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New Tools for Computational Geometry
and rejuvenation of Screw Theory

David Hestenes
Arizona State University, USA

Abstract: Conformal Geometric Algebraic (CGA) provides ideal mathematical
tools for construction, analysis and integration of classical Euclidean, Inversive &
Projective Geometries, with practical applications to computer science,
engineering and physics. This paper is a comprehensive introduction to a CGA
tool kit. Synthetic statements in classical geometry translate directly to
coordinate-free algebraic forms. Invariant and covariant methods are coordinated
by conformal splits, which are readily related to the literature using methods of
matrix algebra, biquaternions and screw theory. Designs for a complete system of
powerful tools for the mechanics of linked rigid bodies are presented.

I. Introduction

Euclidean geometry supplies essential conceptual underpinnings for physics and engineering.
It was recognized and reported only recently that conformal geometric algebra (CGA) provides
an ideal algebraic arena for all aspects of Euclidean geometry, from theoretical formulation and
analysis to practical design and computation [1]. I am pleased to say that response to that
announcement has been rapid and enthusiastic, with extensive applications ranging from
computer science and robotics to crystallography reported in these proceedings and elsewhere.

My purpose here is to set forth the central ideas and results of this “conceptual revolution” as
a convenient summary for practitioners and an outline for beginners. For historical context and
perspective on the relevant scientific literature, I comment on where the ideas have come from
and on opportunities for further development. I take this opportunity to make minor changes and
corrections to my previous accounts [1, 2], as well as to clarify and emphasize important points
that have been generally overlooked. In particular, I recommend special attention to the different
advantages and roles of invariant and covariant approaches to Euclidean geometry and to the
prospects for developing and applying Screw Theory.

 The adaptation of CGA to serve the purposes of Euclidean geometry is a fundamental
problem in the design of mathematics. Its objective is a mathematical system that facilitates
geometric modeling and analysis, optimizes computational efficiency and incorporates all
aspects of rigid body mechanics. Mathematical invention is most effective when its purpose is
clear.

II. Universal Geometric Algebra

The geometric concept of vector as a directed number has a long historical development
culminating in the invention of geometric algebra [3]. To define it we begin with the standard
notion of a real vector space   R

r ,s = a,b,c,…{ }  with dimension r + s = n. On reflection one can

see that the concepts of vector addition and scalar multiplication introduced in this way are
insufficient to characterize relative directions among vectors. That deficiency is rectified by
introducing an associative geometric product defined by the simple rule:

a2 = ± | a |2 (1)
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where the real number | a | ≥ 0  is the magnitude of the vector a, and the sign is its signature. The

vector is said to be nul l  if a2 = | a |2= 0 . The vector space  R
r ,s  is presumed to have

nondegenerate signature {r, s} , where r/s are maximal subspaces of vectors with
positive/negative signature. Of course, the signature is not defined without the geometric
product, which specifies a multiplicative relation between vectors and scalars. Finally, from the
vector space  R

r ,s , the geometric product generates the real geometric algebra (GA)

 G
r ,s= G( Rr ,s )  with elements  A,G,M…{ }  called multivectors.
Though this completes the definition of GA as an algebraic system, it is only the beginning

for development of GA as a mathematical language. Development proceeds by creating a system
of definitions and theorems that facilitate algebraic encoding and analysis of geometric concepts.
A systematic research program to do precisely that was inaugurated in [4] and greatly extended
in [5]. I am pleased to say that many others have joined me in this enterprise, including [6, 7, 8]
to name only three. These references suffice to show that GA has a broader and deeper range of
applications than any other mathematical system, including matrix algebra.

Let me briefly review the basic definitions and theorems needed for most applications of GA:
For a pair of vectors, a symmetric inner product a ⋅b  and antisymmetric outer product a ∧ b  can
be defined implicitly by

ab = a ⋅b + a ∧ b                and               ba = b ⋅a + b ∧ a = a ⋅b − a ∧ b . (2)

It is easy to prove that a ⋅b  is scalar-valued, while the quantity a ∧ b , called a bivector or 2-
vector, is a new algebraic entity that can be interpreted geometrically as an oriented area.

The antisymmetric outer product can be generalized iteratively to define k-vectors by

a ∧ Ak ≡ 12 aAk + (−1)
k Aka( ) , (3)

which generates a (k+1)-vector from k-vector Ak . It follows that the outer product of k vectors is
the completely antisymmetric part of their geometric product:

 a1 ∧ a2 ∧…∧ ak = a1a2…ak k , (4)

where the angle bracket means k-vector part and k is its grade. This product vanishes if and only
if the vectors are linearly dependent. Consequently, the maximal grade for nonzero k-vectors is k
= n. It follows that every multivector A can be expanded into its k-vector parts and the entire
algebra can be decomposed into k-vector subspaces:

 
G r ,s= Gk

r ,s

k=0

n

∑ = A = A k
k=0

n

∑⎧
⎨
⎩

⎫
⎬
⎭

(5)

This is called a grading of the algebra. Note that the grading is generated from primitive
elements, the vectors or 1-vectors in this case, with the scalars regarded as elements with grade
0. As seen below, alternative gradings are appropriate for geometric subalgebras.

The inner product can also be generalized, leading to the very useful formula

 
a ⋅ (a1 ∧ a2 ∧…∧ ak ) = (−1) j+1a ⋅aj (a1 ∧ ...∧

aj ∧…∧ ak )
j=1

k

∑ , (6)

where  
aj  indicates a missing factor in the outer product. This formula shows that the inner

product is a grade-lowering operator, while (3) shows that the outer product is grade-raising.
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Reversing the order of multiplication is called reversion, as expressed by

 a1a2…ak( )~ ≡ ak…a2a1 ,      whence      a1 ∧ a2 ∧…∧ ak( )~ = ak ∧…∧ a2 ∧ a1 , (7)

and the reverse of an arbitrary multivector is defined by

 
A = A

k
k=0

n

∑ ≡ (−1)k (k−1)/2 A k
k=0

n

∑ (8)

Similarly, (space) inversion (regarded as the result of reversing the sign of all vectors in
geometric products) is defined by

A# ≡ (−1)k A k
k=0

n

∑ = A + − A − , (9)

where A ±  are the parts of A = A + + A −  with even/odd parity respectively.

The unit n-vector (or pseudoscalar) is so important that it is given a special symbol and
defined (up to a sign) by the properties

I = I n ,                II = (−1)
s ,               a ∧ I = 0  for every vector a. (10)

Every multivector A has a dual defined by A* ≡ AI-1 . This leads to the basic theorem relating
inner and outer products by duality:

a ⋅ A* = a ⋅ (AI-1) = (a ∧ A)I −1=(a ∧ A)* . (11)

The algebraic system described to this point may be referred to as universal GA, because of its
broad applicability. That distinguishes it from specialized versions of GA, such as the spacetime
algebra [4, 6] tailored to the geometry of spacetime.

Names and nomenclature are of great importance in science and mathematics, as they can
suppress or reveal deep conceptual distinctions. In this regard, it is important to mark crucial
conceptual differences between Geometric Algebra (GA) and Clifford Algebra (CA) that are
often overlooked in the literature. Though they have a common root in the work of W. K.
Clifford, CA has been cultivated by mathematicians up to present times as one among many
formal algebraic systems with little attention to its geometric meaning. In contrast, the systematic
development of GA as a universal geometric language is a more recent development that is still
underway. Since Clifford himself proposed the name Geometric Algebra, I believe he would be
embarrassed to have it named after him; for he was well aware of its universal geometric import,
and he attributed to Hermann Grassmann [9] the chief role in its creation. Indeed, Clifford’s
development of the algebra hardly progressed beyond the rudiments, though it is clear that he
had deep insights into the geometric and algebraic issues [10]. No doubt the history of Geometric
Algebra would have been quite different if not for Clifford’s tragic early death.

