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I. Introduction 
 
During the last two decades Physics Education Research (PER) has emerged as a viable sub-
discipline of physics, with faculty in physics departments specializing in research on learning 
and teaching physics. There is still plenty of resistance to PER from hard-nosed physicists who 
are suspicious of any research that smacks of education, psychology or philosophy. However, 
that is countered by a growing body of results documenting deficiencies in traditional physics 
instruction and significant improvements with PER-based pedagogy. Overall, PER supports the 
general conclusion that science content cannot be separated from pedagogy in the design of 
effective science instruction. Student learning depends as much on structure and organization of 
subject matter as on the mode of student engagement. For this reason, science education research 
must be located in science departments and not consigned to colleges of education.  

As one of the players in PER from its beginning, my main concern has been to establish a 
scientific theory of instruction to guide research and practice. Drawing on my own experience as 
a research scientist, I identified construction and use of conceptual models as central to scientific 
research and practice, so I adopted it as the thematic core for a MODELING THEORY of 
science instruction. From the beginning, it was clear that Modeling Theory had to address 
cognition and learning in everyday life as well as in science, so it required development of a 
model-based epistemology and philosophy of science. Thus began a theory-driven MODELING 
RESEARCH PROGRAM: Applying the theory to design curriculum and instruction, evaluating 
results, and revising theory and teaching methods accordingly. Fig. 1 provides an overview of 
the program. 

Section II reviews evolution of the Modeling Research Program. Concurrent evolution of 
Cognitive Science is outlined in Section III. Then comes the main purpose of this paper: To lay 
foundations for a common modeling theory in cognitive science and science education to drive 
symbiotic research in both fields. Specific research in both fields is then directed toward a 
unified account of cognition in common sense, science and mathematics. This opens enormous 
opportunities for science education research that I hope some readers will be induced to pursue. 

Of course, I am not alone in recognizing the importance of models and modeling in 
science, cognition, and instruction. Since this theme cuts across the whole of science, I have 
surely overlooked many important insights. I can only hope that this paper contributes to a 
broader dialog if not to common research objectives. 
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II. Evolution of Modeling Instruction 
 
My abiding interest in questions about cognition and epistemology in science and mathematics 
was initiated by undergraduate studies in philosophy. In 1956 I switched to graduate studies in 
physics with the hope of finding some answers. By 1976 I had established a productive research 
program in theoretical physics and mathematics, which, I am pleased to say, is still flourishing 
today [1]. About that time, activities of my colleagues Richard Stoner, Bill Tillery and Anton 
Lawson provoked my interest in problems of student learning. The result was my first article 
advocating Physics Education Research [2]. 

I was soon forced to follow my own advice by the responsibility of directing PER 
doctoral dissertations for two outstanding graduate students, Ibrahim Halloun and Malcolm 
Wells. Halloun started about a year before Wells. In my interaction with them, two major 
research themes emerged: First, effects on student learning of organizing instruction about 
models and modeling; Second, effects of instruction on student preconceptions about physics. 

The Modeling Instruction theme came easy. I was already convinced of the central role of 
modeling in physics research, and I had nearly completed an advanced monograph-textbook on 
classical mechanics with a modeling emphasis [12]. So, with Halloun as helpful teaching 
assistant, I conducted several years of experiments with modeling in my introductory physics 
courses. 

The second theme was more problematic. I was led to focus on modes of student thinking 
by numerous discussions with Richard Stoner about results from exams in his introductory 
physics course. His exam questions called for qualitative answers only, because he believed that 
is a better indicator of physics understanding than quantitative problem solving. However, 
despite his heroic efforts to improve every aspect of his course, from the design of labs and 
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problem solving activities to personal interaction with students, class average scores on his 
exams remained consistently below 40%. In our lengthy discussions of student responses to his 
questions, I was struck by what they revealed about student thinking and its divergence from the 
physics he was trying to teach. So I resolved to design a test to evaluate the discrepancy 
systematically. During the next several years I encountered numerous hints in the literature on 
what to include. When Halloun arrived, I turned the project over to him to complete the hard 
work of designing test items, validating the test and analyzing test results from a large body of 
students. 

The results [3, 4] were a stunning surprise!  surprising even me!  so stunning that the 
journal editor accelerated publication! With subsequent improvements [5], the test is now known 
as the Force Concept Inventory (FCI), but that has only consolidated and enhanced the initial 
results. Instructional implications are discussed below in connection with recent developments. 
For the moment, it suffices to know that the FCI was immediately recognized as a reliable 
instrument for evaluating the effectiveness of introductory physics instruction in both high 
school and college. 

Five major papers [6-10] have been published on Modeling Theory and its application to 
instruction. These papers provide the theoretical backbone for the Modeling Instruction Project 
[11], which is arguably the most successful program for high school physics reform in the U.S. if 
not the world. Since the papers have been seldom noted outside that project, a few words about 
what they offer is in order. 

The first paper [6] provides the initial theoretical foundation for Modeling Theory and its 
relation to cognitive science. As modeling has become a popular theme in science education in 
recent years, it may be hard to understand the resistance it met in 1985 when my paper was first 
submitted. Publication was delayed for two years by vehement objections of a referee who was 
finally overruled by the editor. Subsequently, the paper was dismissed as mere speculation by 
empiricists in the PER community, despite the fact that it was accompanied by a paper 
documenting successful application to instruction. Nevertheless, this paper provided the initial 
conceptual framework for all subsequent developments in modeling instruction. It must be 
admitted, though, the paper is a difficult read, more appropriate for researchers than teachers. 

Paper [7] is my personal favorite in the lot, because it exorcises the accumulated 
positivist contamination of Newtonian physics in favor of a model-centered cognitive account. 
For the first time it breaks with tradition to formulate all six of Newton’s laws. This is important 
pedagogically, because all six laws were needed for complete coverage of the “Force concept” in 
designing the FCI [5]. Moreover, explicit formulation of the Zeroth Law (about space and time) 
should interest all physicists, because that is the part of Newtonian physics that was changed by 
relativity theory. Beyond that, the paper shows that Newton consciously employed basic 
modeling techniques with great skill and insight. Indeed, Newton can be credited with 
formulating the first set of rules for MODELING GAMES that scientists have been playing ever 
since. 

Paper [11] applies Modeling Theory to instructional design, especially the design of 
software to facilitate modeling activities. Unfortunately, the R&D necessary to build such 
software is very expensive, and funding sources are still not geared to support it.  

In contrast to the preceding theoretical emphasis, papers [8, 9] are aimed at practicing 
teachers. Paper [8] describes the results of Wells’ doctoral thesis, along with instructional design 
that he and I worked out together and his brilliant innovations in modeling discourse 
management. His invention of the portable whiteboard to organize student discourse is 



 4 

propagating to classrooms throughout the world. Sadly, terminal illness prevented him from 
contributing to this account of his work. 

Wells’ doctoral research deserves recognition as one of the most successful and 
significant pedagogical experiments ever conducted. He came to me as an accomplished teacher 
with 30 years experience who had explored every available teaching resource. He had already 
created a complete system of activities to support student-centered inquiry that fulfills every 
recommendation of the National Science Education Standards today. Still he was unsatisfied. 
Stunned by the performance of his students on the FCI-precursor, he resolved to adapt to high 
school the ideas of modeling instruction that Halloun and I were experimenting with in college. 
The controls for his experiment were exceptional. As one control, he had complete data on 
performance of his own students without modeling. Classroom activities for treatment and 
control groups were identical. The only difference was that discourse and activities were focused 
on models with emphasis on eliciting and evaluating the students’ own ideas. As a second 
control, posttest results for the treatment group were compared to a well-matched group taught 
by traditional methods over the same time period. The comparative performance gains of his 
students were unprecedented. However, I am absolutely confident of their validity, because they 
have been duplicated many times, not only by Wells but others that followed.   

I was so impressed with Wells’ results that I obtained in 1989 a grant from the U.S. 
National Science Foundation, to help him develop Modeling Workshops to inspire and enable 
other teachers to duplicate his feat. Thus began the Modeling Instruction Project, which, with 
continuous NSF support, has evolved through several stages with progressively broader 
implications for science education reform throughout the United States. Details are available at 
the project website [11]. None of this, including my own involvement, would have happened 
without the pioneering influence of Malcolm Wells. 
 
