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Primer on Geometric Algebra
for introductory mathematics and physics

David Hestenes

Galileo’s Manifesto for Science

“To be placed on the title-page of my collected works:

“Here it will be perceived from innumerable examples what is the use of
mathematics for judgment in the natural sciences, and how impossible it is to
philosophize correctly without it . . .

“Philosophy is written in that great book which ever lies before our eyes — |
mean the universe — but we cannot understand it if we do not first learr} the
language and characters in which it is written. This language is matbgmat
and the characters are triangles, circles and other geometricas figutreout
whose help it is impossible to comprehend a single word of it; without which
one wanders in vain through a dark labyrinth.”
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l. Prolog: On optimizing the design of introductory mathematics.

Physics teachers are universally dismayed by the paltry undergfariadirathematics that

students bring from their mathematics courses. Blame is usually laid onté&adhing. But |

hold that the crux of the problem is deeply embedded in the curriculum. From the persgective o
a practicing scientisthe mathematics taught in high school and college is fragmented, out of
date and inefficiemt

The central problem is found in high school geometry. Many schools are dropping theasourse
irrelevant. But that would be a terrible mistake for reasons alreadytal€alileo at the dawn of
science.

» Geometry is the starting place for physical science, the foundatioratbematical
modeling in physics and engineering and for the science of measurementeal the
world.

» Synthetic methods employed in the standard geometry course are centuries tjt of da
they are computationally and conceptually inferior to modern methods of analytic
geometry, so they are only of marginal interest in real world applications.

* A reformulation of Euclidean geometry with modern vector methods centered on
kinematics of particle and rigid body motions will simplify theorems and praof$
vastly increase applicability to physics and engineering.

A basic pedagogical principle:The depth and extent of student learning is critically dependent
on the quality of the available mathematical tools.

Therefore, we can expect a well-designed curriculum based on vector methods to produce
significant improvements in the depth, breadth and usefulness of student learrtimgy. Fur
enhancements can be expected from software that facilitates applicatext@fmethods.

Whether or not the high school geometry course can be reformed in practice, the counse conte
deserves to be reformed to make it more useful in applications.

Objective of this workshop: To demonstrate with specific examples hgeometric algebra
unifies high school geometry with algebra and trigonometry and thereby sisiplifiefacilitates
applications to physics and engineering.

References for further study:

D. Hestenes, “Oersted Medal Lecture 2002: Reforming the mathematigahlze of physics, “
Am. J. Phys71: 104-121 (2003).

D. HestenedNew Foundations for Classical Phys{¢gduwer, Dordrecht, 1986, 2nd ed. 1999)

Website <modelingnts.la.asu.edu>



ll. Standard algebraic tools for linear geometry:Vector Addition and scalar multiplication.
The termscalarrefers to aeal number or variablewith properties taken for granted here
The concept ofectoris defined by algebraic rules for combining vectors.

In addition, geometric meaning is ascribed to vectors by depicting themeeatediline

segments.
Thus vector is depicted by —a>

A. Rules for vector addition.

* Closure (The sum of vectors is also a vector) ° b
a+tb=c a

Exercise: As appropriate, sketch geometric depictions for the following algebrag: rule

Commutative

a+tb=b+a

Associative

(@a+bh+c=a+b+0

Additive inverse and zero vector{depicted by a point)
a+(-a=0
a+0=a

Subtraction

a—b=a+H-b)



B. Rules for multiplication by scalars(denoted by Greek letters and/or italics)

» Additive and multiplicative identities

la=a, (-Da=-a, @=0
» Distributive

ala+hb)=qga+ab
(a+pBla=aa+pa
Example: Repeated vector addition as scalar multiplication

atatagl+1+l)a=3a

Associative

a(fa) = (aP)a
+ Commutative
oa = aq

« Magnitude and direction: Every vectora has a unique scalaragnitudea=|a| and (if
a# 0) adirectiona so that

a=aa

» Collinearity. Nonzero vectora andb are said to beollinear or linearly dependenif there
is a scalag3 such that

b =pa
* Linear independenceNonzero vectorgq,as,...,a, are said to benearly independent
X(aq,ap,...,00) = a1 + agas +...+anan

is not zero for any combination of scala@gas....,a,, (not all zero). The scalarsq,as....,an}
are said to beoordinatedor the vectorx(aq,a5....,ay) with respect to thbasis{ a;,as,...,an}.
The set {x(aq,a5,...,a4)} for all values of the coordinates is ardimensional vector space.