Here are some important differences in viewpoint between CA and GA. CA is typically
defined with complex numbers instead of the reals as scalars, whereas GA contends that this
obscures geometric meaning without providing greater generality. CA is often defined as an ideal
in tensor algebra, whereas GA defines tensors as multilinear functions of vector variables [5].
CA is often characterized as the “algebra of a quadratic form,” with a ⋅b  interpreted as a metric
tensor. In contrast, GA contends that the inner product should be regarded as a contraction (or
grade-lowering operation) as originally conceived by Grassmann. Any metric tensor can then be
defined as a scalar-valued bilinear function g(a,b) = a ⋅ g(b) , where g  is a linear operator, with
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a ⋅b  as the most important special case. Many further differences between GA and CA are
obvious in applications.

III. Group Theory with Geometric Algebra

A multivector G that can be expressed as a geometric product  G = nk…n2n1of non-null

vectors is called a versor. Obviously it has a multiplicative inverse  G
−1 = n1

−1n2
−1…nk

−1  and even
or odd parity given byG# = (−1)kG .

The multiplicative group of all versors in  Gr ,s  is the Pin group:

Pin(r,  s) = G :GG−1 = 1{ } , (12)
within which the subgroup of all versors with even parity is the Spin group:

Spin(r,  s) = G: G# = G{ } . (13)

The orthogonal group on  R
r ,s  is the group of all isometries, that is, linear transformations G

that preserve the magnitude of each vector a. In GA it has the elegant representation:

O(r,  s) = G :G(a) = G#aG−1{ } (14)

The versors in Pin(r,  s)  are thus generators of the orthogonal group. The versors of Spin(r,  s)
generate the special orthogonal group SO(r,  s) , a subgroup of O(r,  s)  sometimes called the
rotation group.

This GA approach to isometries has considerable advantages over matrix representations:
First, it is completely coordinate-free. Second, it reduces group composition of isometries
G2G1 = G3  to simple multiplication of versors G2G1 = G3 . At the same time, it establishes direct
connection between the orthogonal group and its covering by the pin group. Third, it facilitates
reduction of isometries to their irreducible elements, namely, reflection in a hyperplane
determined by its vector normal:

Gi (a) = ni
#ani

−1 = −niani
−1 (15)

It is a simple matter then to prove the important

Cartan-Dieudonné Theorem: Every isometry of  R
r ,s  can be reduced to at most n = r + s

reflections in hyperplanes.

As usual, credit for the theorem could probably be more fairly attributed to others, most notably
to Lipschitz (1880), who pioneered the approach to isometries presented here. The best practice
may be to give it a descriptive name such as “Isometry Reduction Theorem.”

Evidently the GA approach can be profitably extended to the whole of group representation
theory [5]. The classical groups have been treated in [11]. We will be most interested below in
the conformal group C(r, s), which has a representation in GA specified by the isomorphism

C(r, s) ≅ O(r+1, s+1) (16)

This representation is so useful that we shall refer to  Gr+1,s+1  as Conformal Geometric Algebra
(CGA).

This completes our summary of universal GA and its relation to group theory. In the
following we concentrate on practical applications to Euclidean geometry, knowing full well that
our results are readily generalized to spaces of arbitrary dimension and signature.
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IV. Euclidean Geometry with Conformal GA

The conformal model of Euclidean 3-space  E3  is embedded in the CGA  G
4,1 = G(R4,1)  as

follows: First, we identify Euclidean points with vectors in the null cone

 N
4,1 ≡ x ∈R4,1 : x2 = 0{ } . (17)

Next, we reduce the remaining degrees of freedom from four to three by choosing a point at
infinity e ≡ x∞  and normalizing all points to the hyperplane x : e ⋅ x = −1, e2 = 0{ } . Thus, we
have

 E
3≅ Ne

4,1 ≡ x ∈R4,1 : x2 = 0, x ⋅ e = −1{ } . (18)
Finally, we confirm this as a model of Euclidean space by verifying that

| x2 − x1 |
2= (x2 − x1)

2 = −2x2 ⋅ x1 (19)
correctly determines the Euclidean distance | x2 − x1 |  between any two point. The argument is
completed below.

The amazing fact about this embedding of  E3  in CGA is that it automatically imbues all
elements of  G4,1with rich geometric meaning, and thereby facilitates formulation, analysis, and
computation in all aspects of Euclidean geometry. It has two major advantages:

First, it unites the conceptual advantages of classical synthetic geometry with the analytic
power of algebra in providing direct algebraic representations of basic geometric objects and
their properties.

Second, it enlists the apparatus of the conformal versor groups for multiplicative, coordinate-
free representation of Euclidean symmetries and transformations. Specifically, the invariance
group of the Euclidean metric (19) is the Euclidean group E(3) = G{ } , defined as a subgroup of

the conformal group C(3, 0) ≅ O(4, 1) by the constraint
G(e) = G#eG−1 = e (20)

This group includes reflections. Its restriction to rigid displacements by requiring G# = G  is the
Special Euclidean group SE(3).

The rest of this paper is an elaboration of these two points with specific recommendations for
notation, representation and method. The subject is young and fluid, so the setting of standards
for practice is still open. Of course, I cannot cover everything. For further details and explanation
I refer the serious student to [7], which provides the most thorough exposition of CGA to date,
with due emphasis on geometric visualization. Comparison with the present account shows
where I think that exposition can be improved.

In CGA the basic Geometric Objects {O = C, L, S, P} of 3D Euclidean geometry can be
defined as follows:

A Circle C is determined by three points:
C = x1 ∧ x2 ∧ x3 . (21)

A Line L is a circle through the point at infinity:
L = x1 ∧ x2 ∧ e . (22)

A Sphere S is determined by four points:
S = x1 ∧ x2 ∧ x3 ∧ x4 (23)

A Plane P is a sphere through the point at infinity:
P = x1 ∧ x2 ∧ x3 ∧ e (24)
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A Point x lies on object O if and only if
x ∧O = 0 . (25)

Note the distinction between a geometric object O (defined algebraically) and the set of points
 O  it determines, as expressed by

 Line ≡ x | x ∧ L = 0{ }  Plane ≡ x | x ∧ P = 0{ } (26)

In this respect we follow Euclid in introducing points and lines as distinct objects with properties
specified by a system of axioms. The idea of defining a line as a set of points emerged in the 19th

century with “containment” replacing the geometric concept of “incidence” as the basic relation
between points and lines. From our perspective, the limitations of that idea are clear, so we are
prepared to use the concepts of set theory but not to confuse them with concepts of geometry.

Of course our concept of geometric object goes beyond Euclid’s, most notably in assigning
to each an orientation (algebraic sign) and a weight or magnitude (e.g. length, area, volume).
Thus, interchanging the product of points in (21-24) reverses the sign, hence orientation, of the
objects.