III. Evolution of Cognitive Science 
 
Cognitive science grew up in parallel with PER and Modeling Theory. With the aim of 
connecting the strands, let me describe the emergence of cognitive science from the perspective 
of one who has followed these developments from the beginning. Of course, the mysteries of the 
human thought have been the subject of philosophical contemplation since ancient times, but 
sufficient empirical and theoretical resources to support a genuine science of mind have been 
assembled only recently. Box 1 outlines the main points I want to make. 

I regard the formalist movement in mathematics as an essential component in the 
evolution of mathematics as the science of structure, which is a central theme in our formulation 
of Modeling Theory below. Axioms are often dismissed as mathematical niceties, inessential to 
science. But it should be recognized that axioms are essential to Euclidean geometry, and 
without geometry there is no science. I believe that the central figure in the formalist movement, 
David Hilbert, was the first to recognize that axioms are actually definitions! Axioms define the 
structure in a mathematical system, and structure makes rational inference possible! 

Equally important to science is the operational structure of scientific measurement, for 
this is essential to relate theoretical structures to experiential structures in the physical world. 
This point has been made most emphatically by physicist Percy Bridgeman, with his concept of 
operational definitions for physical quantities (but see [7] for qualifications). However, to my 
mind, the deepest analysis of scientific measurement has been made by Henri Poincaré, who 
explained how measurement conventions profoundly influence theoretical conceptions. In 



 5 

particular, he claimed that 
curvature of physical space is 
not a fact of nature independent 
of how measurements are 
defined. This claim has long 
been inconclusively debated in 
philosophical circles, but 
recently it received spectacular 
confirmation [14]. 

Following a long 
tradition in rationalist 
philosophy, the formalist 
movement in mathematics and 
logic has been widely construed 
as the foundation for a theory of 
mind, especially in Anglo-
American analytic philosophy. 
This is an egregious mistake 
that has been roundly criticized 
by George Lakoff and Mark 
Johnson [17-21] in the light of 
recent developments in 
cognitive science. Even so, as 
already suggested, formalist 
notions play an important role in 
characterizing structure in 
cognition. 

The creation of serial computers can be construed as technological implementation of 
operational structures developed in the formalist tradition. It soon stimulated the creation of 
information processing psychology, with the notion that cognition is all about symbol processing. 
I was right up to date in applying this egregious mistake to physics teaching [2]. Even so, most of 
the important research results and insights that I reported survive reinterpretation when the 
confusion between cognition and symbol processing is straightened out. Symbol processing is 
still a central idea in computer science and Artificial Intelligence (AI), but only the ill-informed 
confuse it with cognitive processes. 
 I tried to link the dates in Box 1 to significant events in each category. I selected the date 
1983 for the onset of second generation cognitive science, because I had the privilege of co-
organizing the very first conference devoted exclusively to what is now known as cognitive 
neuroscience. It still took several years to overcome the heavy empiricist bias of the 
neuroscience community and establish neural network modeling as a respectable activity in the 
field. The consequence has been a revolution in thinking about thinking that we aim to exploit. 
 
IV. Modeling Research in Cognitive Science 
 
With its promise for a universal science of mind, research in cognitive science cuts across every 
scientific discipline and beyond. Box 2 lists research that I see as highly relevant to the Modeling 

Box 1:        Emergence of Cognitive Science 
I. Scientific Precursors  

• Formalist mathematics and logic (~1850-1940) 
– axioms & standards for rigorous proof 
– reasoning by rules and algorithms  

• Operationalism (Bridgeman, 1930)  
• Conventionalism (Poincaré, 1902) 
• Gestalt psychology (~1915-1940) 
• Genetic Epistemology (Piaget, ~1930-1960) 

II. Emergence of computers and computer science  
       (~1945-1970) implementing operational structures 
III. First Generation Cognitive Science (~1960-1980) 

• “Brain is a serial computer” metaphor 
• “Mind is a computer software system” 
• Information processing psychology & AI 
     – Thinking is symbol manipulation 
     – functionalism (details about the brain irrelevant) 

IV. Second Generation Cognitive Science (~1983--    ) 
• Neural network level 
     – Brain is a massively parallel dynamical system 
     – Thinking is pattern processing  
• Cognitive phenomenology at the functional level: 
     – empirical evidence for mental modeling 
        is accumulating rapidly from many sources.  
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Theory I am promoting. The 
list is illustrative only, as 
many of my favorites are 
omitted. These scientists are 
so productive that it is 
impractical to cite even their 
most important work. Instead, 
I call attention to the various 
research themes, which will 
be expanded with citations 
when specifics are discussed. 

References [15, 16] 
provide an entrée to the 
important work of Giere, 
Nercessian and Gentner, 
which has so much in 
common with my own 
thinking that it may be hard to 
believe it developed 
independently. This illustrates 
the fact that significant ideas 
are implicit in the culture of 
science waiting for 
investigators to explicate and 
cultivate as their own. 

In sections to follow, I 
emphasize alignment of 
Modeling Theory with 
Cognitive Linguistics, especially as expounded by George Lakoff [17-20]. Language is a 
window to the mind, and linguistic research has distilled a vast corpus of data to deep insights 
into structure and use of language. My objective is to apply these insights to understanding 
cognition in science and mathematics. Cognitive Linguistics makes this possible, because it is a 
reconstruction of linguistic theory aligned with the recent revolution in Cognitive Science. 
 
V. Constraints from Cognitive Neuroscience 
 
Cognitive neuroscience is concerned with explaining cognition as a function of the brain. It 
bridges the interface between psychology and biology. The problem is to match cognitive theory 
at the psychological level with neural network theory at the biological level. Already there is 
considerable evidence supporting the working hypothesis that cognition (at the psychological 
level) is grounded in the sensory-motor system (at the biological level). 
The evidence is of three kinds: 

• Soft constraints: Validated models of cognitive structure from cognitive science, 
especially cognitive linguistics.  

• Hard constraints: Identification of specific neural architectures and mechanisms 
sufficient to support cognition and memory. 

Box 2:   Modeling Research in Cognitive Science 
Philosophy of Science  

Ronald Giere (Model-based philosophy of science) 
Jon Barwise (Deductive inference from diagrams) 

History and Sociology of Science  
Thomas Kuhn (Research driven by Exemplars) 
Nancy Nercessian (Maxwell’s analogical modeling) 

Cognitive Psychology  
Dedre Gentner (Analogical reasoning) 
Philip Johnson-Laird (Inference with mental models) 
Barbara Tversky (Spatial mental models vs. visual imagery) 

Cognitive Linguistics  
George Lakoff (Metaphors & radial categories) 
Ronald Langacker (Cognitive grammar & image schemas) 

Cognitive Neuroscience  
Michael O’Keeffe (Hippocampus as a Cognitive Map) 
Stephen Grossberg (Neural network theory) 

Physics Education Research  
Andy diSessa (Phenomenological primitives) 
John Clement (Bridging analogies) 

Information & Design Sciences  
UML: Universal Modeling Language  

& Object-Oriented Programming 
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• Evolutionary constraint: A plausible account of how the brain could have evolved to 
support cognition. 

A few comments will help fix some of the issues. 
Biology tells us that brains evolved adaptively to enable navigation to find food and 

respond to threats. Perception and action are surely grounded in identifiable brain structures of 
the sensory-motor system. However, no comparable brain structures specialized for cognition 
have been identified. This strongly suggests that cognition too is grounded in the sensory-motor 
system. The main question is then: what adaptations and extensions of the sensory-motor system 
are necessary to support cognition? 

I hold that introspection, despite its bad scientific reputation, is a crucial source of 
information about cognition that has been systematically explored by philosophers, linguists and 
mathematicians for ages. As Kant was first to realize and Lakoff has recently elaborated [20], the 
very structure of mathematics is shaped by hard constraints on the way we think. A major 
conclusion is that geometric concepts (grounded in the sensory-motor system) are the prime 
source of relational structures in mathematical systems.  

I am in general agreement with Mark Johnson’s NeoKantian account of cognition [21], 
which draws on soft constraints from Cognitive Linguistics. But it needs support by 
reconciliation with hard constraints from sensory-motor neuroscience. That defines a promising 
direction for research in Cognitive Neuroscience. Let me reiterate my firm opinion [6] that the 
research program of Stephen Grossberg provides the best theoretical resources to pursue it.  
 
VI. System, Model & Theory; Structure & Morphism 
 
The terms ‘system’ and ‘model’ have been ubiquitous in science and engineering since the 
middle of the twentieth century. Mostly these terms are used informally, so their meanings are 
quite variable. But for the purposes of Modeling Theory, we need to define them as sharply as 
possible. Without duplicating my lengthy discussions of this matter before [7-10], let me 
reiterate some key points with an eye to preparing a deeper connection to cognitive theory in the 
next section. 