C. Parametric equations

Exercise: As appropriate, identify and sketch the indicatedrgetric figures below.
When is it necessary to designate a particulartfmi the zero vector?

 Line: x(a)=aa+b
Line segmentfor 0< a <1

e Plane:Xa, f=aa+pb+c

Linear constraints: Sketch lines for= 1, 2, 3 and then fgf =1, 2, 3.

Quadratic constraints: (Choose the most symmetrical parametric form)

1. a®+p2 =1
2. ﬁ:az
3. a®-p%=1

Solutions

1. x(6) =acosd +bsing+c
2. xX(@)=aa+ ba® +c
3. x(6) =acostd +bsinFg+c

News ReleasePhysics Education Research in a large state uitivéosind that, after
completing a semester of introductory physics, rsagients were unable to carry out graphical
vector addition in two dimensions. The more comgkids of coordinating scalar multiplication
with vector addition were not investigated. [NgugeMeltzer, AJP 71: 630-638 (2003)]

Question: What are likely reasorfsr this unacceptable failure of mathematics ingtan?

Answers:

Failure of the math curriculum to provide timelgiruction in vector methods.
Over reliance on coordinate methods in most courses

Vectors are only sporadically employed and usuaiti orthogonal bases, so students
have little opportunity to develop fluency with theneral features of vector algebra
listed above.

Students are unclear about the geometric intetpyataf vectors (see below)

Vector algebra is incomplete without rules for npifing vectors that encode
information about magnitudes and relative direc{mee GA below).



PART I. Introduction to Geometric Algebra and Basic Applications
lll. Defining and Interpreting the Geometric Product
The algebraic properties of vector addition andasaaultiplication are insufficient to
characterize the geometric concept of a vectordigeated line segment, because they fail to
encode the properties of magnitude and relativecton. That deficiency is corrected by
defining suitable algebraic rules for multiplyingators.

Geometric product: The producib for vectorsa, b, cis defined by the rules

» Associative: (ab)c = abc)

» Left distributive: a(b+c)=ab+ac
* Right distributive: (b +c)a=ba+ca
* Euclidean metric: a’ = a2,

where a=|g| is a positivescalar (= real number) called thraagnitudeof a.

In terms of thegeometric producab we can define two other products, a symmetric
inner product

(1) al=3(ab+ba)=ba,
and an antisymmetriguter product
(2) aOb=3(ab-ba)=-bOa

Adding (1) and (2) we obtain the fundamental foranul
(3) ab=alb+alb

called theexpanded fornfior the geometric product. Our next task
is to provide geometric interpretations for thdse¢ products.

Problem: For a triangle defined by the vector equationb = c,
derive the standardaw of Cosines:

a’ +b% +2alb :cz,
and so prove that the inner prodadtb is always scalar-valued.
Therefore, the inner product can be given the ugeainetric
interpretation as a perpendicular projection of lbme segment
on the direction of another. % a

The outer produca C b = —-b [C a generates a new kind of geometric quantity called a

bivector, that can be interpreted geometricallydascted areain the plane o andb.
a



We have shown that the geometric product inteesldiree kinds of algebraic entitiescalars
(O-vectors)vectors(1-vectors), anthivectors(2-vectors) that can be interpreted as geometric
objects of different dimension. Geometrically, secalrepresent 0-dimensional objects, because
they have magnitude and orientation (sign) butinection. Vectors represent directed line
segments, which arel-dimensional objects. Bivectpresendirected plane segmentshich

are 2-dimensional objects. It may be better torref@ bivectorB = BB as adirected area
because its magnitud® =|B| is the ordinary area of the plane segment andiriéstion B

represents the plane in which the segment liesagia unit vector represents the direction of a
line. The shape of the plane segment is not repteddy any feature @&, as expressed in the
following equivalent geometric depictions (wittockwiseorientation):

[ -

Prove the following:

Given any non-zero vectarin the plane of bivectds, one can find a vectdr such that

B =ba=-ab,
B2 = -|B|” = -a’b?,

aB=-Ba, that isB anticommutes with every vector in the plandof

o 4.1 a
Every vectora has a multiplicative inversea™ = = = —

2
a a
that is, geometric algebra makes it possiblaule by vectors.

