Speed:  v =
ds
dt

 Tangent direction:     ˆ v =
dx
ds

= eiθ ˆ v 0 

 
Thm:  Velocity:  v = ˆ v v is tangent to the particle path (trajectory) 

 Acceleration:  
dv
dt

= ˆ v 
dv
dt

+ iv
dθ
dt

=
dv
dt

± i
v2

r

� 

� � 
� 

� � ̂
 v  points inside the curving path  

 and the radius r of the osculating circle is defined by v =
ds
dt

= r
dθ
dt

 

 

Exercise: A particle slides on the frictionless track below subject to a force mg + N = m
dv
dt

 

 that keeps it on the track. Sketch its velocity v and acceleration a at the indicated points: 
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D. General Keplerian motion (under an inverse square force).  Full treatment in NFCM  
 

(1) Dynamical model:     m
dv
dt

= −
k

r2
ˆ r  

 
(2) Problem: Reduce to algebraic model by finding constants of motion 
 

 (a) Angular momentum:   L = mr ∧ v = mr2ˆ r 
dˆ r 
dt

 

 
 (b) Eccentricity vector εεεε in: Lv = k ˆ r + εεεε( ) 
 

 Hints: (a) mr ∧
dv
dt

=
d
dt

(mr ∧ v) = r ∧ f (r ) = 0   (Central force) 

 

  (b) L
dv
dt

= −
kL
mr2

ˆ r = k
dˆ r 
dt

 

 
(3) Model analysis. Derive the following algebraic features of the model: 
 [Details are fully worked out in NFCM] 
 

 (a) Energy  E = 1
2 mv2 −

k
r

   is constant and related to eccentricity by 

  ε2 −1=
2L2E

mk2  

 
 (b) Orbit  r = r = r(ˆ r )     for L ≠ 0. 

  
��
r =

±�
1+ εεεε ⋅ ˆ r 

      where     
��
� =

L2

m k
      and ±  for attractive/repulsive force 

 
  [Note: orbit is not a trajectory, which gives position as a function of time.]  
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 (c) Hodograph v = v(ˆ r ) =
k
L

ˆ r + εεεε( )             (orbit in velocity space) 

  Show this is a circle by deriving the non-parametric eqn. (v − u)2 =
k2

L2 . 

 
 (d) Classification of orbits: (by energy, eccentricity & hodograph center u) 
 

 
Elliptical orbit and hodograph 

 
 (e) Initial value problem: Determine L and εεεε given one value of v and ˆ r . 
 
 
(4) Scattering problem: Given asymptotic initial velocity and angular momentum, find v f = v final 

 
 (a) Asymptotic conditions: 

  E = 1
2 mv2 −

k
r r→∞ →   1

2 mv0
2  � vo = v0 = v f =

2E
m

� 
� 

� 
� 

1
2
 

  ˆ r ∧ v =
L
mr r→ ∞ →   0   � ˆ r 0 = − ˆ v 0, ˆ r f = ˆ v f  

 
 (b) Eccentricity conservation: Lv 2 − kˆ r 2 = Lv1 − kˆ r 1 
 
  � (Lv0 − k)ˆ v f = (Lv0 + k) ˆ v 0  
 

 �  v f =
Lv0 + k
Lv0 − k

� 
� � 

� 
� � 
v0 This solves the scattering problem completely!! 

 
 Remaining problem is to reformulate it in terms of observed quantities: 
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  Scattering angleΘ  and impact parameterb defined as follows: 
 

  v f = v0e
iΘ = e−iΘv0 

 

  L = bmv0 =
2bE
v0

 ˆ L = i (k > 0)    or    ̂  L = −i (k < 0) 

 

 eiΘ =
Lv0 − k
Lv0 + k

=
2Ebi − k
2Ebi + k

       �   b =
k

2E
cot 1

2Θ  

 
 �      Rutherford scattering formula  for coulomb scattering! 
 
IX. Planar rigid body motion and reference frames. 
 
A reference system assigns each particle a definite position with respect to a given rigid body 
(or reference frame). The set of all possible position vectors is a 3d Euclidean vector space 
called the position space of the frame. 
 
 Time dependent rigid displacement of one reference frame with respect to another is 
completely specified by a time dependent 
  

 rotor  Rt = eiθ (t )  and translation vector  a = a(t) 
 
Accordingly, a particle path x = x(t)  in the “unprimed frame” is mapped into  
 
 a particle path  ′ x (t) = Rtx(t) + a(t)  in the “primed frame.” 
 

