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Chapter 2

Geometric Calculus

Geometric calculus is an extension of geometric algebra to include the analytic operations of dif-
ferentiation and integration. It is developed in this book as a computational language for physics.
The calculus is designed for efficient computation and representation of geometric relations. This
leads to compact formulations for the equations of physics and their solutions as well as elucidation
of their geometric contents.

This chapter is concerned primarily with differentiation and integration with respect to vector
variables. Of course, vector variables are especially important in physics, because places in Physical
Space are represented by vectors. Therefore, the results of this chapter are fundamental to the
rest of the book. They make it possible to carry out completely coordinate-free computations
with functions of vector variables, one of the major advantages of geometric calculus. Nevertheless,
coordinate systems will be introduced here at the beginning for several reasons. Coordinate methods
are employed in most of the mathematics and physics literature, so it is necessary to relate them to
the coordinate-free methods of geometric calculus. By establishing the relation early, we can refer
to standard mathematics texts for the treatment of important points of rigor. Thus we can move
along quickly, concentrating attention on the unique advantages of geometric calculus. Finally, we
seek to understand precisely when coordinates can be used to advantage and be ready to exploit
them. It will be seen that coordinate systems are best regarded as adjuncts of a more fundamental
coordinate-free method.

The reader is presumed to be familiar with the standard differential and integral calculus with
respect to scalar variables. We will apply it freely to multivector-valued functions of scalar variables.
Readers who need more background for that are referred to Sections 2–7 and 2–8 of NFCM.

The main results of this chapter are formulated to apply in spaces of arbitrary dimension. How-
ever, the examples and applications are limited to three dimensions, since that is the case of greatest
interest. Readers interested in greater generality are referred to the more advanced treatment in
GC.

2-1 Differentiable Manifolds and Coordinates

Roughly speaking, a differentiable manifold (or just manifold) is a set on which differential and
integral calculus can be carried out. We will be concerned mainly with vector manifolds in Euclidean
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Fig. 1.1. A piecewice differentiable curve Econsisting of differentiable curves

C and C′ joined at a corner x2. The tangent vector field e(x)=dx/ds has

a discontinuity at the corner in jumping from e(x2) at the endpoint of E
to e′(x2) at the initial point of E′.

3-space E3, which is to say that the “points” of the manifolds are vectors in E3, and the entire
geometric algebra G3 is available for characterizing the manifolds and relations among them. There
are various ways of defining manifolds. The usual approach is to define an m-dimensional manifold
or m-manifold as a set of points which can be continuously parametrized locally by a system of m
coordinates. The term “locally” here means “in a neighborhood of every point.” More than one
coordinate system is often needed to “cover” the whole manifold. A completely coordinate-free
approach to manifolds is developed in GC, but we begin with coordinates here. Unless otherwise
indicated, we tacitly assume that each manifold we work with is simply-connected, which means
that it consists of a single connected piece.

The Euclidean space E3 is a 3-dimensional manifold, and it contains 4 kinds of submanifolds: A
single point is a zero-dimensional manifold. A curve is a 1-manifold. A surface is a 2-manifold.
And finally, any 3-dimensional region in E3 bounded by a surface is a 3-manifold. The boundary
∂M of an m-manifold M is an (m − 1)-manifold. Thus, the boundary of a 3-dimensional region
is a surface, the boundary of a surface is curve, and the boundary of a curve consists of its two
endpoints. A manifold without a boundary, such as a circle or sphere, is said to be closed. The
boundary of a manifold is always a closed manifold. This can be expressed by writing ∂∂M = 0.

A function F = F (x) defined at each point x of a manifold M is called a field on M, and M
is said to be the domain of F . In general, we allow F to be a multivector-valued function. It is
called a vector field if it is vector-valued, a scalar field if it is scalar-valued, a spinor field if it is
spinor-valued, etc. Before defining the derivatives and integrals of fields, we need to characterize
the manifolds in E3 in more detail.

Curves

A curve C = {x} is a set of points which can be parametrized by a continuous vector-valued function
x = x(s) of a scalar variable s defined on a closed interval s1 ≤ s ≤ s2. The endpoints of the curve
are thus the vectors x1 = x(s1) and x2 = x(s2). If the endpoints coincide the curve is closed, and
the parameter range must be changed to s1 ≤ s < s2 to avoid double counting of the point x1 = x2.
The parameter s is a coordinate for the curve C.

The function x = x(s) is often regarded as the curve itself. This has an advantage when the
curve is self-intersecting: at an intersection point x(s1) = x(s2) the parameter values distinguish
different branches of the curve. Moreover, on a closed curve the parameter values given above can
be extended beyond s2 to describe a multiple “traversal” of the set C. Confusion on this point can
be avoided by referring to the function x = x(s) as an orbit, or trajectory or a parametrized curve.
It is often convenient to leave the range of the parameter unspecified until it is needed.
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Fig. 1.2. A surface showing coordinate curves and tangent vectors at a

point x as well as boundary normals in relation to the local orientation of

the surface and its boundary.