Prove the following theorems abdbe geometric meaning of commutivity

and anticommutivity:
b ‘
alb=0 - ab=-ba Orthogonal vectors anticommute!!

a

b
a=Ab < alb=0 < ab=ba Collinear vectors commute!! —_—

———————

a

The problem remains to assign geometric meanitiget@uantityab without expanding it into
inner and outer products.



IV. Rotors and rotations in the Euclidean plane
2 _

Leti denote theunit bivector for the planeAs proved abovd,” = -1, soi has the properties of
the unit imaginary in the complex number systemweleer, by relating it multiplicatively to
verctors, GA endowswith two newgeometric interpretations.

» Operator interpretation: We can assign an orientationitso that left multiplication by
rotates vectors in its plane through a right anglais, any vectoa is
rotated into a vectds given by the equation

ia=-ai=b,

with the action of depicted by the directed arc in the diagram:

» Object interpretation: Bivectori represents a unit plane segment, as
expressed by the following equations and depict(ﬁm%a2 =b%=1 ):

a
i=ba™ (counterclockwise sense)
. 1 . i b b _i
-i=ab (clockwise sense)
H |

Theoperator interpretatiorof i generalizes to the conceptrotor Uy, the entity produced by
the producba of unit vectors with relative directiofl

Rotor U, =bais depictedas adirected arcon the unit circleReverseU, =ab.

VA RS W0

Defining sine and cosine functionfrom products of unit vectors.

bla=co<d

bCa=ising

Rotor:

Ug = ba= b@+bOa=cosd+isind=e'?




Rotor equivalence of directed arsslike

vector equivalence of directed line segments:

Rotor-vector product = vector: Ugv = el =u

Q/~

Thus rotor algebra represents the algebra of 2d rattions !

The concept of rotor generalizes to the concept of

complex numberinterpreted as a directed arc z
i U
z=AU =4e” =ha 0 1 A
Reversion= complex conjugation A
Z'=AU"=2€"=ab
0 1 A

zZ = )? = (ba)(ab) = &®b’=| 7’

Modulus: |4 =4 =|al|b|

10



Relation to standard complex number notatioa= Rez+ilmz=ba
with Rez=1(z+ Z)=b@a ilmz=4%(z-2Z)=b0a
(Note: this representation of complex numbersrieah GA is a special case of spinors for 3d).

Note the new GA
Roots of unity: Two roots of —1: V-1=4i
Many roots of +1:  V+1=4a, 1.

V. Vector identities and plane trigopnometry with GA

Exercise: Prove the following vectadentities and show that they are equivalent tp tri
identities for unit vectors in a common plane.

(a) @)’ -(alb)’ =a’h?

(b) @Ob)(bOc)=b’alt-(alb)b et

Hint: Expandabbcin two different ways
Exercise: Use rotor products to derive the trigopnometricldewangle formulas:

(c) cos@+¢)= ?7?

(b) sin@+¢)= ??
Plane (Euclidean) Trigonometrycan be reduced to two basic problems:

(a) Solving a triangle

(b) Solving the circle (composition of rotations’
A triangle relates six scalars: 3 sides (S) & 3lengA).

Given 3 of these scalars
(SSS, SAS, SSA, ASA, AAS, AAA)

“solving the triangle’ consists of determining the other 3 sides.

11



Laws of the trianglefollow directly from the geometric product:
(a) Law of cosines (scaled projection)
a’ +b”* — 2abcosy = ¢?
(b) Law of sines (areas)

sina _sing _ siny
a b C

(c) Angle laws:

» Complementary angles (interior/exterior)
e Sum of interior angles

» Sum of exterior angles |

Exercise: Derive these laws with GA and interpret with 4
Diagrams, such as the one on the right:

VI. Modeling real objects and motions with vectors.

News Bulletin: TheWorld Health Organizatiofas announced a world-wide epidemic of the
Coordinate Virugn mathematics and physics courses at all grad#sleStudents infected with

the virus exhibit compulsiveector avoidancéehavior, unable to conceive of a vector except as
a list of numbers, and seizing every opportunityefglace vectors by coordinates. At least two
thirds of physics graduate students are severtdgted by the virus, and half of those may be
permanently damaged so they will never recover.fibst promising treatment is a strong dose
of Geometric Algebra.