Problem: Suppressing the time argument and writing    
d

dt
= x

x� ,     W
dR

R R
dt

= =� , 

derive the following equations relating velocities and accelerations in the two frames aligned at 
time t.: 
 

 W′ = + +x x x a�� �  
 
 22W (W W )′ = + + + +x x x x a� ��� �� �  
 
Newton’s 1st Law (implicitly) defines an inertial frame as a rigid body with respect to which 
every free particle has constant velocity. 
 
Principle of Relativity  requires that the laws of physics are the same in all inertial systems. 
[First formulated by Galileo and incorporated by Newton as a corollary in his theory].  
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Problem: Apply this to Newton’s 2nd law to prove that any two inertial frames are related by a 
Galilean transformation 
 
 x → ′ x = Rx + c + ut  where R, c and u are constant. 
 
Derive therefrom the Galilean velocity addition theorem:        ′ v = v + u. 
 
Exercise: Inside a cable car climbing a slope with constant velocity v0 an object is dropped 
from rest. Derive eqns. for the trajectory within the car and with respect to the earth outside. 
 
Problem: Discuss invariance of Newton’s first and second laws with respect to Galilean time 
translation and scaling:     t → ′ t = α t + β ,   where α and β are constants. 
 
X. The Zeroth Law of physics defines the fundamental presumptions about space, time and 
existence of real entities that underlie all of physics. 
 
Different versions of the Zeroth Law define different physical theories. 
Einstein’s Special Theory of Relativity amounts to a modification of the Zeroth Law implicit in 
Newtonian theory. 
 
Tenets of the Newtonian Zeroth Law: 
 

• Any material object can be modeled as a particle or body {system of particles} 
• At any time, every particle has a definite position x in the 3d Euclidean position space of 

a given reference system. 
• Particle motion is represented by a continuous trajectory x(t) in position space. (Time is 

measured by comparison with a standard moving object called a clock.) 
 
Newton’s First Law defines an inertial system and a uniform time scale. 
 
The remaining four Laws of Newtonian physics define particle interactions and dynamics. 
 
 [Ref. Modeling Games in the Newtonian World, AJP 60: 732 (1992)] 
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PART II. Special Relativity with Geometric Algebra 
 [Ref. NFCM, 2nd Ed. (1999), Chap. 9] 

XI. Defining Spacetime  
 
Einstein (1905) recognized that Newtonian mechanics is inconsistent with Electromagnetic 
Theory, and he traced the difficulty to the Newtonian concept of time. He resolved this problem 
by adopting two principles: 
 

1. Principle of Relativity. Einstein adopted this principle from Newtonian theory, but 
raised its status from a mere corollary to a basic principle. 

2. Invariance of the speed of light. Einstein assumed that the speed of light c has the same 
value in all inertial systems. 

 
Minkowsky (1908) incorporated these principles into a new conceptual fusion of space and time 
that can be defined with GA by the following assumptions: 
 

1. In a given inertial system, the time t and place x is of an event is represented as a single 
point X = ct + x  in a 4-dimensional space called spacetime (see spacetime maps below). 

 
2. The spacetime interval   

 
 ∆X = X2 − X1 = c(t2 − t1) + (x2 − x2) = c∆t + ∆x  

 
between events X2 and X1 has an invariant magnitude ∆X  called the proper distance 
between the events and given by  
 

 ∆X∆ ˜ X = ε ∆X 2 = (c∆t)2 − (∆x)2 , 
 

where ∆ ˜ X = c∆t − ∆x , and the signature ε of the interval has the value 1, 0 or –1, and, 
respectively, the interval is said to be timelike, lightlike, or spacelike.  

 
3. “Invariance of the interval” means that 
 

 ∆X∆ ˜ X = ε ∆X 2 = ε ∆ ′ X 2 = ∆ ′ X ∆ ˜ ′ X  
 
wnere ∆ ′ X = ′ X 2 − ′ X 1 = c∆ ′ t + ∆ ′ x  is the same interval represented in some other inertial 
system. 

 
Problem: Prove that spacetime interval invariance implies that the speed of light c has the same 
constant value in all inertial systems. 
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XII. Spacetime Maps   
 
Spacetime maps are essential for physical interpretation of GA equations in relativity theory. 
 

 
 
This is a spacetime map showing the lightcone for an eventX0. Events Xk (k = 1, 2, 3) lie on 
straight lines passing through X0. Intervals ∆Xk = Xk − X0 are said to be timelike, lightlike or 
spacelike, respectively, as they lie inside, on, or outside the invariant lightcone. 
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This is a spacetime map of events in a timelike plane showing the position vector x = X2 − X1 
for the event X = ct + x  with respect to a given inertial system. 
 
