
658 Relativistic Rigid Body Mechanics

smaller than one part in ten million, and found to be in good agreement with theory.
This is a sensitive test of the theory, so there is continued interest in improved
measurements ofg.

The spin precession can be calculated by solving the spinor equation (5.35) forR
or equation (5.38) forU . The latter equation not only looks simpler, it is sometimes
easier to solve, and it determines both the velocity and the spin.

Its solution may be facilitated by putting it in the form
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whereiB0 = ŨF−U . For constantF we see immediately that the solution can be
put in the form

U = e(e/2mc)FτL0R0 , (5.41)

whereV0 = cL2
0 = γ0(c + v0) is the initial 4-velocity andR0 = R0(τ) satisfies
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Note that (5.42) differs from (5.35) in describing only the “anomolous part” of the
rotation. Likewise,B0 differes fromB

′ in (5.27) by
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WhenE = 0, bothγ and the angle betweenv andB remain constant. Then if the
initial velocity v0 is orthogonal toB, the double cross product in (5.43) reduces to
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andB0 is constant ifR commutes withB. Subject to these initial conditions for
motion in a pure magnetic fieldF = iB, the solution (5.41) takes the form

U = e−
1

2
iωωt L0 e−

1

2
iωω0t , (5.44)

wheret = γ0τ from (3.46),

ω = −
e

2mcγ0
B (5.45a)

is the “relativistic frequency” and

ω0 = 1
2 (g − 2)γ0ω . (5.45b)
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Figure 5.1. The spin vector, initially collinear with the velocity, is shown at successive

points on a circular orbit in a magnetic field B (for g>2).

We can put (5.44) in the formU = LR, where

L = e−
1

2
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iωωt (5.46a)

and
R = e−
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2
iωω0t. (5.46b)

Using (5.46b) in (5.34), we get the spins as an explicit function of time.
This result has been used to measureg by measuring the spin precession. The first

factor in (5.46b) gives the precession of the velocity with the cyclotron frequency
ω. Therefore, the second factor describes a precession of the spin with respect to
the velocity with frequencyω0. For particles injected into the magnetic field with
v perpendicular toB, the orbit is circular with periodT = 2π/ω. Therefore, with
each complete circuit the spin rotates through an angle

∆θ = ω0T = 2πγ0

(g − 2

2

)
(5.47)

(Fig. 5.1). The angle between the spin and velocity can be magnified by passing
through many circuits.

For an arbitrary constant fieldF it is necessary to integrate (5.42) to evaluateR0

in (5.41). The integration is straightforward, because the time dependence ofB0 is
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determined byv(τ) in (5.43), and that is already known from (3.67). To express the
result in terms of lab timet, one needs (3.71) to convert from proper timeτ . For the
general case the result is too messy to be worth exhibiting here.

9-5 Exercises

(5.1) What sense does it make to compare directions of the magnetic fieldB and
the particle velocityv in the LAB system with the direction of the particle’s
spins in its rest system?