I define a SYSTEM as a set of related objects. Systems can be of any kind depending on 
the kind of object. A system itself is an object, and the objects of which it is composed may be 
systems. In a conceptual system the objects are concepts. In a material system the objects are 
material things. Unless otherwise indicated, we assume that the systems we are talking about are 
material systems. A material system can be classified as physical, chemical or biological, 
depending on relations and properties attributed to the objects. 

The STRUCTURE of a system is defined as the set of relations among objects in the 
system. This includes the relation of “belonging to,” which specifies COMPOSITION, the set of 
objects belonging to the system. A universal finding of science is that all material systems have 
geometric, causal and temporal structure, and no other (metaphysical) properties are needed to 
account for their behavior. According to Modeling Theory, science comes to know objects in the 
real world not by direct observation, but by constructing conceptual models to interpret 
observations and represent the objects in the mind. This epistemological precept is called 
Constructive Realism by philosopher Ronald Giere. 

I define a conceptual MODEL as a representation of structure in a material system, 
which may be real or imaginary. The possible types of structure are summarized in Box 3. I have 
been using this definition of model for a long time, and I am yet to find a model in any branch of 
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science that cannot be 
expressed in these terms.  
 Models are of many 
kinds, depending on their 
purpose. All models are 
idealizations, representing only 
structure that is relevant to the 
purpose, not necessarily 
including all five types of 
structure in Box 3. The 
prototypical kind of model is a 
map. Its main purpose is to 
specify geometric structure 
(relations among places), 
though it also specifies objects 
in various locations. Maps can 
be extended to represent 
motion of an object by a path 
on the map. I call such a model 
a motion map. Motion maps should not be confused with graphs of motion, though this point is 
seldom made in physics or math courses. In relativity theory, motion maps and graphs are 
combined in a single spacetime map to represent integrated spatiotemporal event structure.  

A mathematical model represents the structure of a system by quantitative variables of 
two types: state variables, specifying composition, geometry and object properties; interaction 
variables, specifying links among the parts and with the environment [6]. A process model 
represents temporal structure as change of state variables. There are two types. A descriptive 
model represents change by explicit functions of time. A dynamical model specifies equations of 
change determined by interaction laws. Interaction laws express interaction variables as 
functions of state variables. 

A scientific THEORY is defined by a system of general principles (or Laws) specifying a 
class of state variables, interactions and dynamics (modes of change) [6, 7]. Scientific practice is 
governed by two kinds of law: 

I. Statutes: General Laws defining the domain and structure of a Theory 
  (such as Newton’s Laws and Maxwell’s equations) 
II. Ordinances: Specific laws defining models 
  (such as Galileo’s law of falling bodies and Snell’s law) 

The content of a scientific theory is a population of validated models. The statutes of a theory 
can be validated only indirectly through validation of models. 

Laws defining state variables are intimately related to Principles of Measurement (also 
called correspondence rules or operational definitions) for assigning measured values to states of 
a system. A model is validated to the degree that measured values (data) match predicted values 
determined by the model. The class of systems and range of variables that match a given model 
is called its domain of validity. The domain of validity for a theory is the union of the validity 
domains for its models. 
 Empirical observation and measurement determine an analogy between a given model 

Box 3:     A conceptual MODEL is defined  
          by specifying  five types of structure: 
(a) systemic structure: 
 • composition (internal parts (objects) in the system) 
 • environment (external agents linked to the system) 
 • connections (external and internal links) 
(b) geometric structure:  
 • position with respect to a reference frame (external) 
 • configuration (geometric relations among the parts) 
(c) object structure: 
 • intrinsic properties of the parts 
(d) interaction structure: 
 • properties of (causal) links  
(e) temporal (event) structure: 
 • temporal change in structure of the system 
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and its referent (a system). I call this a referential analogy. An analogy is defined as a mapping 
of structure from one domain (source) to another (target). The mapping is always partial, which 
means that some structure is not mapped. (For alternative views on analogy see [16].) Analogy is 
ubiquitous in science, but often goes unnoticed. Several different kinds are illustrated in Figs. 
3&4. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conceptual analogies between models in different domains are common in science and 
often play a generative role in research. Maxwell, for example, explicitly exploited electrical– 
mechanical analogies. An analogy specifies differences as well as similarities between source 
and target. For example, similar models of wave propagation for light, sound and water and 
ropes suppress confounding differences, such as the role of an underlying medium. Such 
differences are still issues in scientific research as well as points of confusion for students. 
 A material analogy relates 
structure in different material systems or 
processes; for example, geometric 
similarity of a real car to a scale model 
of the car. An important case that often 
goes unnoticed, because it is so subtle 
and commonplace, is material 
equivalence of two material objects or 
systems, whereby they are judged to be 
the same or identical. I call this an 
inductive analogy, because it amounts to 
matching the objects to the same model 
(Fig. 4). I submit that this matching process underlies classical inductive inference, wherein 
repeated events are attributed to a single mechanism. 
 One other analogy deserves mention, because it plays an increasingly central role in 
science: the analogy between conceptual models and computer models. The formalization of 
mathematics has made it possible to imbed every detail in the structure of conceptual models in 
computer programs, which, running in simulation mode, can emulate the behavior of material 
systems with stunning accuracy. More and more, computers carry out the empirical function of 
matching models to data without human intervention. However there is an essential difference 
between computer models and conceptual models, which we discuss in the next section. 
 Considering the multiple, essential roles of analogy just described, I recommend 
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formalizing the concept of analogy in science with the technical term MORPHISM. In 
mathematics a morphism is a structure-preserving mapping: Thus the terms homomorphism 
(preserves algebraic structure) and homeomorphism (preserves topological structure). Alternative 
notions of analogy are discussed in [16]. 
 The above characterization of science by Modeling Theory bears on deep epistemological 
questions long debated by philosophers and scientists. For example: 

• In what sense can science claim objective knowledge about the material world? 
• To what degree is observed structure inherent in the material world and independent of 

the observer? 
• What determines the structure categories for conceptual models in Box 3? 

In regard to the last question, I submit in line with Lakoff and Johnson [18, 19, 21] that these are 
basic categories of cognition grounded in the human sensory-motor system. This suggests that 
answers to all epistemological questions depend on our theory of cognition, to which we now 
turn. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VII. Modeling Structure of Cognition 
 
If cognition in science is an extension of common sense, then the structure of models in science 
should reflect structure of cognition in general. To follow up this hint I outline a Modeling 
Theory of Cognition. The theory begins with a crucial distinction between mental models and 
conceptual models (Fig. 5). Mental models are private constructions in the mind of an 
individual. They can be elevated to conceptual models by encoding model structure in symbols 
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that activate the individual’s mental model and corresponding mental models in other minds. Just 
as Modeling Theory characterizes science as construction and use of shared conceptual models, I 
propose to characterize cognition as construction and manipulation of private mental models. 

As already mentioned, the idea that mental models are central to cognition is 
commonplace in cognitive science. However, it has yet to crystallize into commonly accepted 
theory, so I cannot claim that other researchers will approve of the way I construe their results as 
support for Modeling Theory. The most extensive and coherent body of evidence comes from 
cognitive linguistics, supporting the revolutionary thesis: Language does not refer directly to 
the world, but rather to mental models and components thereof! Words serve to activate, 
elaborate or modify mental models, as in comprehension of a narrative. 

This thesis rejects all previous versions of semantics, which located the referents of 
language outside the mind, in favor of cognitive semantics, which locates referents inside the 
mind. I see the evidence supporting cognitive semantics as overwhelming [17-24], but it must be 
admitted that some linguists are not convinced, and many research questions remain. 

My aim here is to assimilate insights of cognitive linguistics into Modeling Theory and 
study implications for cognition in science and mathematics. The first step is to sharpen our 
definition of concept. Inspired by the notion of ‘construction’ in cognitive linguistics [25], I 
define a concept as a {form, meaning} pair 
represented by a symbol (or symbolic 
construction), as schematized in Fig. 6. The 
meaning is given by a mental model or schema 
called a prototype, and the form is the 
structure or a substructure of the prototype. 
This is similar to the classical notion that the 
meaning of a symbol is given by its intension 
and extension, but the differences are profound. 
 For example, the prototype for the concept right triangle is a mental image of a triangle, 
and its form is a system of relations among its constituent vertices and sides. The concept of 
hypotenuse has the same prototype, but its form is a substructure of the triangle. This kind of 
substructure selection is called profiling in cognitive linguistics. Note that different individuals 
can agree on the meaning and use of a concept even though their mental images may be 
different. We say that their mental images are homologous. 