A differentiable curve in spacetime is said to be timelike, lightlike or spacelike, if its tangent is 
proportional to, respectively, a timelike, lightlike or spacelike interval. 
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A. Particle history and proper velocity. 
 
The history of a material particle is a timelike curve 
X = X(τ ) , as illustrated in the figure.  

 
The path length ∆τ  of an interval ∆X  along the history 
is the proper time interval registered by a clock 
traveling with the particle. Hence, 
 

 ∆X∆ ˜ X = ∆X 2 ≈ (c∆τ )2       
 

 and, in the limit,        dX = cdτ  
 
The proper velocity V = V(τ )  of a particle is defined by  
 

V =
1
c

dX
dτ =

dt
dτ +

1
c

dx
dτ , 

 
which must be distinguished from the relative velocity  
 

v =
dx
dt

 in a given inertial system. 

Exercise:    Prove     V = γ 1+
v
c

� 
� 

� 
� ,          γ =

dt
dτ = 1−

v2

c2  

 
The proper velocity V of a free 
particle is constant, so its history is a 
straight line given by the equation 

 
 X(τ) − X(0) = Vcτ  
 
 
The time axis of an inertial system is 
the history of a free particle at rest at 
the origin so that proper time τ can be 
identified with “observer time” t , and 
the position vector x for an event 
X = ct + x  is the “directed distance” 
from the particle history to the event.  
Similarly,  
               the time axis of every inertial system can be identified with the history of a free particle.  

.
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For a given observer (free particle) the position x 
and time t  of a given event X can (in principle) be 
determined by radar ranging with light signals, as 
illustrated in the figure. Note that the event X is 
simultaneous with event X2 = ct. This geometric 
construction is Einstein’s operational procedure for 
synchronizing clocks at distant events. 

 
 
 
 
 
 
VIII. Spacetime Trig.  
 
The most basic measurements in surveying spacetime 
events can be reduced to solving triangles in a timelike 
plane, as already shown in the operational procedure 
for synchronizing clocks. 
 
A. Time dilation and desynchronization. 
 
The basic idea is illustrated by the parable of the twins. 
As illustrated in the spacetime map for their histories, 
the astronaut twin travels to a distant star with velocity  

V = γ 1+
v
c

� 
� 

� 
� ,  

and returns with velocity  

˜ V = γ 1−
v
c

� 
� 

� 
� .  

 
The algebraic equation for the triangle is 
 
 2t = Vτ + ˜ V τ  
 
Exercises:  

(1) Compare ages of the twins when the trip is over. Discuss implications of this result. 
(2) Prove that the longest path between two points separated by a timelike interval is a 

straight line. (See next figure) 
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B. Lorentz contraction: A rod of rest length l0 moves with velocity v who measures its length 
as l  at time t, as shown in the spacetime map. 
 
Exercise: Reasoning from similar triangles in the map, 
derive the Lorentz contraction formula 
 
 l0 = γ l   
 
and discuss its physical meaning. 
 
C. Doppler shift. 

A distant source with velocity V = γ 1+
v
c

� 
� 

� 
�  emits light signals with frequency ′ f =

′ ω 
2π =

1
∆ ′ t 

 

that are received with frequency f =
ω
2π =

1
∆t

, as shown in the figure. 
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Exercise: From the figure derive the equation 
 
 λ X2 − X1( )= D −V , 
 
where λ is a scale factor and  
 
 D ≡ ′ f / f  
 
is the Doppler factor.  
 
Derive and discuss the result 

��
D =

′ f 
f

= γ(1± v / c) =
c ± v
c 	 v

=
1

γ (1	 v / c)
 

 
XIV. Lorentz transformations. 
 
Two different inertial systems (primed and unprimed) with a common origin X0 = ′ X 0 = 0 assign 

different labels ′ X = c ′ t + ′ x  and X = ct + x  to each spacetime event. If V = γ 1+
v
c

� 
� 

� 
�  is the 

proper velocity of the primed frame with respect to the unprimed frame, then, in the timelike 
plane containing both time axes, the labels are related by the Lorentz transformation: 
 
(1) X = V ′ X      or     ′ X = ˜ V X 
 
Exercise: Derive therefrom the standard  
Relations between times and positions: 

 

 
′ t = γ t −

v ⋅ x

c2
� 
� � 

� 
� � 

′ x = γ (x − vt)

 

 
Velocity composition:  
 
Let ′ X = ′ X (τ )  and X = X(τ )  represent the history of a particle with proper velocity 

′ U = γ ′ u 1+
′ u 

c
� 
� 

� 
�  andU = γ u 1+

u
c

� 
� 

� 
�  in the two inertial systems. 