For many purposes the dual representation for a geometric object O* = OI -1 is most
convenient. From the duality of inner an outer products (11) it follows that the intersection with a
point (25) is then expressed by

x ⋅O* = 0 . (27)
For a plane, the dual P* = PI-1  = n is a vector normal to the plane (note the use of lower case
letters for vectors). The equation x ⋅n = 0  has the familiar form of an equation for a plane
through the origin of a vector space, but in this case it applies to any plane in  E3 . For the normal
n specifies a location as well as an orientation for the plane. Moreover, the separation of  E3  into
disjoint subsets can be neatly expressed by the inequality x ⋅n > 0  for points in front of the plane,
and x ⋅n < 0  for points behind the plane.

The intersection of two planes P1 = n1I  and P2 = n2I  is a line specified by

P1
* ⋅P2 = n1 ⋅P2 = n1 ⋅ (n2I) = (n1 ∧ n2 )I . (28)

Obviously, this vanishes if the planes are parallel. Moreover, as will be evident later, with the
normalization n1

2 = n2
2 = 1 , the magnitude | n1 ∧ n2 |  is the sine of the dihedral angle between the

intersecting planes.
Similar expressions for the mutual intersections of lines, planes, circles and spheres are

discussed in [7].

V. Invariant Euclidean Geometry

There are two different ways to formulate the equations of spacetime physics: (1) covariant
formulations expressed with respect to one inertial frame and related to other frames by Lorentz
transformations. (2) invariant formulations independent of any reference frame choice. Experts
prefer to work with invariants, because they are invariably simpler than covariants. However,
beginners are usually introduced to a covariant approach, mainly because of educational
tradition.

In precise analogy, there are covariant formulations of Euclidean geometry that depend on
designating an arbitrary point as origin, and invariant formulations that do not. The conformal
model supports both approaches, so we should examine their respective advantages and how they
are related.
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The characterization of geometric objects in the preceding section is already an invariant
formulation. Let us consider it more closely for extension to an invariant treatment of any topic
in Euclidean geometry. We have seen that CGA supplies sufficient algebraic structure to define
basic geometric objects. Now note that the structure of CGA suggests a somewhat different
approach to geometric primitives than the classical one.

The primitive algebraic objects are vectors. In CGA there are four types of vector with
distinct geometric meanings:

 Points: x | x2 = 0, x ⋅ e = −1{ }
 Planes: n | n2 > 0, n ⋅ e = 0{ }
 Spheres: s | s2 = ±ρ2 , s ⋅ e = −1{ } (29)

This suggests that the dual form for a plane n = P* should be regarded as more fundamental than
the 4-vector form in (24). It is also algebraically much more convenient, especially for
generating translations, as shown below.

According to (29) there are two types of sphere with radius ρ, corresponding to the two signs
in the square of the sphere vector s. The length of the sphere vector is scaled so its square gives
the radius directly. The two sphere types are designated as real and imaginary for positive and
negative square respectively. A real sphere s = S* is the dual of the 4-vector sphere S in (23). It
is of interest to note that the center c of a real sphere can be obtained by a suitably scaled
reflection from the point at infinity:

c = − 12 ses = − 12 (2e ⋅ s − es)s = s +
1
2 ρ

2e (30)

An easy check verifies that c does indeed have the properties of a point. Moreover, this gives us
a natural measure for distance from a point to a sphere:

2s ⋅ x = 2(c − 12 ρ
2e) ⋅ x = ρ2 − | x − c |2 (31)

Thus, the point x is inside, on or outside the sphere when s ⋅ x  is positive, zero or negative
respectively. The order is reversed by changing the sign (orientation) of s.

Note that the reflection (30) has been defined with respect to the radius of the sphere instead
of unity. This kind of reflection is called inversion in a sphere. Applied to an arbitrary point, it
gives a new point:

′x = − 12 sxs , (32)

and a little algebra reveals the distance inversion

( ′x − c)2 = ρ4

(x − c)2
, (33)

as illustrated in Fig. 1.
Though sphere inversion does not preserve Euclidean distance, it is a powerful means for
geometric design and analysis.

The geometric significance of imaginary spheres is more subtle, and the reader is referred to
[7] for a discussion. The main point of interest here is that all four vector types in (29) are needed
for computational Euclidean geometry. Subject to scaling, these constitute all the vectors in the

′x
ρ

x

s

c • ••

                                      Fig. 1
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CGA  G
4,1 = G(R4,1) . We can conclude then that CGA supplies precisely the algebraic structure

needed for Euclidean geometry without anything superfluous.

Geometry can be regarded as a system of relations among points. Accordingly, the most
basic is the relation between two points described by the vector n21 = x2 − x1 . This vector is so
important that it deserves a name. I like the venerable old term chord, especially when it is
relating points in a geometric figure or physical object. Of course, it serves as a displacement
vector in other contexts. However, it has another geometric
property unique to CGA; it is the perpendicular bisector of the
interval between the two points. The fact that it is the normal for a
plane is confirmed immediately by n21 ⋅ e = 0 . The fact that is the
bisecting plane is confirmed from the equation n21 ⋅ x = 0 , which,
as illustrated in Fig. 2, implies (using (19)) that

| x − x1 |
2= −2x ⋅ x1 =| x − x2 |

2 .

The chords of a triangle are especially significant, for they determine the basic properties of
the Euclidean metric:

| xi − x j |
2= nij

2 ≥ 0 .
The chords are related by the triangle equation

n21 + n32 + n13 = 0 .
This gives us immediately the familiar law of cosines:

n21
2 + n32

2 + 2n32 ⋅n21 = n13
2 ,

which determines the basic triangle inequalities for
Euclidean distances.

Versor products among the chords generate all the reflection and rotation symmetries of a
triangle and, consequently, values for all the vertex angles. For example, the versor n32n21  is
“complementary” to a rotation “about the vertex x2 ,” and vanishing of its scalar part reduces the
law of cosines to the Pythagorean theorem. Note that the chord nij  generates a reflection that
takes point xi  to x j  or vise versa.  Hence, the versor product of successive chords generates a
walk of reflections along any sequence of points, which may return to the initial point if the path
is closed, as in a walk around a triangle.

There is much more to be derived from the invariant approach to Euclidean geometry. For
example, according to (21) and (24) the outer product of three vertices in a triangle determines
its circumcircle and the plane in which it lies. Of course, all this applies to 2D as well as 3D
geometry. It would interesting to work out what insights and simplifications it brings to the great
theorems of classical geometry, such as the nine circle theorem. Indeed, the results may even
have practical value in applications to mechanical engineering, as we see in later sections.

Finally, to complete our discussion of two point geometry we note that the sum

s21 = x2 + x1 = c21 + 12 ρ21
2e (34)

is a sphere with center c21  and poles at the two points. However, in contrast to the real sphere
(30), it is an imaginary sphere. Its role in Euclidean geometry remains to be worked out.

n21

x1 x2
x •

••

                         Fig.2.

• •

•

n21 x2x1

n32

x3

n13

                  Fig.3.
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VI. Projective Geometry

Projective geometry is useful in many applications – in computer vision, for example -- but
its methodology stands apart from the rest of mathematics. To make the conceptual assets of
projective geometry readily available, we need to incorporate them into the algebraic design of
CGA. As Dieudonné has famously declared, projective geometry is nothing but linear algebra.
Accordingly, let us consider a generic, non-singular linear transformation that leaves the point at
infinity invariant (up to a scale factor σ  at least):

 f: x  ′x = f (x) with f (e) = σe . (35)

The trouble with this is that it need not preserve the null property of points, so we have

 f: x
2 = 0  f (x)[ ]2 = f (x) ⋅ f (x) = x ⋅ ff (x) ≠ 0

(Note: the underbar notation f  denotes a linear operator while the overbar f  denotes its adjoint.)
To solve this problem, Anthony Lasenby [12] has proposed that we extend the notion of points to
include planes regarded as boundary points at ∞. Thus, we extend our model of Euclidean space
to include two kinds of points:

Interior points:        x | x2 = 0, x ⋅ e = −1{ }
Boundary points:    n | n2 = 1, n ⋅ e = 0{ } ,

where the boundary points, like the interior points, are normalized to make them unique. The set
of boundary points can thus be regarded as a  P lane (of directions) at ∞. Indeed, each boundary
point can be regarded as the intersection of parallel lines at ∞, as parallel lines have a common
direction. This is an old idea dating back to Kepler.