It may be surprising that the concept of vect@aglifficult for students, sindatuitive notions
of direction and distancare essential for navigating the everyday worldefy these intuitions
need to be engaged in learning the algebraic coméeector, as they are essential for
applications. The necessary engagement occurshaplyazardly in conventional instruction,
and that is evidently insufficient for most student

One barrier to developing the vector concept idadleethat thecorrespondence between vector
and directed line segment hamany different interpretations in modeling properties of real
objects and their motions

» Abstract depictiorof vectors as manipulatable arrows has no physitadpretation,
though it can be intuitively helpful in developiag abstract geometric interpretation.

12



* Vectors as pointdesignatglacesin a Euclidean space or with respect to a physical
reference frame. Requires designation of a distefgal point (therigin) by the zero
vector.

» Position vectox for a particle which can “move” alongparticle trajectoryx = x(t)
must be distinguished from places which remaindixe

» Kinematic vectorssuch asrelocityv = v(t) andaccelerationare “tied” to particle
positionx(t). Actually, they are vector fields defined alohg whole trajectory.

* Dynamic vectorsuch as momentum and force representing partitdeactions.

* Rigid bodieslt is often convenient to use a vectoas a 1d geometric model for a rigid
body like a rod or a ruler. Its magnitude |a| is then equal to the length of the body, and
its directiona represents the body’s orientation or, betteritisudein space. The
endpoints of correspond to ends of the rigid body, as expresstt following
eqguation

X(a) = Xg+aa {0<a<]
for the position vectors of a continuous distribatof particles in the body. Note the
crucial distinction between curves (and their pagtim equations) that represent particle
paths and curves that represent geometric feabfiygsysical bodies.

Exerciseswith Barycentric coordinates

(1) Discuss and sketch values of the parametriateanx = ga + b with the
constraintr + S=1.

(2) For the parametric equatior= aga + b + )c with a + 5+ y =1, discuss values of the
parameters that give vertices, edges and inteomtpof a triangle.

(3) Discuss the relation of barycentric coordindtesenter of mass

VII. High school geometry with geometric algebra

Nonparametric equationfor a line {} through pointa with directionu:
(x-a)Cu=0.

Exercises:

(1) Sketch the line.
(2) Derive an equivalent parametric equation lier line withu? =1.

(3) Find the directed distandefrom the origin0 to the line and sketch.
(4) Find the directed distance from an arbitrasinpy to the line.

Hints:

(2) Write (x —a)[u=a and solve forx =au +a

13



(3) xCu=alu=du. Sketch the directed areas and solvedfor
Rigid displacements: Congruence and measurement

X - X =Rx+a R=e
y - y=Ry+a R =e
Rigid displacement of an interval
r=x-y - r'=x'-y=Rx-y') or r=R =rR
Invariants of rigid displacements: Euclidean distance: x’ —(y')2 =(x- y)2
VIII. Basic kinematic models of particle motion
Kinematics: The geometry of motion
A. Free particle. Sketch amotion magfor the algebraic model:
X(t) = Xg + vt

[Note that including the origin or coordinates lire tmap introduces arbitrary and
unnecessary complications.]

Derive a nonparametric equation for this modetl matate it to angular momentum.



B. Constant acceleration model.
(without coordinates!!)

X = V=V, +gt

qt g otd
(hodograph

%:v = X=X, +Vt+igt?

(trajectory)

Vector algebraic model:

1 _r__
S(V+vg) ===V
3V +vg) ==

V—Vg=gt

Reduces all projectile problems to
“solving a parallelogram!!”

Problem: Determine

(a) the range of a target sighted in a directionthat has been hit by a projectile

launched with velocity;
(b) launching angle for maximum range;
(c) time of flight
Simplest case: f is horizontal.

Hint: Consider(v- vy)(V +Vvy)

General caseElevated target.

Complicated solution with rectangular coordingiablished in AJP.

Much simpler GA solution in NFCM.