In my definition of a concept, the form is derived from the prototype. Suppose the 
opposite. I call that a formal concept. That kind of concept is common in science and 
mathematics. For example the concept of length is determined by a system or rules and 
procedures for measurement that determine the structure of the concept. To understand the 
concept, each person must embed the structure in a mental model of his own making. Evidently 
formal concepts can be derived from “informal concepts” by explicating the implicit structure in 
a prototype. I submit that this process of explication plays an important role in both developing 
and learning mathematics. 

Like a percept, a concept is an irreducible whole, with gestalt structure embedded in its 
prototype. Whereas a percept is activated by sensory input, a concept is activated by symbolic 
input. Concepts can be combined to make more elaborate concepts, for which I recommend the 
new term construct to indicate that it is composed of irreducible concepts, though its wholeness 
is typically than the “sum” of its parts.  

We can apply the definition of ‘concept’ to sharpen the notion of ‘conceptual model,’ 

CONCEPT

symbol

meaningform
 

            Fig. 6:  Concept triad 



 12 

which was employed informally in the preceding section. A conceptual model is now defined as 
a concept (or construct if you will) with the additional stipulation that the structure of its referent 
be encoded in its representation by a symbolic construction, or figure, or some other inscription. 
Like a concept, a conceptual model is characterized by a triad, as depicted in Fig. 7. 

To emphasize the main point: the symbols for concepts refer to mental models (or 
features thereof), which may or may not correspond to actual material objects (as suggested in 
Fig.7). Though every conceptual model refers to a mental model, the converse is not true. The 
brain creates all sorts of mental constructions, including mental models, for which there are no 
words to express. I refer to such constructions as ideas or intuitions. Ideas and intuitions are 
elevated to concepts by creating symbols to represent them!  
 
 
 
 
 
 
 
 
 

My definitions of ‘concept’ and ‘conceptual model’ have not seen print before, so others 
may be able to improve them. But I believe they incorporate the essential ideas. The main task 
remaining is to elaborate the concept of mental model with reference to empirical support for 
important claims. 

The very idea of mental model comes from introspection, so that is a good place to start. 
However, introspection is a notoriously unreliable guide even to our own thinking, partly 
because most thinking is unconscious processing by the brain. Consequently, like the tip of an 
iceberg, only part of a mental model is open to direct inspection. Research has developed means 
to probe more deeply. 

Everyone has imagination, the ability to conjure up an image of a situation from a 
description or memory. What can that tell us about mental models? Some people report images 
that are picture-like, similar to actual visual images. However, others deny such experience, and 
blind people are perfectly capable of imagination. Classical research in this domain found 
support for the view that mental imagery is internalized perception, but not without critics. 

Barbara Tversky 
and collaborators [26] 
have tested the classical 
view by comparison to 
mental model 
alternatives. Among 
other things, they 
compared individual 
accounts of a visual 
scene generated from 
narrative with accounts 
generated from direct 
observation and found 
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representation

referentstructure Mental model

Material system

 
   Fig. 7:   Conceptual model 

  Box 4:             Spatial MENTAL models 

• are schematic,  representing only some features, 
• are structured, consisting of elements and relations. 
• Elements are typically objects (or reified things). 
• Object properties are idealized (points, lines or paths). 
• Object models are always placed in a background  

(context or frame). 
• Individual objects are modeled separately from the frame, 
  so they can move around in the frame. 
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that they are functionally equivalent. A crucial difference is that perceptions have a fixed point of 
view, while mental models allow change in point of view. Furthermore, spatial mental models 
are more schematic and categorical than images, capturing some features of the object but not all 
and incorporating information about the world that is not purely perceptual. Major characteristics 
of spatial mental models are summarized in Box 4. The best fit to data is a spatial framework 
model, where each object has an egocentric frame consisting of mental extensions of three body 
axes.  

The general conclusion is that mental models represent states of the world as conceived, 
not perceived. To know a thing is to form a mental model of it. The details in Box 4 are 
abundantly supported by other lines of research, especially in cognitive linguistics, to which we 
now turn.  

In the preceding section we saw that concepts of structure and morphism provide the 
foundation for models and modeling practices in science (and, later I will claim, for mathematics 
as well). My purpose here is to link those concepts to the extensive cognitive theory and 
evidence reviewed by Lakoff and company [17-24], especially to serve as a guide for those who 
wish to mine the rich lode of insight in this domain. To that end, I have altered Lakoff’s 
terminology somewhat but I hope not misrepresented his message. 

I claim that all reasoning is inference from structure, so I seek to identify basic 
cognitive structures and understand how they generate the rich conceptual structures of science 
and mathematics. The following major themes are involved: 

• Basic concepts are irreducible cognitive primitives grounded in sensory-motor 
experience. 

• All other conceptual domains are structured by metaphorical extension from the basic 
domain. 

• Cognition is organized by semantic frames, which provide background structure for 
distinct conceptual domains and modeling in mental spaces. 

Only a brief orientation to each theme can be given here. 
Metaphors are morphisms in which structure in the source domain is projected into the 

target domain to provide it with structure. The process begins with grounding metaphors, 
which project structural primitives from basic concepts. A huge catalog of metaphors has been 
compiled and analyzed to make a strong case that all higher order cognition is structured in this 
way. 

Semantic frames provide an overall conceptual structure linking systems of related 
concepts (including the words that express them). In mathematics, the frames may be general 
conceptual systems such as arithmetic and geometry or subsystems thereof. Everyday cognition 
is structured by a great variety of frames, such as the classic restaurant frame that that provides a 
context for modeling what happens in a restaurant. A semantic frame for a temporal sequence of 
events, such as dining (ordering, eating and paying for a meal), is called a script. 

Fauconnier has coined the term mental spaces for the arenas in which mental modeling 
occurs [23, 24]. Especially significant is the concept of blending, whereby distinct frames are 
blended to create a new frame. The description of cognitive processes in such terms is in its 
infancy but very promising. 

As cognitive grounding for science and mathematics, we are most interested in basic 
concepts of space, time and causality. Their prototypes, usually called schemas, provide the 
primitive structures from which all reasoning is generated. There are two kinds, called image 
schemas and aspectual schemas.  
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Image schemas provide common structure for spatial concepts and spatial perceptions, 
thus linking language with spatial perception. The world’s languages use a relatively small 
number of image schemas, but they incorporate spatial concepts in quite different ways –– in 
English mostly with prepositions. Some prepositions, such as in/out and from/to, express 
topological concepts, while others, such as up/down and left/right, express directional concepts. 

The schema for each concept is a structured whole or gestalt, where in the parts have no 
significance except in relation to the whole. For example, the container schema (Fig. 8) consists 
of a boundary that separates interior and exterior spaces. The preposition in profiles the interior, 
while out profiles the exterior. 

The container schema 
provides the structure for the 
general concepts of containment 
and space as a container. The 
alternative notion of space as a 
set of points (locations) was not 
invented until the nineteenth 
century. The contrast between 
these two concepts of space has 
generated tension in the 
foundations of mathematics that 
is still not resolved to 
everyone’s satisfaction. 

By metaphorical 
projection, the container schema structures many conceptual domains. In particular, as Lakoff 
explains at length, the Categories-are-containers metaphor provides propositional logic with 
cognitive grounding in the inherent logic of the container schema (illustrated in Fig. 8). More 
generally, container logic is the logic of part-whole structure, which underlies the concepts of set 
and system (Box 4). 

Aspectual schemas structure events and actions. The prototypical aspectual concept is 
the verb, of which the reader knows many examples. The most fundamental aspectual schema is 
the basic schema for motion (Fig. 9), called the Source-Path-Goal schema by linguists, who use 
trajector as the default term for any object moving along a path. This schema has its own logic, 
and provides cognitive structure for the concepts of continuity and linear order in mathematics. 
Indeed, Newton conceived of curves as traced out by moving points, and his First Law of Motion 
provides grounding for the concept of time on 
the more basic concept of motion [7]. Indeed, 
the Greek concept of a curve as a locus of 
points suggests the action of drawing the curve. 
In physics the concept of motion is integrated 
with concept of space, and the geometry of 
motion is called kinematics. 