The curve C is said to be differentiable if the derivative dx/ds exists in the usual mathematical
sense. The derivative determines a vector field e(x) = dx/ds on the curve. The value of this function
at the point x is said to be a tangent vector (of the curve) at x. A change of parameter specified
by a monotonic differentiable function s = s(τ) determines a new tangent vector

dx
dτ

=
ds

dτ

dx
ds

= λ(x)e(x)

The 1-dimensional vector space Tx(C) of all scalar multiples of the vector e(x) is called the tangent
space at x of the curve C. (Fig. 1.1.) The unique parameter s for which ds = |dx| is called the
arc length of the curve. For this parameter e = dx/ds is a unit vector. This vector is called the
unit tangent at x of the manifold C. The unit tangent of C is a continuous vector field on C, and it
specifies an orientation for C independently of any coordinate system.

If x = x(s) has finite derivatives of all orders, the curve C is said to be smooth. The curve is
piecewise smooth if it consists of a finite number of smooth curves joined at common endpoints
forming corners in the curve (Fig. 1.1). Note that the unit tangent of C is discontinuous at corners.

A definite curve is determined by giving x = x(s) as a specific function of s. The curve can also
be determined by a differential equation for which x = x(s) is the solution. Alternatively, a curve
can be specified nonparametrically as the intersection of two given surfaces.

Surfaces

A surface S = {x} is a set of points which can be parametrized locally by a continuous vector-valued
function x = x(x1, x2) of two scalar variables x1, x2 called coordinates of the surface. The surface is
said to be differentiable if x(x1, x2) is a differentiable function of both coordinates, and it is smooth
if derivatives of all orders exist. The surface is piecewise smooth if it is composed of a finite number
of smooth surfaces bounded by piecewise smooth curves. Unless otherwise indicated, we tacitly
assume that a given manifold is smooth or piecewise smooth.

When one of the coordinates is kept fixed, the function x(x1, x2) describes a coordinate curve
with respect to the other coordinate (Fig. 1.2). The derivatives determine vector fields ek = ek(x)
on S defined by

ek = ∂kx =
∂x
∂xk

. (1.1)

The coordinate curves “cover” a neighborhood of each point only if they are never tangent to one
another; this is best expressed by the condition that e1(x) ∧ e2(x) �= 0 at any point x where the
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coordinate system is defined. A vector field v = v(x) is said to be a tangent to S at x if

v(x) ∧ e1(x) ∧ e2(x) = 0 (1.2)

The set of all vectors v(x) satisfying (1.2) is a 2-dimensional vector space Tx(S) called the tangent
space of S at x. If the field v satisfies (1.2) at every point of x it is said to be a tangent vector field.
Any multivector field, such as e1 ∧ e2, which can be generated from vector fields by multiplication
and addition of their values at each point x is said to be a tangent field. Note that a single vector
a can be regarded trivially as a constant vector field on S, and it may be a tangent vector at some
points of S.

Fig. 1.3. A Moebius strip is a one-side surface bounded by a single closed

curve. To see that it is nonorientable, take a unit tangent 2-blade at one

point and slide it “tangentially” along a closed curve around the strip.

When the blade returns to the initia point it has the opposite orientation

(sign). Therefore, it cannot be defined continuously on the strip with a

single orientation.

A bivector-valued unit tangent I2 = I2(x) can be defined on S and related to a coordinate system
by

e1 ∧ e2 = ±I2| e1 ∧ e2 |. (1.3)

If the sign here is positive (negative) the coordinate system is said to be positively (negatively)
oriented. A differentiable manifold is said to be orientable if a continuous single-valued unit tangent
field can be defined on it, and this field is said to be an orientation on the manifold. The Moebius
strip (Fig. 1.3) is the simplest example of non-orientable manifold. We will be concerned only with
orientable manifolds because orientability is necessary for defining integration on a manifold.

If a manifold is orientable then its boundary is also orientable. If I2 is the orientation of a surface,
then, a unique orientation I1 can be assigned to its boundary by the following convention. At each
point x on the boundary, I2 = I2(x) is related to I1 = I1(x) by

I2 = I1n = I1 ∧ n, (1.4)

where n = n(x) is the boundary normal of the surface (Fig. 1.2). At each point of the boundary, the
boundary normal is a unit vector normal to the surface and, by convention, directed outward from
the interior. Its normality (or orthogonality) is expressed by the condition I1 ·n = 0, as implied by
(1.4). Its outward direction is that of a curve hitting the boundary from the interior of the surface.