Solving a parallogram with GA:
Vo
V-V, =gt ViV, =
We eliminate t by multiplication, to get: 5
(v-v,)(v+v,)=2rg
Expanding, we obtain
V=v2+ v —vov =2(r g +r Og)
—_——
2v Oy,
Separately equating scalar and bivector parts,atie g
V2 —v,? = 2r [ vliy =rCg
Forr =rr horizontal, we have
rg=0 = V.=V, Vo
So IvOvy, |=|r Og|=rg 0 2/t
0
gives V.sin29=rg gt
V4 v
Hence theange formula | r = E"sin 20

The general GA solution for an elevated targettand of flight is derived in NFCM.
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C. Circular motion. Motion on a circle of radius =|r| centered at poirt:

Trajectory: X=Cc+r(t) [Sketch motion map including unit circle]
Radius vector: r = eig(t)ro
dr
Velocity: =
elocity V= m =Qr =

. . dé
Angle: 8> 0 for counterclockwise motion Angular speed:  w= p
Path length: s=rd speed V=ra
Rotor: R=¢'? Angular velocity: Q =

. dR
Rotor egn. of motion: ot =QR
UCM = f=at = r=e“Y
D. General kinematic theorem.
X = X(s) = parametric eqn. fgrarticle path [Sketch general motion map]
X = X(t) = parametric eqn. fgrarticle trajectory
Path length: s = s(t)
Speed: v = % Tangent direction: V= % = e'9\70
Thm: Velocity: v=vv is tangent to the particle path (trajectory)
Acceleration: iI—v— [ |V— Vv points inside the curving path
T dt L F VP gp
ds_ d|6|
and the radius of theosculating circles defined by = i dt

dv
Exercise: A particle slides on the frictionless track belavbgect to a forceng + N = m—- p

that keeps it on the track. Sketch its velouignd acceleratioa at the indicated points:

17



. N N /T
N

D. General Keplerian motion(under an inverse square force). Full treatmeMiHCM

(1) Dynamical model: m—=-

dv ﬁf
dt  r2

(2) Problem: Reduce talgebraic modelby finding constants of motion

(a) Angular momentum: L =nr Ov=mr¥ %
(b) Eccentricity vector € in: Lv =k( +¢)
. dv_d
Hints: (@nr Da :a(m Ov)=r Of(r)=0 (Central force)
dv kL . dr
(b) LE__Wr = km

(3) Model analysis.Derive the following algebraic features of the mlode
[Details are fully worked out in NFCM]

(@) Energy E=4mv®-

2L E
£ -1=
mk?

—-:IX

is constant and related to eccentricity by

(b) Orbit r=|r|=r(f) forL #0.

+/ L2

r= — where (=— andz for attractive/repulsive force
1+¢glr m K P

[Note: orbit is not a trajectory, which gives fim as a function of time.]
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(c) Hodograph v=v(f)= % (f +¢) (orbit in velocity space)
2

Show this is a circle by deriving the non-parametqn. ¢ — u)2 = %

(d) Classification of orbits: (by energy, eccentricity & hodograph centgr

/ Hodograph

E.k ‘
Tk
LT

L

Orbit 7V —— —
-~ £a

- 1 -
Elliptical orbit and hodograph

(e) Initial value problem: Determinel ande given one value of andr
(4) Scattering problem:Given asymptotic initial velocity and angular morten, find v¢ = v,4

(a) Asymptotic conditions:
1
oLl | (2E)2
= Vo —|Vo|—|Vf| =y

1.2 Kk 1.2
E=smv T DR - $my
" L . " . n
rv=— 000~ O a=—Vgp, e =V

mr B = 0 0 f f
LVZ_kf:zzLVl_kfl

(b) Eccentricity conservation:

v _(Lv0+kjv
F LVO_k 0

This solves the scattering problem complétely

Remaining problem is to reformulate it in termb&erved quantities:

19



Scattering angl® and impact parametedefined as follows:

vi =ve' @ =e "%,
L:bm\b:¥ L =i (k>0) or L =-i (k<0)
0
i@_Lvo—k_ZEh'—Ikl _}L 1
© TLw+k 2E0+K b=pE|c0tz @

= Rutherford scattering formula for coulomb scattering!
IX. Planar rigid body motion and reference frames.

A reference systenassigns each particle a definp@sition with respect to a given rigid body
(or reference frame@. The set of all possiblgosition vectorsis a 3d Euclidean vector space
called theposition spaceof the frame.