Though the path schema of Fig. 9 is classified as aspectual in cognitive linguistics, 
evidence from cognitive neuroscience and perceptual psychology suggests that it should 
regarded as an image schema. It is a mistake to think that visual processing is limited to static 
images. In visual cortex motion is processed concurrently with form. Even young children can 

Excluded middle: x in A or not in A

Modus Ponens:
x in B  ⇒  x in A

Modus Tollens:
x not in A ⇒ x not in B 

AB
• x

• in • out

A
Container schema:
  Boundary A
    in profiles Interior
    out profiles Exterior

 
   Fig. 8: Container Schema Logic 
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     Fig. 9: Source-Path-Goal Schema 
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trace the path of a thrown ball, and the path is retained mentally as a kind of afterimage, though, 
like most of visual processing, it remains below the radar of consciousness.   

Clearly, the basic concepts of structure and quantity come from geometry. Evidently the 
general concept of structure is derived from geometry by metaphorical projection to practically 
every conceptual domain. An obvious example is the general concept of state space, where states 
are identified with locations. 

Categories are fundamental to human thought, as they enable distinctions between 
objects and events. One of the pillars of cognitive linguistics is Eleanor Rosch’s discovery that 
Natural Categories are determined by mental prototypes. This should be contrasted with the 
classical concept of a Formal Category for which membership is determined by a set of defining 
properties, a noteworthy generalization of the container metaphor. The notion of categories as 
containers cannot account for a mountain of empirical evidence on natural language use. 
 Natural categories (commonly called Radial categories) are discussed at great length by 
Lakoff [18], so there is no need for details here. The term “radial” expresses the fact that natural 
categories have a radial structure of subordinate and superordinate categories with a central 
category for which membership is determined by matching to a prototype. The matching process 
accounts for fuzziness in category boundaries and graded category structure with membership 
determined by partial matching qualified by hedges, such as “It looks like a bird, but . . .” 

The upshot is that the structure of natural categories is derived from prototypes whereas 
for formal categories structure is imposed by conventions. As already noted for formal concepts, 
formal categories play an essential role in creating objective knowledge in science and 
mathematics. However, the role of radial categories in structuring scientific knowledge has 
received little notice [27]. 

Most human reasoning is inference from mental models. We can distinguish several types 
of model-based reasoning: 

• Abductive, to complete or extend a model, often guided by a semantic frame in which 
the model is embedded. 

• Deductive, to extract substructure from a model. 
• Inductive, to match models to experience. 
• Analogical, to interpret or compare models. 
• Metaphorical, to infuse structure into a model. 
• Synthesis, to construct a model, perhaps by analogy or blending other models. 
• Analysis, to profile or elaborate implicit structure in a model. 

Justification of model-based reasoning requires translation from mental models to inference 
from conceptual models that can be publicly shared, like the scientific models in the preceding 
section. 

In contrast, formal reasoning is computational, using axioms, production rules and other 
procedures. It is the foundation for rigorous proof in mathematics and formal logic. However, I 
daresay that mathematicians and even logicians reason mostly from mental models. Model-based 
reasoning is more general and powerful than propositional logic, as it integrates multiple 
representations of information (propositions, maps, diagrams, equations) into a coherently 
structured mental model. Rules and procedures are central to the formal concept of inference, but 
they can be understood as prescriptions for operations on mental models as well as on symbols. 
 We have seen how Modeling Theory provides a theoretical framework for cognitive 
science that embraces the findings of cognitive linguistics. Thus it provides the means for 
scientific answers to long-standing philosophical questions, such as: What is the role of language 
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in cognition? Is it merely an expression of thought and a vehicle for communication? Or does it 
determine the structure of thought? As for most deep philosophical questions, the answer is “Yes 
and no!” Yes, the basic structure in thought is grounded in the evolved structure of the sensory-
motor system. No, there is more to the story. The structure of mental models, perhaps even of 
aspectual and image schemas, is shaped by experience with tools, linguistic as well as physical. 
In the following sections we consider evidence for this in physics and mathematics. 
 
VIII. Concepts of Force in science and common sense 
 
From the beginning, Modeling Theory was developed with an eye to improving instruction in 
science and mathematics, so we look to that domain for validation of the theory. In section II, I 
reported the stunning success of Malcolm Wells’ initial experiment with Modeling Theory and 
its subsequent flowering in the Modeling Instruction Project. My purpose in this section is, first 
to describe what Modeling Theory initially contributed to that success, and second to propose 
new explanations based on the current version of the theory. This opens up many opportunities 
for further research.  

School physics has a reputation for being impossibly difficult. The rap is that few have 
the talent to understand it. However, PER has arrived at a different explanation by investigating 
common sense (CS) concepts of force and motion in comparison to the Newtonian concepts of 
physics. The following conclusions are now widely accepted: 

• CS concepts dominate student thinking in introductory physics!  
• Conventional instruction is almost totally ineffective in altering them! 
• This result is independent of the instructor’s academic qualifications, teaching 

experience, and (unless informed by PER) mode of teaching! 
Definitive quantitative support for these claims was made possible by development of the Force 
Concept Inventory (FCI). The initial results [3, 5] have been repeatedly replicated (throughout 
the U.S. and elsewhere), so the conclusions are universal, and only the ill-informed are skeptical. 
 The implications for conventional instruction could hardly be more serious! Student 
thinking is far from Newtonian when they begin physics, and it has hardly changed (<15%) when 
they finish the first course. Consequently, students systematically misinterpret almost everything 
they read, hear and see throughout the course. Evidence for this catastrophe has always been 
there for teachers to see, but they lacked the conceptual framework to recognize it. Witness the 
common student complaint: “I understand the theory, I just can’t work the problems!” In my 
early years of teaching I dismissed such claims as unfounded, because ability to work problems 
was regarded as the definitive test of understanding. Now I see that the student was right. He did 
understand the theory –– but it was the wrong theory! His theory wrapped up his CS concepts in 
Newtonian words; he had learned jargon instead of Newtonian concepts. 

Since students are oblivious to the underlying conceptual mismatch, they cannot process 
their own mistakes in problem solving. Consequently, they resort to rote learning and depend on 
the teacher for answers. A sure sign of this state of affairs in a physics classroom is student 
clamoring for the teacher to demonstrate solving more and more problems. They confuse 
memorizing problem solutions with learning how to solve problems. This works to a degree, but 
repeated failure leads to frustration and humiliation, self-doubt and ultimately student turn-off! 

Happily, this is not the end of the story. Figure 10 summarizes data from a nationwide 
sample of 7500 high school physics students involved in the Modeling Instruction Project during 
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1995–98. The mean FCI pretest score is about 26%, slightly above the random guessing level of 
20%, and well below the 60% score which, for empirical reasons, can be regarded as a threshold 
in the understanding of Newtonian mechanics.  

Figure 10 shows that traditional high school instruction (lecture, demonstration, and 
standard laboratory activities) has little impact on student beliefs, with an average FCI posttest 
score of 42%, still well below the Newtonian threshold. This is data from the classes of teachers 
before participating in the Modeling Instruction Project. 
 Participating teachers attend an intensive 3-week Modeling Workshop that immerses 
them in modeling 
pedagogy and acquaints 
them with curriculum 
materials designed 
expressly to support it. 
Almost every teacher 
enthusiastically adopts 
the approach and begins 
teaching with it 
immediately. After their 
first year of teaching 
posttest scores for 
students of these novice 
modelers are about 10% 
higher, as shown in Fig. 
10 for 3394 students of 
66 teachers. Students of 
expert modelers do 
much better.  

For 11 teachers identified as expert modelers after two years in the Project, posttest 
scores of their 647 students averaged 69%. Their average gain is more than two standard 
deviations higher than the gain under traditional instruction. It is comparable to the gain 
achieved by the first expert modeler Malcolm Wells. 

The 29%/69% pretest/posttest means for the expert modelers should be compared 
with the 52%/63% means for calculus-based physics at a major university [5]. We now have 
many examples of modelers who consistently achieve posttest means from 80-90%. On the other 
hand, even initially under-prepared teachers eventually achieve substantial gains, comparable to 
gains for well-prepared teachers after two years in the project. 

FCI scores are vastly more informative than scores for an ordinary test. To see why, one 
needs to examine the structure of the test and the significance of the questions. The questions are 
based on a detailed taxonomy of common sense (CS) concepts of force and motion derived from 
research. The taxonomy is structured by a systematic analysis of the Newtonian force concept 
into six fundamental conceptual dimensions. Each question requires a forced choice between a 
Newtonian concept and CS alternatives for best explanation in a common physical situation, and 
the set of questions systematically probes all dimensions of the force concept. Questions are 
designed to be meaningful to readers without formal training in physics. 