Now, projective geometry suppresses metrical notions of scale while maintaining the
geometric concept of incidence, as expressed by equation (28). As that equation requires use of
the pseudoscalar and duality, we must extend our notion of projective transformations to
accommodate them. Happily, GA provides a natural way to do precisely that.

A great advantage of GA is that it enables natural extension of a linear transformation on
vectors to the entire algebra. This extension is called an outermorphism [13, 5, 6, 7] because it
preserves the outer product (hence grade), as expressed by

f( x ∧ M ) = f (x)∧ f (M ) . (36)

It follows that the pseudoscalar is an eigenblade of the outermorphism, with the determinant as
its eigenvalue:

f( I ) = (det f)I . (37)

This prepares us for the fundamental theorem [13]:

(det f) f(A*⋅ B) = f(A)* ⋅ f(B) , (38)

which can be made to look more elegant by absorbing (det f)  in A∗  defined as the dual with
respect to the transformed pseudoscalar (37). This theorem could fairly be called the Incidence
Theorem, because it expresses the fact that outermorphisms preserve the incidence property (28).
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This fundamental theorem of linear algebra has been almost totally overlooked in the literature,
presumably because it is not so naturally expressed in standard formalisms.

These developments invite us to employ the pseudoscalar to define “complex objects” such
as

N = x +In , (39)

where x is an interior point and n is a boundary point. As explained in a later section, this object
can interpreted as a point in a plane if n ⋅ x = 0  or, equivalently, N 2 = −1 . All this suggests that
we should define projective transformations by extending outermorphisms to include duality
transformations.

I believe that we now have all the necessary ingredients to incorporate projective geometry
smoothly into CGA. There remains the large task of reformulating the classical results of
projective geometry. Since modern works have already formulated many of these results in terms
of linear algebra [14], the task should be fairly straightforward. I recommend it as a good topic
for a doctoral thesis.

VII. Covariant Euclidean Geometry with Conformal Splits

The most widely used model of Euclidean geometry by far is the vector space model based
on the isomorphism of Euclidean space to a real vector space with Euclidean inner product:

 E
3 ≅ R3 = x{ } . (40)

The most effective means of exploiting this model is through its geometric algebra:

 G
3 = G(R3) = α + a + ib + iβ{ } , (41)

where i is the unit right-handed pseudoscalar, and the geometric product of vectors articulates
perfectly with the standard dot and cross products:

ab = a ⋅b + a ∧ b = a ⋅b + ia × b . (42)

Efficient methods for applying  G3  to any aspect of mechanics are well developed with many
innovative features [15]. In particular, details of the quaternion theory of rotations are thoroughly
worked out and smoothly articulated with standard vector methods and matrix representations.

These results even articulate smoothly with the arcane literature on applications of complex
quaternions to geometry and mechanics. For it is evident in (41) that complex quaternions are
isomorphic to multivectors in  G3 , though practitioners have not realized that their unit
imaginary can be interpreted geometrically as a pseudoscalar

Despite all these advantages, the algebra  G3  suffers from the drawback of all vector space
models, namely, that the vector space (40) singles out the origin as a preferred point. In other
words, it introduces an asymmetry that is not inherent in the concept of Euclidean space.
Happily, that  can be remedied by embedding the vector space model in the conformal model, or
better, by factoring it out of the conformal model. We consider two ways to do that.

The first way is a conformal split of CGA into a commuting product of subalgebras:

 G4,1 = G3 ⊗G1,1 (43)
The split is defined geometrically by choosing one point e0  as origin and noting that every other
point x lies on the bundle of lines through that point. This defines a mapping of points into
trivectors:
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x ≡ x ∧ e0 ∧ e , (44)

which we identify with the vectors in (40). Thus, with a regrading of trivectors as vectors, we
generate  G3  as a subalgebra of  G4,1 .

The other subalgebra  G
1,1 = G(R1,1)  in (43) is generated from the null vectors {e0 , e} . Its

pseudoscalar is a bivector of sufficient importance to merit a special symbol:

E = e0 ∧ e , with E2 = (e ⋅ e0 )
2 = 1 . (45)

We examine this algebra more fully later on. For now, it suffices to note that its content, though
not its structure, depends on the arbitrary choice of the origin point e0 . It is covariant in the
sense that it changes with a change of origin. I have dubbed it conformal split, because it is
deeply analogous to the spacetime split [6, 4], which is so useful in spacetime physics. The
spacetime split is generated by selecting a timelike vector rather than a null vector as here.
Otherwise, the structure and utility of the splits are quite comparable.

The nature of the conformal split may be clarified by examining a basis for  R4,1 :
{e,e0 ,e1,e2 ,e3}     with    ej ⋅ ek = δ jk   for j, k = 1, 2, 3     and     e ⋅ ek = 0 = e0 ⋅ ek . (46)

This generates a basis for  R3 :

σk = ek ∧ e0 ∧ e = ek (e0 ∧ e) = ekE = Eek{ } (47)

and a pseudoscalar
i = σ1σ 2σ 3 = (e1E)(e2E)(e3E) = e1e2e3E = I (48)

Thus, the pseudoscalar for  G3  is identical to the pseudoscalar for  G4,1 . It is an invariant of the
conformal split!

An alternative to the conformal split is the additive split:

 G
4,1 = G(R+

3 ⊕R1,1) ≡ G+
3 ⊕G1,1 , (49)

defined by choosing {e1,e2 ,e3}  from (46) as a basis for  R+
3 . Unlike the basis (47), the basis in

this case is not algebraically associated with lines through a point, and the pseudoscalar
I3 ≡ e1e2e3 = IE  is not an invariant. Furthermore, the σ k  commute with e while the ek  do not.
Consequently, the additive split is not as convenient as the conformal split. Even so, it has its
place, most notably in modeling a rigid body, as we shall see.

To demonstrate the felicity of the conformal split for relating invariant forms for geometric
objects to standard vector space forms, results for the most basic geometric objects (point, line,
plane) are given here.

The mapping (44) of point x to vector x = x ∧ E  can be inverted. The
slickest way to do that is to use the geometric product thus:

xE = x ∧ E + x ⋅E      with    x ⋅E = x ⋅ (e0 ∧ e) = (x ⋅ e0 )e + e0 (50)

Multiplying the first equation by its reverse, we get

0 = (x ∧ E)2 − (x ⋅E)2 ;     whence     x2 = (x ⋅E)2 = −2x ⋅ e0 . (51)

Inserting this back into (50), we solve to get

0

x
x

e0•

•

              Fig. 4
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x = (x − 12 x
2e + e0 )E = E(x + 12 x

2e − e0 ) = xE + 12 x
2e + e0 . (52)

This can be regarded as the conformal split of point x with respect to point e0. Illustrations of the
two representations for points are superimposed in Fig. 4, which may be misleading because the
points are related by projection.