Time dependent rigid displacement of one referdrasae with respect to another is
completely specified by a time dependent

rotor R = e' o0

andtranslation vectora = &t)
Accordingly, a particle patlx = x(t) in the ‘unprimed framéis mapped into
a particle pathx'(t) = Rx(t) +a(t) in the ‘primed framé’

Problem: Suppressing the time argument and writing = % , R= drR_ WR,

dt
derive the following equations relating velocitaesd accelerations in the two frames aligned at
timet.:
X'=X+Wx+a

X' =X+ 2Wx + (W+W?)x +a

Newton’s T Law (implicitly) defines arinertial frame as a rigid body with respect to which
every free particle has constant velocity.

Principle of Relativity requires that the laws of physics are the sanadl inertial systems.
[First formulated by Galileo and incorporated bywtien as a corollary in his theory].

20



Problem: Apply this to Newton’s %' law to prove that any two inertial frames are tetaby a
Galilean transformation

X - X =Rx+c+ut whereR, c andu are constant
Derive therefrom the Galilearelocity addition theorem: vV =v+u.

Exercise:Inside a cable car climbing a slope with constatbaity vy an object is dropped
from rest. Derive eqns. for the trajectory withire tcar and with respect to the earth outside.

Problem: Discuss invariance of Newton'’s first and secondslawth respect t&alilean time
translation and scaling t - t =at+/f, whereaandfare constants.

X. The Zeroth Law of physicsdefines the fundamental presumptions about space and
existence of real entities that underlie all of gby.

Different versions of the Zeroth Law define diffetghysical theories.
Einstein’s Special Theory of Relativity amountsatmodification of the Zeroth Law implicit in
Newtonian theory.
Tenets of the Newtonian Zeroth Law:
* Any material object can be modeled as a particleodly {system of particles}
* At any time, every particle has a definite positkon the 3d Euclideaposition spacef
a givenreference system.
» Particle motion is represented by a continuougdtajyx(t) in position space. (Time is
measured by comparison with a standard moving bbgled aclock)
Newton'’s First Law defines an inertial system and a uniform timeescal

The remaining four Laws of Newtonian physics defiagticle interactions and dynamics.

[Ref. Modeling Games in the Newtonian WordlP 60: 732 (1992)]
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PART Il. Special Relativity with Geometric Algebra
[Ref. NFCM, 29 Ed. (1999), Chap. 9]
Xl. Defining Spacetime

Einstein (1905) recognized that Newtonian mechaisiasconsistent with Electromagnetic
Theory, and he traced the difficulty to the Newsonconcept of time. He resolved this problem
by adopting two principles:
1. Principle of Relativity. Einstein adopted this principle from Newtonianaiye but
raised its status from a mere corollary to a bpsiwiple.
2. Invariance of the speed of lightEinstein assumed that the speed of lghas the same
value in all inertial systems.

Minkowsky (1908) incorporated these principles iatnew conceptual fusion of space and time
that can be defined with GA by the following asstions:

1. In a given inertial system, the time t and ptac® of aneventis represented as a single
point X = ct+x in a 4-dimensional space callgplacetime(see spacetime maps below).

2. The spacetimaterval
Ax:XZ—X1:C(t2—t1)+(X2—X2): cAt + Ax

between eventX, and X; has arinvariant magnitudg4X| called theproper distance
between the events and given by

XAX = daX = (cdt)® - ()7,

where AX =ct— Zx, and thesignature ¢ of the interval has the value 1, 0 or -1, and,
respectively, the interval is said to tielike, lightlike or spacelike.

3. “Invariance of the interval” means that
LXAX = JAX[? = 4AX|? = AX'AX'

wnere AX' = X5 — Xy =cAt' + AX' is the same interval represented in some othetiahe
system.

Problem: Prove that spacetime interval invariance implieg the speed of light has the same
constant value in all inertial systems.

22



XIl. Spacetime Maps

Spacetime maps are essential for physical intexpoet of GA equations in relativity theory.