To a physicist the correct choice for each question is so obvious that the whole test looks 
trivial. On the other hand, virtually all CS concepts about force and motion are incompatible with 
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Newtonian theory. Consequently, every missed question has high information content. Each miss 
is a sure indicator of non-Newtonian thinking, as any skeptical teacher can verify by 
interviewing the student who missed it. 

Considering the FCI’s comprehensive coverage of crucial concepts, the abysmal FCI 
scores for traditional instruction imply catastrophic failure to penetrate student thinking! Most 
high school students and half the university students do not even reach the Newtonian threshold 
of 60%. Below that threshold students have not learned enough about Newtonian concepts to use 
them reliably in reasoning. No wonder they do so poorly on problem solving. 
 Why is traditional instruction so ineffective? Research has made the answer clear. To 
cope with ordinary experience each of us has developed a loosely organized system of intuitions 
about how the world works. That provides intuitive grounding for CS beliefs about force and 
motion, which are embedded in natural language and studied in linguistics and PER. Research 
shows that CS beliefs are universal in the sense that they are much the same for everyone, 
though there is some variation among individuals and cultures. They are also very robust and 
expressed with confidence as obvious truths about experience. 
 Paradoxically, physicists regard most CS beliefs about force and motion as obviously 
false. From the viewpoint of Newtonian theory they are simply misconceptions about the way the 
world truly is! However, it is more accurate, as well as more respectful, to regard them as 
alternative hypotheses. Indeed, in preNewtonian times the primary CS “misconceptions” were 
clearly articulated and forcefully defended by great intellectuals –– Aristotle, Jean Buridan, 
Galileo, and even Newton himself (before writing the Principia) [4]. Here we see another side of 
the paradox: 

To most physicists today Newtonian physics describes obvious structure in perceptible 
experience, in stark contrast to the subtle quantum view of the world. I have yet to meet a single 
physicist who recollects ever holding pre-scientific CS beliefs, though occasionally one recalls a 
sudden aha! insight into Newton’s Laws. This collective retrograde amnesia testifies to an 
important fact about memory and cognition: recollections are reconstructed to fit current 
cognitive structures. Thus, physicists cannot recall earlier CS thinking because it is filtered by 
current Newtonian concepts. 
 In conclusion, the crux of the problem with traditional instruction is that it does not even 
recognize CS beliefs as legitimate, let alone address them with argument and evidence. In 
contrast, Modeling Instruction is deliberately designed to address this problem with 

• Modeling activities that systematically engage students in developing models and 
providing their own explanations for basic physical phenomena,  

• Modeling discourse (centered on visual representations of the models) to engage students 
in articulating their explanations and comparing them with Newtonian concepts, 

• Modeling concepts and tools (such as graphs, diagrams and equations) to help students 
simplify and clarify their models and explanations. 

Instructors are equipped with a taxonomy of CS concepts to help recognize opportunities to elicit 
the concepts from students for comparison with Newtonian alternatives and confrontation with 
empirical evidence. Instructors know that students must recognize and resolve discrepancies by 
themselves. Telling them answers does not work. 
 From years of experimenting with modeling discourse (especially in the classroom of 
Malcolm Wells) we have learned to focus on the three CS concepts listed in Box 5. When these 
concepts are adequately addressed, other misconceptions in our extensive taxonomy [5] tend to 
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fall away automatically. Their robustness is indicated by the posttest discrepancies (Box 5) from 
FCI data on more than a thousand university students. After completing a first course in calculus-
based physics, the fraction of students choosing CS alternatives over Newton’s First, Second and 
Third Laws was 60%, 40% and 90% respectively. Of course, Newton’s Laws are not named as 
such in the FCI. 80% of the students had already taken high school physics and could state 
Newton’s Laws as slogans before beginning university physics. 
 After the Modeling 
Instruction Project was up and 
running, I learned about Lakoff’s 
work on metaphors and its 
relevance for understanding CS 
force and motion concepts. I 
presented the ideas to teachers in 
Modeling Workshops but have 
no evidence that this improved 
the pedagogy, which was already 
well developed. I suppose that 
much of the new insight was 
overlooked, because it was not 
nailed down in print, so let me 
record some of it here as analysis 
of the three primary CS concepts in Box 5.  

The Impetus Principle employs the Object-As-Container metaphor, where the container is 
filled with impetus that makes it move. After a while the impetus is used up and the motion 
stops. Of course, students don’t know the term impetus (which was coined in the middle ages); 
they often use the term energy instead. Naïve students don’t discriminate between energy and 
force. Like Newton himself before the Principia, they have to be convinced that “free particle 
motion in a straight line” is a natural state that doesn’t require a motive force (or energy) to 
sustain it. This does not require discarding the impetus intuition (which is permanently grounded 
in the sensory-motor system in any case) but realigning the intuition with physics concepts of 
inertia and momentum. 
 The CS prototype for force is human action on an object. Consequently, students don’t 
recognize constraints on motion like walls and floors as due to contact forces. “They just get in 
the way.” Teachers try to activate student intuition by emphasizing that “force is a push or a 
pull,” without realizing that unqualified application of this metaphor excludes passive forces. 
Besides, no textbooks explicitly note that universality of force is an implicit assumption in 
Newtonian theory, which requires that motion is influenced only by forces. To arrive at force 
universality on their own, students need to develop intuition to recognize forces in any instance 
of physical contact. As an instructional strategy to achieve that end, Clement and Camp [28] 
engage students in constructing a series of “bridging analogies” to link, for example, the 
unproblematic case of a person pressing on a spring to the problematic case of a book resting on 
a table. I recommend modifying their approach to include a common vector representation of 
normal force in each case to codify symbolic equivalence (as in Fig. 4). 
 In situations involving Newton’s Third Law, the slogan “for every action there is an 
equal and opposite reaction” evokes a misplaced analogy with a struggle between “opposing 
forces,” from which it follows that one must be the winner, “overcoming” the other, in 

Box 5        Contrasting Force Concepts 
        Posttest 
  Newtonian     vs.     Common Sense          Discrepancy 
 
• First Law  ⇔   “Motion requires force”     ~ 60% 
              (Impetus Principle) 
  
• Second Law   ⇔   “Force is action”      ~ 40% 
              (No Passive forces) 
  
• Third Law      ⇔   “Force is war”      ~ 90% 
           (Dominance Principle) 
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contradiction to the Third Law. The difficulty that students have in resolving this paradox is 
reflected in the fact that FCI questions on the Third Law are typically the last to be mastered. 
DiSessa [29] gives a perceptive analysis of Third Law difficulties and measures to address them. 
 Such insights into student thinking as just described are insufficient for promoting a 
transition to Newtonian thinking in the classroom. The literature is replete with attempts to 
address specific misconceptions with partial success at best. So what accounts for the singular 
success of Modeling Instruction as measured by the FCI (Fig. 10)? As for any expert 
performance, detailed planning and preparation is essential for superior classroom instruction. 
(The intensive Modeling Workshops help teachers with that.) However, Modeling Instruction is 
unique in its strategic design. 

Rather than address student misconceptions directly, Modeling Instruction creates an 
environment of activities and discourse to stimulate reflective thinking about physical 
phenomena that are likely to evoke those misconceptions. The environment is structured by an 
emphasis on models and modeling with multiple representations (maps, graphs, diagrams, 
equations). This provides students with conceptual tools to sharpen their thinking and gives them 
access to Newtonian concepts. In this environment students are able to adjust their thinking to 
resolve discrepancies within the Newtonian system, which gradually becomes their own. Rather 
than learning Newtonian concepts piecemeal, they learn them as part of a coherent Newtonian 
system. Construction of a Newtonian model requires coordinated use of all the Newtonian 
concepts, and only this reveals the coherence of the Newtonian system. That coherence is not at 
all obvious from the standard statement of Newton’s Laws. I believe that learning Newtonian 
concepts as a coherent system best accounts for high FCI scores. Logically this is only a 
sufficient condition for a high score, but I estimate that a high score from piecemeal 
understanding of Newtonian physics is improbably low. Thus, it is best to interpret overall FCI 
score as a measure of coherence in understanding Newtonian physics. 