The conformal split of a line L through points x and a gives
L = x ∧ a ∧ e = x ∧ ae + (a − x) = (de +1)n (53)

Note that this represents the line in terms of its Plücker coordinates,
which consists of a vector, bivector pair for the line tangent and
moment with respect to the origin (Fig. 5):

tangent:   n = a − x (54)
moment:  x ∧ a = x ∧ (a − x) = dn (55)

The directed distance from origin to line is given by the directance:

d = (x ∧ a)n−1 = (x ∧ n)n−1 = x − (x ⋅n−1)n . (56)

The conformal split of a plane P through points x, a, b gives
P = x ∧ a ∧ b ∧ e = x ∧ a ∧ be + (a − x)∧ (b − x)E . (57)

Its Plücker coordinates consists of the bivector–trivector pair (Fig. 6):
tangent:     (a − x)∧ (b − x) = x ∧ a + a ∧ b + b ∧ x = in (58)

moment:    x ∧ a ∧ b = x ∧ [(a − x)∧ (b − x)]= x ∧ (in) = i(x ⋅n) (59)

The dual form for the plane is:
P = i(x ⋅ne + nE) = in (60)

More explicitly, split of the plane normal n (Fig. 2) gives us

n = x2 − x1 = (x2 − x1)E + 12 (x2
2 − x12 )e

= (x2 − x1)E + 12 (x2 + x1) ⋅ (x2 − x1)e = nE + c ⋅ne
(61)

The invariant forms for geometric objects are obviously much simpler than the split forms.
Therefore it is preferable to work with invariant forms directly. However, the split forms are
essential for relating results to the literature, so we will be using them for that purpose below.

VIII. Rigid Displacements

From equation (20) it follows that every rigid displacement D  is a linear transformation of
the form:

 D: x  ′x = D(x) = Dx D , (62)

where its generator D is a versor of even parity that commutes with the point at infinity and is
normalized to unity; that is,

                        Fig. 5

                                Fig. 6
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D# = D , De = eD ,  DD−1 = D D = 1 . (63)
With respect to any chosen point e0 , the displacement can decomposed into a rotation R
followed by a translation T  or vice versa. This defines a conformal split of the displacement as
follows:

D = T R = ′R T , (64)

where the rotations satisfy

 R(e0 ) = Re0 R = e0 ,  ′R ( ′e0 ) = ′R ′e0  ′R = ′e0 , (65)

and the translation

 T (e0 ) = Te0 T = ′e0 = D(e0 ) , (66)

is determined solely by the endpoints e0  and ′e0 . For given D  and any choice of e0 , the
translation can be computed and the rotation is determined by  R = TD .

As all displacements can be generated from reflections in planes, let us consider the various
possibilities along with their conformal splits.

Reflection in a plane with unit normal n and e ⋅n = 0 is specified by

′x = n(x) = −nxn = x − 2x ⋅nn  (67)

If the plane passes through a point c,
we have c ⋅n = 0  and the conformal split

n = nE + c ⋅ne      with     x ⋅n = n ⋅ (x − c) . (68)

Whence,
′x = x − 2(x − c) ⋅nn , (69)

as shown in Fig. 7.

Rotation by planes n and m intersecting through a point c (Fig. 8) is generated by

Rc = mn = (mE +m ⋅ ce)(nE + n ⋅ ce)
= mn + e(m ∧ n) ⋅ c = R + e(R × c) = Tc−1RTc ,

(70)

where Tc  generates the translation from origin e0  to c, R = mn ,
and we have used the commutator product, defined by

A × B ≡ 12 (AB − BA) . (71)

Note that Rc  in (70) can be identified with ′R  in (65) if c = ′e0  and

Tc
−1 = T  in (66).

Translation through parallel planes n and m is
generated by

Ta = mn = (nE + 0)(nE + δe)= 1+ 12 ae , (72)

•

x•

•

n

′xc
0

• n

            Fig. 7

m

c• nm

n

          Fig. 8

a

n

n

δm

n

          Fig. 9
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where a = 2nδ , and,  without loss of generality, one plane is presumed to pass through the
origin (Fig. 9).

Now we can use (72) and (61) to evaluate T = Ta  in (66), with the result

a = ′e0 − e0 = a + 12 a
2e . (73)

IX. Framing a Rigid Body

The position and attitude of a rigid body in space is uniquely
determined by specifying the positions of four points, say
{x, x1 x2 x3} , embedded in the body. Identifying position with
the base point x, the attitude can be represented by the body
frame {ek = xk − x} , as illustrated in Fig. 10. And it is most
convenient to othonormalize the body frame, so ej ⋅ ek = δ jk .

The body frame represents attitude by a set of three vectors.
A promising alternative representation in terms of a single geometric object has been proposed
by Selig [16] following ideas of Engels. He defines a Flag geometrically as a point on a line in a
plane. CGA gives it the elegant algebraic form:

F = x + L + P = x + IQ , (74)

where line L and plane P are defined by

L = x ∧ x1 ∧ e = x ∧ (x1 − x)∧ e = x ∧ e1 ∧ e = In2n3,
P = x ∧ x1 ∧ x2 ∧ e = x ∧ e1 ∧ e2 ∧ e = e2 ∧ L = In3,

and their combined dual forms are given by

Q = n3 + n2n3 = (1+ n2 )n3 , (75)

where nj ⋅nk = δ jk . As the nk  are the normals for
intersecting planes, they are represented in Fig. 11
by arrows extending symmetrically to each side
of the base point. Of course, the fact that the base point lies on the intersection of line and plane
is expressed by

x ∧ (L + P) = x ∧ (IQ) = 0 ,     or dually by      x ⋅Q = 0 . (76)

Lasenby [12] arrived at Q in a different way, and, noting that Q2 = 0 , he identified it with the
mysterious absolute conic of projective geometry.

As a related connection to projective geometry, note that the “complex vector” N = x +In
introduced in (39) is a flag without the line component. There are many other possibilities to
explore, such as introducing vectors representing spheres instead of planes.

It seems simplest to work with dual forms for line and plane. This suggests that we consider a
dual flag defined by

F* = x +Q = x + n3 + n2n3 ,       with        x ⋅F∗ = 0 . (77)

e1
e2

e3 = x3 − x

x•

                            Fig. 10

• x3

x2x ••
•
•

n3

n2

•x1
n1

                                      Fig. 11
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This looks unsymmetrical, as the plane n1  is not explicitly represented, though it is determined
indirectly by the intersection of the base point with the other planes. Here is a more symmetrical
representation for the rigid body:

′Q ≡ n3 + n2n3 + n1n2n3 ,             with        x ⋅ ′Q = 0 . (78)

Note that this representation is a graded sum of nested subspaces with pseudoscalar I3 = n1n2n3
intrinsic to the body –– a practical instance of the additive split (49).

X. Rigid Body Kinematics

Motion of a rigid body is a one
parameter family of displacements, which
we describe by a time dependent versor
function D = D(t) . As illustrated in Fig.
12, this determines the evolution of body
points from some reference positions ek  to
instantaneous positions

 xk (t) = DekD
−1 = Dek D (79)

From the versor character of D it can be
proved that its derivative must satisfy

 
D = 12VD   and  

 
D−1 = − 12 D

−1V , (80)

where the velocity V = V (t)  is a bivector, as expressed algebraically by  
V = −V = V 2 .