Timelike lines through X(J

) AN Forward

=Y 4+ Light cone
\.\ N /([ f\:l : o]ulz\ll
i \ ( F gll_uE, / :

N T L —_— ’
~ N -/ e
N / »~ ~—Lightlike lines
~ ) 4 4
. X i / » ™—_~ through X[]
. \ Vi e =
. \\._ X A » ‘““-Sl
A Y i <
Y Y g
fos
/ Ve
Fi 7’
'\" .l 7
\ s
\| /-

[Absoiiie, X

/ \““x Spacelike lines
Present /
( Present /7

.
, N f? through X 0
Sy kY ~ 7
p g .\‘ .
Iy ! \\ »
\ ~
4 i \ "
# 4 \\ b
- o £ ".\ A
v K \ N Backward
P B N .
S " Light cone
I e — LY T— =
A s Ahsa}lu[ﬁ A\ ™~
/ Past ' / —
N (Past ) -

This is a spacetime map showing the lightcone fiogxaeniXy. EventsXy (k= 1, 2, 3) lie on
straight lines passing througXy. Intervals AX, = Xy — X are said to bémelike, lightlikeor

spacelike, respectively, as they lie inside, orguiside the invariant lightcone.
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Timelike lines

C. “
. @/
x ) y

/ Absol
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)
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s
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F ’ / A \
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v 4 f]II."I (. rd l-)gl"sl __//I 5,
~

This is a spacetime map of events in a timelikag@lshowing the position vectar= X, — X;

for the eventX = ct+x with respect to a given inertial system.

A differentiable curve in spacetime is said toibeetike, lightlike or spacelike, if its tangent is
proportional to, respectively, a timelike, lightilor spacelike interval.
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A. Patrticle history and proper velocity.

Thehistory of a material particle is a timelike curve
X = X(7), as illustrated in the figure.

The path lengthdr of an intervalAX along the history +A dX
is theproper time interval registered by a clock t t At
traveling with the particle. Hence, AX

4

IXAX =| X% = (car)®
and, in the limit,  |dX|= cdr X(7)

Theproper velocity V =V(7) of a particle is defined by

Ol
_10x_di 10x
“cdr dr cdr’

which must be distinguished from thedative velocity

dx . . o
V= T in a given inertial system.

. V) dt Y
Exercise: Prove V=pyl+—j, =—z=,4|1-—
xerel v /\ c/ Y=ar

The proper velocity of afree . time
particle is constant, so its history is €
straight line given by the equation

< history

X(7) - X(0) = Ver ¢t

free particle

The time axis of an inertial system is ct
the history of a free particle at rest at |
the origin so that proper timecan be |
identified with “observer timet , and {
the position vectox for an event

X =ct+Xx is the “directed distance” 0
from the particle history to the event.

Similarly,

the time axis efery inertial system can be identified with the histofya free particle.
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N . Observer's history

N
\ 1)
For a given observer (free particle) the position \j X y=ct +Ixl
and timet of a given evenX can (in principle) be R
determined byadar rangingwith light signals, as l S
illustrated in the figure. Note that the evenis r N
simultaneous with everX, = ct. This geometric W X=ct+Xx
constructioris Einstein’s operational procedure for X, = ct T e
synchronizing clocks at distant events. / e
£
||IIII s ’ ’
|
X =ct-Ix

VIII. Spacetime Trig.
2t

The most basic measurements in surveying spacetir History of
events can be reduced to solving triangles in alii@  "S%em
plane, as already shown in the operational proeedur S,

for synchronizing clocks.

Astronaut's history

—
4
L

i~

VT

A. Time dilation and desynchronization.
The basic idea is illustrated by the parable oftitias. ¢ 0

As illustrated in the spacetime map for their higts,
the astronaut twin travels to a distant star welogity

V:y(1+%),

and returns with velocity Vt
V= y(l—lc’) .

The algebraic equation for the triangle is X,=0

2t=Vr+\7r

Exercises:
(1) Compare ages of the twins when the trip is ovescss implications of this result.
(2) Prove that the longest path between two pointsratgzhby a timelike interval is a
straight line. (See next figure)

26



Histories of
the ends
of the rod

B. Lorentz contraction: A rod of rest lengtHy moves with velocity who measures its length
as| at timet, as shown in the spacetime map.

Exercise:Reasoning from similar triangles in the map,
derive the Lorentz contraction formula

|0 = y|
and discuss its physical meaning.