Exercise: Derive and interpret the relativistic velocity composition law:        ′ U = ˜ V U . 
Therefrom, derive the corresponding composition laws for time dilations and relative velocities: 
 

 γ ′ u = γ uγ v 1−
u ⋅ v
c2

� 
� � 

� 
� � , ′ u =

u − v

1−
u ⋅ v

c2
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Active Lorentz transformations. 
 
The Lorentz transformation 
X = V ′ X  is interpreted passively as a 
change of labels for a single event. 
Alternatively, it can be interpreted 
actively as a relation between two 
different events that are the same 
proper distance ′ X = X = cτ  from 
the origin. 
 
 
 
 
 
Advanced Exercise: Interpret the 
active Lorentz transformation in the 
figure as a hyperbolic rotation of 
proper velocity. The rotation angle 
a= a  is the arc length on a unit 
hyperbola, as expressed by 
 

 V = γ 1+
v
c

� 
� 

� 
� = ea = cosha + sinha  

 cosha = cosha= γ =
t
τ  sinha = ˆ v sinha = γ v

c
=

x
cτ  

 
Construct a diagram to express velocity composition as a product of hyperbolic rotations: 
 
 eaeb = ea+ b   and compare with the product of Euclidean rotations:   eiθeiϕ = ei(θ +ϕ)   
 
XV. Energy & momentum are unified by special relativity 

A. The proper momentum P for a material particle with rest mass m and velocity V = γ 1+
v
c

� 
� 

� 
�  

is defined by  

 P = mcV=
E
c

+ p   

 
Exercise: Derive expressions for  
 

Mass: m2c4 = E2 − p2c2 

Momentum: p = mγ v =
mv

1− v2 / c2
= m

dx
dτ = mγ dx

dt
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Energy: E = mc2γ =
mc2

1− v2 / c2
= mc2 + K  

 

Kinetic energy: K = (γ −1)mc2 ≈ 1
2 mv2 + 1

8m
v4

c2 +  . . . 

 

B. The photon is a massless particle with proper momentum P =
E
c

+ p, where the energy is 

given by Planck’s Law:  ��E = 
ω = hf . 
 

Exercise: Show that ��P = 
(ω + k) ,   where   ω2 = k 2   and   ��p = 
k  
 
 
 
 
C. Energy-momentum conservation 
 
The total proper momentum P for an 
isolated system of particles is 
conserved:      
 
 
 P = Pk

before
� = Pk

after
�  

 
 
 
 
 
 
Examples:  
 

(1) Compton effect:   

γ + e− → γ + e− 
 
Conservation: P1 + P2 = P3 + P4  
 

Photons: P1
˜ P 1 = 0 = P3

˜ P 3,         p= p =
E
c

= hf =
h
λ  

 

Electrons: P2
˜ P 2 = m2c2 = P4

˜ P 4  
 

Electron initially at rest:   P2 =
E2
c

= mc 
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 Photons: P1 =
E1
c

(1+ ˆ p 1) , P3 =
E3
c

(1+ ˆ p 3)  

 
Problem: Determine the shift in photon frequency due to the scattering. 
 
 P4

˜ P 4 = (P1− P3) + P2[ ]( ˜ P 1− ˜ P 3) + ˜ P 2[ ] 
 

 m2c2 = −2 P1
˜ P 3 + 2 (P1− P3) ˜ P 2 + m2c2 

 
 (P1− P3) ˜ P 2 = (E1− E3)mc 

 

 c2 P1
˜ P 3 = E1E3− c2p1 ⋅p3 = E1E3(1− ˆ p 1 ⋅ ˆ p 3)  

 
 Scattering angle: ˆ p 1 ⋅ ˆ p 3 = cosθ  
 

 E1E3(1− cosθ) = (E1 − E3)mc2 
 

 
h2c2

λ1λ2
(1− cosθ) =

hc
λ1

−
hc
λ2

� 
� � 

� 
� � 
mc2  

 

 λ2 − λ1 = ∆λ =
h

mc
(1− cosθ)           Compton’s formula 

 

(2) Pion decay:   π − → µ− +ν  
 
 P = P1 + P2 

 
 
XVI. Universal laws for spacetime physics 
 
Zeroth Law:  Make your own formulation to supercede the Newtonian version! 
 
 
First Law : The history of a free particle is a straight line. 
 

 