Using (80) to differentiate (79), we get equations of motion for the body points:

 xk = V ⋅ xk . (81)

However, there is no need to integrate this system of three equations, as the body motion is
completely determined by integrating the displacement equation (80). Indeed, the equation of
motion for D is independent of any designation of specific body points, although selection of a
base point is necessary to separate rotational and translational components of the motion.

To decompose the (generalized) velocity V into rotational and translational parts, we
introduce a conformal split defined by:

D = RT , De0D
−1 = Te0T

−1 = e0 + n , T = 1+ 12 ne . (82)

Derivatives of rotation and translation versors have the form

 
R = − 12 iωR  

T = 12 ne =
1
2 xe =

1
2 xeT = 12 xeT , (83)

where ω  is the rotational velocity of the body and  x = x ∧ E . Hence

 
D = RT + R T = 12 (−iω + RexR−1)RT = 12VD ,

so the velocity has the split form

V = −iω + ev , with  v = R xR
−1 . (84)

e1
e2

e3

e0• •

•

•

Reference
    Pose

x1

x2
x3

x •
•

•

• n

              Fig. 12
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One can write  v = x  by adopting the instantaneous initial condition R(t) = 1  (as done implicitly
in most references on kinematics), although that complicates further differentiation of v if
needed. (See the Section on rotating systems in [15] for further discussion of this point.) Also,
the negative sign for rotational velocity in (83) and (84) is dictated by the convention that the
rotation is right handed around the oriented ω  axis [15].

Now consider the effect of shifting the initial base point from the origin e0 to

 ′e0 = T0e0 T0 = e0 + r0 , where T0 = 1+ 12 r0e . (85)

This determines a shift in base point trajectory to

 ′x = D ′e0 D = ′D e0  ′D , . (86)

where

′D = DT0 = TrD , with
 
Tr = RT0 R = 1+ 12 re . (87)

Differentiating, we have

 
 ′D = TrD + Tr D = 12 erTrD + 12VDT0 =

1
2 (er +V ) ′D = 12 ′V ′D .

Thus, we have proved that a shift in base point induces a shift in velocity:

 V = −iω + ev  ′V = V + e r = −iω + e(v +ω × r) (88)

This result is the kinematic version of Chasles’ Theorem [15]. Note that the rotational part is
independent of the base point shift.

The base point need not be located within the rigid body, so at a given time the vector r can
be specified freely. In particular, one can specify

ω ⋅ r = 0 since r = ω−1 × v= i(v ∧ω−1) (89)

to put ′V  in the form of a screw:

′V = −iω + ehω = ω (eh − i) with pitch h = v ⋅ω−1 = v ⋅ω /ω 2 . (90)

For positive pitch, this velocity generates an infinitesimal translation along the axis of a right-
handed rotation.

From (79) and (82) it follows that chords nk = ek − e0 = T (ek − e0 )T
−1  are invariant under

translations. Hence, the evolution of chords and products of chords is simply a rotation, as
described by

 ′nk = Dnk D = Rnk R and  ′nj ′nk = Dnj nk D = Rnj nk R . (91)

Likewise, evolution of the dual flag Q* in (79) is described by:

 Q
* → Q*(t) = DQ* D = RQ* R . (92)

Note that the form of these rotations is independent of base point, though the value of R is not, as
described explicitly by equation (70).
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XI. Rigid Body Dynamics

In [15] GA is employed for a completely coordinate-free derivation and analysis of the
equations for a rigid body. The results are summarized here for embedding in a more compact
and deeper formulation with CGA. Then [15] can be consulted for help with detailed
applications.

For a rigid body with total mass m and inertial tensor I , the momentum p and rotational (or
angular) momentum l are defined by

p = mv and l = I (ω) , (93)

where v is the velocity of a freely chosen base point (not necessarily the center of mass), and the
inertia tensor depends on the choice of base point, as determined by the parallel axis theorem
(See [15], where the structure of inertia tensors is discussed in detail).

Translational and rotational motions are then determined (respectively) by Newton’s Force
Law and Euler’s Torque Law:

 
p = f = fk

k
∑ and

 
l = I ( ω) + ω × I (ω) = Γ = Γ k

k
∑ , (94)

where the net force f is the sum of forces applied to specified body points, and the net torque Γ
is the sum of applied torques.

Now, to combine p and l into a generalized comomentum P that is linearly related to the
velocity V in (88), we introduce a generalized mass operator M defined by

P = MV = mve0 − iIω = pe0 − i l (95)

The appearance of e0  instead of e in this expression requires some explanation. For the moment
it suffices to note that it yields the standard expression for total kinetic energy:

 
K ≡ 12V ⋅ P = − 12V ⋅MV = 12 (ω ⋅ l + v ⋅p) . (96)

Next, using (95) we combine the two conservation laws (94) into a single equation of motion
for a rigid body:

 P =W where W = fe0 − iΓ (97)

is called a wrench or coforce. From this we easily derive the standard expression for power
driving change in kinetic energy:

 K = V ⋅ W = ω ⋅Γ + v ⋅ f . (98)
Finally, we consider the effect of shifting the base point as specified by (85) and (86). That

shift induces shifts in the comomentum and applied wrench:
Parallel axis theorem

 P  ′P = P + ir × p = pe0 − i(l − r × p) (99)

 W  ′W =W + i r × f = e0f − i(Γ − r × f ) (100)

The comomentum shift expresses the parallel axis theorem, while the corresponding shift in
torque is sometimes called Poinsot’s theorem. As a check for consistency with Chasles’ theorem
(88), we verify shift invariance of the kinetic energy:
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2K = ′V ⋅ ′P = −(V + eω × r) ⋅ (P + ir × p)
= ω ⋅ (l − r × p) + (v +ω × r) ⋅p = ω ⋅ l + v ⋅p = V ⋅ P.

This completes our transcription of rigid body dynamics into a single invariant equation of
motion (97). As indicated by the appearance of e0  in (95) and (97) and verified by the shift
equations (99) and (100), separation of the motion into rotational and translational components is
a conformal split that depends on the choice of base point. In applications there is often an
optimal choice of base point, such as the point of contact of interacting rigid bodies, as in the
rigid body linkages discussed below.

This is a good place to reflect on what makes CGA mechanics so compact and efficient. In
writing my mechanics book [15], I noted that momentum is a vector quantity while angular
momentum is a bivector quantity, so I combined them by defining a “complex velocity”

V = v + iω , (101)
with corresponding definitions for complex momentum and force. That led to a composite
equation of motion just as compact as (97). However, it was more a curiosity than an advantage,
because you had to take it apart to use it. The trouble was, as I fully understood only with the
development of CGA, that the complex velocity (101) does not conform to the structure of the
Euclidean group. That defect is remedied by the simple expedient of introducing the null element
e to change the definition of velocity from (101) to (84).

The resulting velocity (84) is a bivector in CGA. To make that explicit, we note that the first
term is a bivector because it is the dual of a trivector: iω = Iω ∧ E = I ⋅ (ω ∧ e0 ∧ e) , while the
second term is the contraction of a trivector by a vector: ev = (v ∧ E)e = (v ∧ e0 ∧ e) ⋅ e . Thus,
equation (84) is a generic form for bivectors generating Euclidean displacements. Of course, that
fact was implicit already in the definition of V in the displacement equation (80). It has been
reiterated here to confirm consistency with the conformal split. As we see next, the notion of V
as bivector generator of the Euclidean group is the foundation of Screw Theory. That is what
makes the equation of motion (97) so significant.