One other important point deserves mention here. As we have noted, Modeling Theory 
informed by empirical evidence from cognitive science holds that mental models are always 
constructed within a semantic frame. Accordingly, I suppose that physical situations (regardless 
of how they are presented) activate a Newtonian semantic frame in the mental spaces of 
physicists. And I submit that physics instruction is not truly successful until the same is true for 
students. It is well known that students tend to leave the science they have learned in the 
classroom and revert to CS thinking in every day affairs. Perhaps recognizing this as a problem 
of semantic framing can lead to a better result. 

As I have described it, Modeling Instruction does not depend on detailed understanding 
of how students think. Indeed, I have tried to steer it clear of doubtful assumptions about 
cognition that might interfere with learning. However, I now believe that advances in the 
Modeling Theory of cognition described in Section VII are sufficient to serve as a reliable guide 
for research to further improve instruction by incorporating details about cognition. Let me 
sketch the prospects with specific reference to force and motion concepts. 

The intertwined concepts of force and causation have been studied extensively in 
cognitive linguistics. Lakoff and Johnson [19] show that the great variety of causal concepts fall 
naturally into a radial category (“kinds of causation”) structured by a system of metaphorical 
projections. The central prototype in this category is given by the Force-as-Human-Action 
metaphor, in agreement with our analysis above. Their analysis provides an organizational 
framework for the whole body of linguistic research on causation. That research provides 
valuable insight into CS concepts of force and motion that deserves careful study. However, 
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limited as it is to study of natural languages, linguistic research does not discover the profound 
difference in the force concept of physicists. For that we need to turn to PER, where the deepest 
and most thorough research is by Andy diSessa [29]. 
 In much the same way that linguists have amassed evidence for the existence of 
prototypes and image schemas, diSessa has used interview techniques to isolate and characterize 
conceptual primitives employed by students in causal reasoning. He has identified a family of 
irreducible “knowledge structures” that he calls phenomenological primitives or p-prims. Since 
diSessa’s definitive monograph on p-prims in 1993, converging evidence from cognitive 
linguistics has made it increasingly clear that his p-prims are of the same ilk as the image and 
aspectual schemas discussed in the preceding section. Accordingly, I aim to integrate them under 
the umbrella of Modeling Theory.  
 Let us begin with the most important example, which diSessa calls Ohm’s p-prim. As he 
explains,  

Ohm’s p-prim comprises “an agent that is the locus of an impetus that acts 
against a resistance to produce a result.”  

Evidently this intuitive structure is abstracted from experience pushing objects. It is an important 
elaboration of the central Force-as-Action metaphor mentioned above –– Very important! –– 
Because this structure is fundamental to qualitative reasoning. The logic of Ohm’s p-prim is the 
qualitative proportion:  

more effort ⇒ more result, 
and the inverse proportion: 

more resistance ⇒ less result. 
This reasoning structure is evoked for explanatory purposes in circumstances determined by 
experience. 

DiSessa identifies a number of other p-prims and catalogs them into a cluster that 
corresponds closely to the taxonomy of CS force and motion concepts used to construct the FCI. 
His monograph should be consulted for many details and insights that need not be repeated here. 
Instead, I comment on general aspects of his analysis.  
 In accord with Lakoff and Johnson, diSessa holds that causal cognition is grounded in a 
loosely organized system of many simple schemas derived from sensory-motor experience. P-
prims provide the grounding for our intuitive sense of (causal) mechanism. They are the CS 
equivalent of physical laws, used to explain but not explainable. To naïve subjects, “that’s the 
way things are.” 

As to be expected from their presumed origin in experience, p-prims are cued directly by 
situations without reliance on language. DiSessa asserts that p-prims are inarticulate, in the sense 
that they are not strongly coupled to language. Here there is need for further research on subtle 
coupling with language that diSessa has not noticed. For example, Lakoff notes that the 
preposition on activates and profiles schemas for the concepts of contact and support, which 
surely should be counted among the p-prims. 

As disclosed in Ohm’s p-prim, the concept of (causal) agency entails a basic 

Causal syntax:    agent → (kind of action) → on patient → result. 
DiSessa notes that this provides an interpretative framework for F = ma, and he recommends 
exploiting it in teaching mechanics. However he does not recognize it as a basic aspectual 
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schema for verb structure, which has been studied at length in cognitive grammar [22]. Aspectual 
concepts are generally about event structure, where events are changes of state and causes (or 
causal agents) induce events. Causes cannot be separated from events. Here is more opportunity 
for research. 

Under physics instruction, diSessa says that p-prims are refined but not replaced, that 
they are gradually tuned to expertise in physics. Considering the role of metaphor and analogy in 
this process, it might be better to say that p-prims are realigned. There are many other issues to 
investigate in this domain. Broadly speaking, I believe that we now have sufficient theoretical 
resources to guide research on instructional designs that target student p-prims more directly to 
retune and integrate them into schemas for more expert-like concepts. I propose that we design 
idealized expert prototypes for force and motion concepts to serve as targets for instruction. This 
would involve a more targeted role for diagrams to incorporate figural schemas into the 
prototypes. 
 The call to design expert prototypes embroils us in many deep questions about physics 
and epistemology. For example, do forces really exist outside our mental models? We have seen 
that Modeling Theory tells us that the answer depends on our choice of theoretical primitives and 
measurement conventions. Indeed, if momentum is a primitive, then Newton’s Second Law is 
reduced to a definition of force as momentum flux and the Third Law expresses momentum 
conservation. The physical intuition engaged when mechanics is reformulated in terms of 
momentum and momentum flux has been investigated by diSessa among others, but few 
physicists have noted that fundamental epistemological issues are involved. Not the least of these 
issues is the transition from classical to quantum mechanics, where momentum is king and force 
is reduced to a figure of speech. 

A related epistemological question: Is causal knowledge domain-specific? Causal claims 
are supported by causal inference from models based on acquired domain-specific knowledge. 
But to what degree does inference in different domains engage common intuitive mechanisms? 
Perhaps the difference across domains is due more to structure of the models rather than the 
reasoning. Perhaps we should follow Lakoff’s lead to develop force and interaction as a radial 
category for a progression of interaction concepts ranging from particles to fields. 

I am often asked how the FCI might be emulated to assess student understanding in 
domains outside of mechanics, such as electrodynamics, thermodynamics, quantum mechanics 
and even mathematics. Indeed, many have tried to do it themselves, but the result has invariably 
been something like an ordinary subject matter test. The reason for failure is insufficient 
attention to cognitive facts and theory that went into FCI design, which I now hope are more 
fully elucidated by Modeling Theory. The primary mistake is to think that the FCI is basically 
about detecting misconceptions in mechanics. Rather, as we have seen, it is about comparing CS 
causal concepts to Newtonian concepts. The p-prims and image schemas underlying the CS 
concepts are not peculiar to mechanics, they are basic cognitive structures for reasoning in any 
domain. Therefore, the primary problem is to investigate how these structures are adapted to 
other domains. Then we can see whether reasoning in those domains requires other p-prims that 
have been overlooked. Finally, we can investigate whether and how new p-prims are created for 
advanced reasoning in science and mathematics. That brings us to the next section, where we 
discuss the development of conceptual tools to enhance scientific thinking. 
 
IX. Tools to think with 
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The evolution of science is driven by invention and use of tools of increasing sophistication and 
power! The tools are of two kinds: instruments for detecting patterns in the material world, and 
symbolic systems to represent those patterns for contemplation. As outlined in Fig. 11, we can 
distinguish three major stages in tool development. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the perceptual domain, pattern detection began with direct observation using human 
sensory apparatus. Then the perceptual range was extended by scientific instruments such as 
telescopes and microscopes. Finally, human sensory detectors are replaced by more sensitive 
detection instruments, and the data are processed by computers with no role for humans except to 
interpret the final results; even there the results may be fed to a robot to take action with no 
human participation at all.  

Tool development in the cognitive domain began with the natural languages in spoken 
and then written form. Considering their ad hoc evolution, the coherence, flexibility and subtlety 
of the natural languages is truly astounding. More deliberate and systematic development of 
symbolic tools came with the emergence of science and mathematics. The next stage of 
enhancing human cognitive powers with computer tools is just beginning. My purpose in this 
section is to discuss what Modeling Theory can tell us about the intuitive foundations of 
mathematics to serve as a guide for research on design of better instruction and better 
mathematical tools for modeling in science and engineering. 