C. Doppler shift.

A distant source with velocity = 1{1+%} emits light signals with frequencl/’ =

2n- &

. . a 1 . .
that are received with frequendy= A as shown in the figure.
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Exercise:From the figure derive the equation

X5 h
/](XZ - xl): D-V, receiver Uox
history = L~ ol
whereA is a scale factor and At N
a/Ar s
D=f'/f X
0F ~
is theDoppler factor. N N/
\ X
N |
Derive and discuss the result N
fr cC+vV 1 N \r\
D=—=1(1%+Vv/C) = = 1 P
F A P TV ydFVv/c) Xy i’ﬁ:ﬁ%

XIV. Lorentz transformations.

Two different inertial systems (primed and unprifnetth a common originXg = Xg =0 assign
different labelsX' =ct’ +x' and X = ct +x to each spacetime eventMf= 1{1+%} is the

proper velocity of the primed frame with respectite unprimed frame, then, in the timelike
plane containing both time axes, the labels astedlby the_orentz transformation

(1) X=VX or X' =VX s
X=VX
Exercise: Derive therefrom the standard i
Relations between times and positions:

= - VX
C2

X' = y(X —vt)

Velocity composition: X=X, =0 X

Let X' = X'(r) and X = X(7) represent the history of a particle with propdowgity

N SR VA _(ou) . N
U _yU'K1+?) andJ _yUK1+E) in the two inertial systems.

Exercise:Derive and interpret the relativistvelocity composition law: Uu'=W.
Therefrom, derive the corresponding compositiorsléa time dilations and relative velocities:

_ uly , _ u-v
W =Vulv 1_? , U=
_C_Z
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Forward branch
of XX =12~

Active Lorentz transformations.

The Lorentz transformation

X =V X' is interpreted passively as
change of labels for a single event.
Alternatively, it can be interpreted
actively as a relation between two
different events that are the same
proper distancéX'|=|X| =c7 from
the origin.

Advanced Exerciselnterpretthe
active Lorentz transformation in the
figure as a hyperbolic rotation of
proper velocity. The rotation angle
a=|a| is the arc length on a unit
hyperbola, as expressed by

V= V(1+%) = e? =cosha + sinha

t _ A vV _ X
cosha=cosha=y=— sinha=vsinha=y—=—
T c cr

Construct a diagram to express velocity compos#i®a product of hyperbolic rotations:

e?e? =P and compare with the product of Euclidean rotei e'%'? = ¢l(0+9)

XV. Energy & momentum are unified by special relativity
, . : . Vv
A. Theproper momentum P for a material particle with rest massand velocityV = \1+E)

is defined by

E
P:ch:?+p

Exercise: Derive expressions for

Mass: mlc = E? - p202
Momentum: p=mpv = o = m% = my%
1-v2 /c? dr dt
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2

2 mcC 2
Energy: E=mcy= =mc” +K
Ql—vzlc2
VA
Kinetic energy: K =(y-1)mc” =2 mv® +im=+ . ..
C

. : . E .
B. Thephoton is a massless particle with proper momenilam? +p, where the energy is

given by Planck’s Law:E = i = hf .

Exercise: Show thatP = 7i(« + k), where «?=k? and p = hk

Asymptotic Region

The total proper momentufhfor an |
isolated system of particles is J

conserved: P y _%\
|'/ INTERACTION

P= = > '
beforepk aftelPk \ P /

C. Energy-momentum conservation \l’_a, [’_;x ' ﬁ’_s / Fe  1,=const

._.
L
0
2

fl = const

Examples: Asymptotic Region

(1) Compton effect:
y+e - y+e

Conservation:P, + P, = P3 + P4

Photons: P1I51 =0= P3I53, p= |p| =
, 5 22 55

Electrons: PP, =mc™ = PyPy

N E
Electron initially at rest: P, = TZ =mc

30



Photons: P :%(1+|61), F’3=%(1+I53)
Problem: Determine the shift in photon frequency due tosbettering.

P4Py = [(P-Py) + Pz][( PL— Py) + '52]

m?c?= —2( P1|53> + 2((P1 - P) |52> +m?c?

((Pl - P3) |52> = (EL— Eg)mc

02<P1|53> = E1E3-c%py (3 = E1E3(- Py [Pa)

Scattering anglep; [p3 =co<d
E1E3(1-cosf) = (E; — Ezme 5 b
22 g \
h“c _(hc hc| o P,
i, & CO&”‘(Al Azjmc
h
Ar— A1 =44 :H(l_ cos6H) Compton’s formula

(2) Piondecay: m - u +v

P=P+P,

XVI. Universal laws for spacetime physics

Zeroth Law: Make your own formulation to supercede the Newtomersion!

First Law: The history of a free particle is a straight line.