XII. Screw Theory

Screw theory was developed in the latter part of the nineteenth century [17] from applications
of geometry and mechanics to the design of mechanisms and machines. When formulated within
the standard matrix algebra of today the concepts of screw theory seem awkward or even a bit
screwy! Consequently, applications of screw theory, deep and useful though they be, have
remained outside the mainstream of mechanical engineering.

Here we cast screw theory in terms of CGA to secure its rightful place in the Kingdom of
Euclidean geometry and facilitate access to its rich literature. To the extent that the conformal
model becomes a standard for applications of Euclidean geometry, this will surely promote a
rejuvenation of screw theory.

The foundations for screw theory in rigid body mechanics have been laid in the preceding
sections. Here we concentrate on explicating the screw concept in relation to displacements. For
constant V, the displacement equation (80) integrates immediately to the solution

D(t) = e
1
2Vt = e

1
2Tr ′V t

= Tr e
1
2 ′V t
T r

−1 , (102)

where (87) to (90) have been used in the form
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V = Tr ′V = Tr ′V Tr
−1 = −iT rωTr

−1 + ehω = −iω + e(hω + r × ω) = −iω + ev (103)

to exhibit the conformal split and shift of base point. The translation versor, which, of course,
generates a fixed displacement, also has an exponential form:

Tr = 1+ 12 re = e
1
2 re , Tr

−1 = e
− 12 re = T−r . (104)

As expressed by (103), the rotation rate ω  is invariant under a base point shift. As ω = ω ∧ E  is
a trivector representing a line through the origin, the motion generated by D(t)  in (102) is a
steady screw motion with constant pitch along that line. The translations in (102) can be
understood as translating the line through a given base point to one through the origin, unfolding
the screw displacement, and then translating it back to the original base point.

To consolidate our concepts it is helpful to introduce nomenclature that conforms to the
screw theory literature as closely as possible. In general, any Euclidean displacement versor can
be given the exponential form:

D = e
1
2 S , where S = im + en (105)

The versor D is called a twistor, while its generator S is called a twist or a screw. The term
“screw” is often restricted to the case where n and m are collinear and m2 = 1 . The line
determined by m is called the screw axis or axode.

As implicitly shown in (62) and (63), the multiplicative group of twistors is a double
covering of the Special Euclidean group:

SE(3) = rigid displacements D{ }≅
2

twistors D{ } . (106)

The set of all twists constitutes an algebra of bivectors:

se(3) ≡ Lie algebra of SE(3) = {Sk = imk + enk} . (107)

This algebra is closed under the commutator product:

S1 × S2 =
1
2 (S1S2 − S2S1) = i(m2 ×m1) + e(n2 ×m1 − n1 ×m2 ) . (108)

Let us summarize important general properties of this algebra
The representation of a Lie group by action on its Lie algebra is called the adjoint

representation [16]. In this case, we have

′Sk =U(Sk ) =USkU
−1 = AdU Sk , where U{ } = SE(3) (109)

This transformation preserves the geometric product S1S2 = S1 ⋅S2 + S1 × S2 + S1 ∧ S2 ; that is,

′S1 ′S2 =U(S1S2 ) =U(S1 ⋅S2 + S1 × S2 + S1 ∧ S2 )U
−1 . (110)

Separating parts of different grade, we see first that the commutator product is covariant, as
expressed by

′S1 × ′S2 =U(S1 × S2 ) =U(S1 × S2 )U
−1 . (111)

Second, the scalar part is an obvious invariant:

′S1 ⋅ ′S2 = S1 ⋅S2 = −m1 ⋅m2 , (112)
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known as the Killing form for the group. Finally, the remaining term is a pseudoscalar invariant

′S1 ∧ ′S2 =U(S1 ∧ S2 ) = S1 ∧ S2 = ie(m1 ⋅n2 +m2 ⋅n1) , (113)

because it is proportional to the Euclidean pseudoscalar Ie = ie , which is invariant because i and
e are invariant. This concept and result is unique to CGA, so it merits further discussion.

The pseudoscalar Ie = ie  squares to Ie
2 = −e2 = 0 , so it cannot be used for an invertible

duality mapping. However, we can define a conjugate pseudoscalar Ie
* ≡ ie0  so that

Ie
* ⋅ Ie = Ie

*Ie = −e ⋅ e0 = 1 . Then we can express the invariant (113) as a scalar:

(S1 ∧ S2 ) ⋅ (ie0 ) = m1 ⋅n2 +m2 ⋅n1 = S1 ⋅S2* , (114)

where a dual screw = coscrew has been defined by

Sk
∗ ≡ Sk ⋅ (ie0 ) = Skie0 2 = −ink − e0mk , (115)

This equivalent to the reciprocal screw first introduced by Ball [17]. Comparison with (97)
shows that wrenches are coscrews! Of course, the dual defined here should not be confused with
the dual introduced in (11). The asterisk notation has been used for both to emphasize their
conceptual commonality.

Finally, we note that for a single screw, the pitch h appears as a ratio of the invariants (114)
and (112):

h = − 12
S ⋅S∗

S ⋅S = n ⋅m−1 .  (116)

Screw theory is basically about the generators of displacements. The simplicity of its
formulation within CGA belies the richness and complexity of its applications in mechanical
engineering, for which the serious student must consult the literature.

As guides to the screw theory literature, I recommend two books. The first book [16]
concerns use of modern mathematical concepts and notations, which can be compared to the
approach taken here. The second book [18] is by two long-time practitioners of screw theory.
Though it is designed as a textbook for the ill-prepared engineering student of today, it provides
a mature perspective on current status with an authoritative entrée to the literature.

Screw theory literature going back to the nineteenth century contains many gems that can be
recovered by reformulation within CGA. Here is another worthy topic for doctoral research. It
requires more than historical study, for many of the gems need polishing –– there are unsolved
problems to be addressed in the new light of CGA.

To facilitate translations from the literature, relations between CGA and matrix
algebra are established next.

XIII. Conformal Split and Matrix Representation

Besides its invariance and incredible compactness, one great advantage of the CGA
formulation of rigid body mechanics in the preceding sections is the ease of relating it to
alternative formulations by a conformal split. In this section we consider the conformal split in
more detail, especially to clarify and facilitate connections to the vast literature on mechanical
systems.

As defined in (43), one factor in the conformal split is the geometric algebra  G
1,1 = G(R1,1) .

The vector space R1,1  is sometimes referred to as 2D Minkowski space to emphasize its
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similarity to 4D Minkowski space  R3,1 , which is a standard model for spacetime in relativistic
physics [4, 6]. It can be generated from a nul l  bas i s
e, e0 | e2 = e0

2 = 0, e ⋅ e0 = −1{ }or from an equivalent orthonormal basis

 
e± = 1

2 (λe  λ
−1e0 ), λ ≠ 0, e±

2 = ±1{ } . Though the orthonormal basis is more

familiar to most readers, as we have seen already, the null basis is more
significant geometrically. It generates a basis 1, e, e0 , E{ }  (depicted in Fig.
13) for the entire algebra  G1,1 , with the basic properties:

E2 = 1, e0e = E −1, Ee = −eE = e, e0E = −Ee0 = e0 . (117)

These properties have been used many times in previous sections.
The algebra of dual numbers D = {α + eβ}  is an important subalgebra of  G1,1 . However, it

was first proposed by Clifford as an extension of the real numbers analogous to complex
numbers, with the null unit e replacing the imaginary unit i. He introduced it as an extension of
scalars in quaternions to form what he called biquaternions [10, 16]. We can regard it as an
extension of the algebra  G3  to  G3 ⊗D . Clifford clearly recognized the geometric significance of
this extension for incorporating the additivity and commutativity properties of translations. In
terms of translation versors, these properties are expressed by

TaTb = (1+ 12 ae)(1+
1
2 be) = 1+

1
2 (a + b)e = Ta+b = TbTa . (118)

Clifford’s biquaternions have been used to represent translations and screws by many authors
since. However, we have seen in the preceding section that the dual numbers must be extended to
the entire algebra  G1,1  to accommodate coscrews and screw invariants. That has been done in the
literature primarily by employing matrices in the following way.