While science is a search for structure, mathematics is the science of structure. Every 
science develops specialized modeling tools to represent the structure it investigates. Witness the 
rich system of diagrams that chemists have developed to characterize atomic and molecular 

Modeling Tool Development

Instruments 
for detecting patterns

Symbolic systems
for representing patterns

Perceptual Stage I Cognitive

• Sensory apparatus
(direct observation)

 • natural language
 • sketches & icons

Experimental Stage II Theoretical

• scientific instruments
       & apparatus
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 • diagrammatic systems

Computer Stage III Computer

• Universal Lab
       Interface

 • simulation
 • visualization

precision

Modeling skills
 

    Fig. 11 
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structure. Ultimately, though, these diagrams provide grist for mathematical models of greater 
explanatory power. What accounts for the ubiquitous applicability of mathematics to science? 

I have long wondered how mathematical thinking relates to theoretical physics. 
According to Modeling Theory, theoretical physics is about designing and analyzing conceptual 
models that represent structure in the material world. For the most part these models are 
mathematical models, so the cognitive activity is called mathematical modeling. But how does 
mathematical thinking differ from the mathematical modeling in physics? Can it be essentially 
the same when there are no physical referents for the mathematical structures? I am now 
convinced that the answer is yes! The light went on when I learned about cognitive semantics 
and realized that the referents for cognition in both mathematics and physics are mental 
models! Lakoff and Núñez [20] argue forcefully for the same conclusion, but I want to put my 
own twist on it. 
 I contend that the basic difference between mathematics and physics is how they relate 
their mental models to the external world. Physicists aim to match their mental models to 
structure in the material world. I call the ability to make such matches physical intuition. Note 
that mathematics is not necessarily involved in this. In contrast, mathematicians aim to match 
their mental models to structure in symbolic systems. I call the ability to make such matches 
mathematical intuition. To be sure, physicists also relate their mental models to mathematical 
structures, but for the most part they take the mathematics as given. When they do venture to 
modify or extend the mathematical structures they function as mathematicians. Indeed, that is not 
uncommon; a vast portion of mathematics was created by theoretical physicists. 
 According to Modeling Theory, mathematicians work with intuitive structures (grounded 
in sensory-motor experience) that every normal person has. They proceed to encode these 
structures in symbolic systems and elaborate them using the intuitive inferential structures of p-
prims and image schemas. I submit that mathematical thinking involves a feedback loop 
generating external symbolic structures that stimulate modeling in mental spaces to generate 
more symbolic structure. Though some mathematical thinking can be done with internal 
representations of the symbols, external representation is essential for communication and 
consensus building [30]. For this reason, I believe that the invention of written language was an 
essential prerequisite to the creation of mathematics. 

Let’s consider an example of intuitive grounding for mathematical structures. Lakoff and 
Núñez [20] give many others, including four grounding metaphors for arithmetic. Note that the 
intuitive causal syntax discussed in the previous section can be construed (by metaphorical 
projection at least) as 

Operator syntax:    agent → (kind of action) → on patient → result, 
where the action is on symbols (instead of material objects) to produce other symbols. Surely this 
provides an intuitive base for the mathematical concept of function (though it may not be the 
only one). Exploration of mental models reveals various kinds of structure that can be encoded 
and organized into symbolic systems such as Set theory, Geometry, Topology, Algebra and 
Group theory. Note that the number of distinct types of mathematical structure is limited, which 
presumably reflects constraints on their grounding in the sensory-motor system. Of course, to 
confirm this point of view thorough research is needed to detail the intuitive base for each type 
of mathematical structure. Lakoff and Núñez [20] have already made a good start. 

The upshot is that cognitive processes in theoretical physics and mathematics are 
fundamentally the same, centered on construction and analysis of conceptual models. Semantics 
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plays a far more significant role in mathematical thinking (and human reasoning in general) than 
commonly recognized –– it is the cognitive semantics of mental models, mostly residing in the 
cognitive unconscious, but often manifested in pattern recognition and construction skills [31]. 
Mathematical intuition (like physical intuition) is a repertoire of mental structures (schemas) for 
making and manipulating mental models! This goes a long way toward answering the question: 
What does it mean to understand a scientific concept? 

I am not alone in my opinion on the intimate relation between physics and mathematics. 
Here is a brief extract from a long diatribe On Teaching Mathematics by the distinguished 
Russian mathematician V. I. Arnold [32]: 

 “Mathematics is a part of physics. Physics is an experimental science, a part of natural 
science. Mathematics is the part of physics where experiments are cheap.  . . .  In the 
middle of the 20th century it was attempted to divide physics and mathematics. The 
consequences turned out to be catastrophic. Whole generations of mathematicians grew 
up without knowing half of their science and, of course in total ignorance of other 
sciences.” 

Arnold is deliberately provocative but not flippant. He raises a very important educational issue 
that deserves mention quite apart from the deep connection to cognitive science that most 
concerns us here.  

There is abundant evidence to support Arnold’s claim. For example, up until World War 
II physics was a required minor for mathematics majors in US universities. Since it was dropped, 
the mathematics curriculum has become increasingly irrelevant to physics majors, and physics 
departments provide most of the mathematics their students need. At the same time, 
mathematicians have contributed less and less to physics, with some exceptions like the Russian 
tradition that Arnold comes from, which has sustained a connection to physics. 

But the most serious consequence of the divorce of mathematics from physics is the fact 
that, in the U.S. at least, most high school math teachers have little insight into relations of math 
they teach to science in general and physics in particular. Here is a bit of data to support my 
contention: We administered the FCI to a cohort of some 20 experienced high school math 
teachers. The profile of scores was the same as the pitiful profile for traditional instruction in Fig. 
10, with the highest score at the Newtonian threshold of 60%. Half the teachers missed basic 
questions about relating data on motion to concepts of velocity and acceleration. This chasm 
between math and science, now fully ensconced in the teachers, may be the single most serious 
barrier to significant secondary science education reform.  

To document deficiencies in math education, many have called for a Math Concept 
Inventory (MCI) analogous to the FCI. I have resisted that call for lack of adequate theory and 
data on intuitive foundations for mathematical thinking. There is lots of educational research on 
conceptual learning in mathematics, but most of it suffers from outdated cognitive theory. 
Modeling Theory offers a new approach that can profit immediately from what has been learned 
about cognitive mechanisms in physics. We need to identify “m-prims” that are mathematical 
analogs of the p-prims discussed in the preceding section. I suspect that underlying intuitive 
mechanisms are the same for m-prims and p-prims, but their connections to experience must be 
different to account for the difference between mathematical and physical intuition noted above. 
I recommend coordinated research on m-prims and p-prims aiming for a comprehensive 
Modeling Theory of cognition in science and mathematics. 

I have barely set the stage for application of Modeling Theory for my favorite enterprise, 
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namely, the design of modeling tools for learning and doing science, engineering and 
mathematics [10]. I have previously described the influence of my Geometric Algebra research 
on development of Modeling Theory [13]. Now I believe that Modeling Theory has matured to 
the point where it can contribute, along with Geometric Algebra, to the design of more powerful 
modeling tools, especially tools embedded in computer software. But that is a task for tomorrow! 
 
X. Conclusion 
 
Central thesis: Cognition in science, mathematics, and everyday life 

   is basically about making and manipulating mental models. 
• The human cognitive capacity for creating, manipulating and  
       remembering mental models has evolved to facilitate coping  
       with the environment, so it is central to “common sense”  
            thinking and communication by humans. 
• Human culture has expanded and augmented this capacity by 
       creating semiotic systems: representational systems of signs  
 (symbols, diagrams, tokens, icons, etc.),  
  most notably spoken and written language. 
• Science and mathematics has further extended the use of  
        symbolic systems deliberately and self-consciously. 
        but the cognitive mechanisms involved are  
   essentially the same as for common sense. 

 
Scientific modeling is a “deliberate and self-conscious extension of the  
evolved cognitive capabilities for “mapping” the environment.” (Giere) 
 
Science is a refinement of common sense!  differing in respect to: 

Objectivity – based on explicit rules & conventions  
                       for observer-independent inferences 
Precision  – in measurement 
                   – in description and analysis 
Formalization  – for mathematical modeling and 
                analysis of complex systems 
Systematicity  – coherent, consistent & maximally 
               integrated bodies of knowledge 
Reliability – critically tested & reproducible results 
Skepticism – about unsubstantiated claims 
Knowledge and Wonder – so say Weisskopf & Sagan 
Social structure and norms – Ziman 

To the grand philosophical question: “What is man?” 
Aristotle answered:  
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“Man is a rational animal.” 
Modeling Theory offers a new answer: 
  “Man is a modeling animal!”                       Homo modelus! 
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