The algebra  G1,1  is isomorphic to the algebra  M2 (R)  of real 2×2 matrices. That is readily
established by exhibiting the isomorphism of basis elements:

 
e+ 

0 1
1 0
⎡
⎣⎢

⎤
⎦⎥

,     
 
e− 

0 1
−1 0
⎡
⎣⎢

⎤
⎦⎥

,     
 
E  1 0

0 −1
⎡
⎣⎢

⎤
⎦⎥

,     
 
1  1 0

0 1
⎡
⎣⎢

⎤
⎦⎥

. (119)

Accordingly, every multivector M in  G1,1  has a matrix representation M̂ explicitly given by

 
M = 1

2 A(1+ E) + B(e+ + e− ) + C(e+ − e− ) + D(1− E)[ ]  M̂ =
A B
C D
⎡

⎣
⎢

⎤

⎦
⎥ , (120)

where the matrix elements are real numbers. This representation is readily generalized by
allowing the matrix elements to have values in other algebras,  G3  in particular. Thus, we arrive
at the isomorphism:

  G
4,1 = G3 ⊗G1,1 M2 (G3) . (121)

Properties of this isomorphism are surprisingly rich and have been thoroughly studied in [13].
That enabled a critique of the matrix representation for the conformal group, which contributed
to developing the invariant formulation in CGA introduced in [1].

     Fig. 13
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The matrix algebra  M2 (G3)  has been much used in screw theory with the elements of  G3

interpreted as complex quaternions. More often, it has been used with the elements of  G3

represented as 3×3 matrices or column vectors. The alternatives are best explained by a
representative example.

With an obvious change of notation, we can write equation (103) for the change in screw
coordinates induced by a shift r= xQ − xP  from base point P to point Q in the form

VQ = evQ − iω = T rVP = e(vP − r × ω) − iω . (122)

This has a matrix representation V̂Q = T̂ rV̂P  with the explicit form

vQ
ω

⎡
⎣⎢

⎤
⎦⎥
= 1 −r ×
0 1
⎡
⎣⎢

⎤
⎦⎥
vP
ω

⎡
⎣⎢

⎤
⎦⎥
= vP − r × ω

ω
⎡
⎣⎢

⎤
⎦⎥

. (123)

Similarly, we can write equation (100) for the induced change of coscrew coordinates in the
form

WQ = −e0f + iΓQ = T r
*WP = −e0f + i (ΓP + r × f ) (124)

Its matrix representation ŴQ = T̂ r
*ŴP  has the explicit form

f
ΓQ

⎡
⎣⎢

⎤
⎦⎥
= 1 0

−r × 1
⎡
⎣⎢

⎤
⎦⎥
f
ΓP

⎡
⎣⎢

⎤
⎦⎥
= f

ΓP + r × f
⎡
⎣⎢

⎤
⎦⎥

. (125)

These four equations suffice to show how any equation in the literature on screw theory or
robotics can be translated into CGA and vice versa. For example, in [18] the screws in (123) and
coscrews in (125) are represented as 6-component column vectors.

This example reveals a significant drawback of the matrix representations: the matrices do
not encode the distinction between screws and coscrews, which, in contrast, is explicitly
expressed by the distinction between e and e0  in (122) and (124). Expressed in more general
terms: the matrix representations suppress the geometric meaning of matrix elements, which is
explicitly encoded in the algebra  G1,1 . Furthermore, the matrix representation (121) implicitly
forces one to adopt a conformal split, which means, as we have seen, one is forced into a
covariant rather than invariant approach to geometry. Nevertheless the isomorphism

  G
1,1 M2 (R)  is essential for relating CGA to the robotics literature.

XIV. Linked Rigid Bodies & Robotics

The potential for application of CGA to
robotics is best illustrated by a simple example.
Fig, 14 depicts a kinematic chain with three
segments in a reference pose:

x0 = e0 + a + b + c (126)

Rotations at its three joints are specified by
twistors R1, R2 , R3{ } . Rotation at the first joint
gives

R1

R2R1

R2R3

R3R2

R3R2R1

•• • •

•
•

•

•

•

•
e0 a cb x0

x1

x2

x
c 321

b21

a3

             Fig. 14
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x1 = e0 + a + b + R1cR1
−1 = e0 + a + b + c1 . (127)

Subsequent or concurrent rotation at the second joint gives

x2 = e0 + a + R2 (b + R1cR1
−1)R2

−1 = e0 + a + b2 + c 21 . (128)

Finally, the net result of rotations at all the joints is general pose:

x = e0 + R3[a + R2 (b + R1cR1
−1)R2

−1]R3
−1 = e0 + a3 + b32 + c 321 . (129)

A conformal split with the fixed point e0  gives the position vector for the endpoint:

x = x ∧ E = R3[a + R2 (b + R1cR1−1)R2−1]R3−1 = a3 + b32 + c321 . (130)

Of course, the rotations need not be confined to a plane (as presumed in Fig. 14 for simplicity of
illustration). Restrictions on the range of motion at each joint are encoded in the twistors. For
example, a rotation R1  with one degree of freedom can be given the angular form

R1 = exp − 12 n1α1
⎧
⎨
⎩

⎫
⎬
⎭

where 0 ≤ α1 ≤ π (131)

and unit vector n1  is the direction of the joint axis for a right handed rotation.
Kinematics of the chain can be described a follows. Irrespective of how the joints are

characterized, the twistors satisfy equations of the form

 
Rk = − 1

2 iωkRk . (132)

Hence for R32 = R3R2  we have

 
R32 = − 1

2 iω 32R32 with ω 32 = ω 3 +R3ω 2R 3
−1 . (133)

Finally, with ω 321 = ω 3 +R3ω 2R 3
−1 +R3R2ω1R 2

−1R 3
−1 , for the derivative of the end point position

vector (130), we get

 x = ω 3 × a3 +ω 32 × b32 +ω 321 × c321 (134)

This is only the beginning for application of CGA to robotics, but we have all the theoretical
machinery we need for any task. To incorporate dynamics we introduce the inertia properties of
each body with (95) and the applied wrenches with (97). Moreover, CGA offers a promising
approach to modeling complex interactions between bodies, such as viscoelastic coupling at
joints [2].

The next phase in the development of CGA robotics is detailed applications to specific
problems. This development is already underway by attendees at this conference and others in
the GA community. However, I see a need for more systematic mining of the robotics literature
to incorporate established problems, results and methods in CGA and promote broader
interaction within the engineering community. I thought about offering suggestions for literature
to consult. But the robotics literature is so vast and variable in complexity and quality that I fear
my suggestions could be as misleading as helpful. Consequently, I add only one recent reference
[19] to those I have already mentioned.

To sum up, CGA provides a powerful mathematical framework for robotics R & D with the
twin goals of (1) simplicity and clarity in mathematical formulation, (2) efficiency and speed in
computation.
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