Oriented Vector Manifolds

So far, our mathematical characterization of curves and surfaces is completely general, including
no assumption that they are submanifolds of E3. Moreover, it generalizes directly to characterize
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manifolds of any dimension as follows. A smooth oriented vector manifold M = {x} is a set of
vectors (points) which can be parametrized locally by a smooth function

x = x(x1, x2, . . . , xm) (1.5a)

of m (scalar) coordinates with tangent vector fields

ek = ek(x) =
∂x
∂xk

(1.5b)

satisfying
e1 ∧ e2 ∧ . . . ∧ em �= 0. (1.5c)

At each point x the m vectors ek(x) constitute a basis or frame for the tangent space Tx(M).
The condition (1.5c) assures that they are linearly independent. Any set of m tangent vector fields
is said to be a frame field on M if the vectors are linearly independent at each point. The set {ek}
is called a coordinate frame field.

An orientation Im = Im(x) of M is a unit tangent m-blade-valued field related to a positively
oriented coordinate system by

e1 ∧ e2 ∧ . . . ∧ em = Im|e1 ∧ e2 ∧ . . . ∧ em|. (1.6)

The orientation determines one tangent space Tx(M) at each point x consisting of all vectors {v}
satisfying v ∧ Im(x) = 0.

The boundary of M is an (m − 1)-manifold ∂M with orientation Im−1 determined by the con-
vention

Im = Im−1n (1.7)

where n = n(x) is the (unit outward) boundary normal at each point on ∂M.
It is important to note that the relation (1.7) applies even in the case m = 1. Then I1 is a unit

tangent vector field on a curve, and I0 is a scalar-valued orientation assigned to the endpoints. For
the curve shown in Fig. 1.1, we have e = I| e | and

I0(x2) = 1 = −I0(x1). (1.8)

Thus, the endpoints of a curve have opposite orientation.
By the inverse function theorem (proved in GC and many mathematics texts), the condition

(1.5c) implies that the function (1.5a) can be inverted to give m scalar-valued coordinate functions

xk = xk(x). (1.9)

Note the ambiguous use of the symbols xk to represent independent variables in (1.5a) and functions
in (1.9). This ambiguity reduces the number of symbols needed and helps keep track of relations.
The correct interpretation should be clear from the context. The coordinate functions (1.9) are as
important as the inverse relation (1.5a). However, we are not prepared to differentiate xk(x) on an
arbitrary manifold until the “tangential derivative” is defined in a later section.

The manifold M is said to be flat if Im is constant on M, that is, if Im(x) has the same value
at every point x of M. In that case M can be identified as an m-dimensional region in Euclidean
m-space Em. Note that tangent spaces on M are all identical, as expressed by Tx(M) = Em.

For E3 the standard orientation I3 is taken to be the dextral unit pseudoscalar, that is, I3 = i. For
a surface S in E3 with a specified orientation on its boundary a surface normal n = n(x) is commonly
defined by the right-hand rule (Fig. 1.4), while the orientation I2 = I2(x) is defined in (1.4) by its
relation to the boundary normal (not to be confused with the surface normal). Consequently, the
surface normal n is related to the surface orientation I2 by

I2 = −in . (1.10)

This implies that n ·I2 = −in∧n = n×n = 0, which means that n is normal to the surface at every
point (Fig. 1.4).
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Fig. 1.4. An oriented surface embedded in E3 has a unique unit surface

normal n=iI2. Note that the direction of n is related to the orientation

of the surface boundary by the “right-hand rule”—fingers aligned with

the boundary when the thumb is aligned with the normal. On the other

hand, the direction of n is related to the orientation I2 by a “left-hand

rule.” This awkward choice of orientation is dictated by a long-standing

convention on the form of Stokes’ Theorem (Section 2–4).

Coordinate Systems for E3

Coordinate systems for the manifold E3 can be most efficiently characterized by using the vector
derivative ∇ = ∇x introduced in Section 1–3. Differentiating the coordinate functions xk = xk(x),
we obtain three vector fields

ek = ∇xk, (1.11)

where k = 1, 2, 3. These fields have several important properties. From the operator identity
∇∧∇ = 0, we have immediately

∇∧ ek = i∇×ek = 0 (1.12)

Also, by the chain rule, we have

ej ·∇xk =
( ∂x

∂xj

)
·∇xk =

∂xk

∂xj
= δk

j .

Hence
ej ·ek = δk

j , (1.13)

where [δk
j ] is the 3 × 3 identity matrix. This is the algebraic condition for the frame {ek} to be

reciprocal to the frame {ej}. It is easily verified that equations (1.13) have the unique solution

e1 =
e2×e3

e
, e2 =

e3×e1

e
, e3 =

e1×e2

e
, (1.14)

where
e = −i(e1 ∧ e2 ∧ e3) = (e1×e2) ·e3 > 0 (1.15)

for a positively oriented (dextral) coordinate system.
The equations (1.14) enable us to compute the ek directly from ej without first finding the

functions xk(x). But they also have an important geometric meaning. They tell us that the ek are
everywhere normal to coordinate surfaces. Thus, if the coordinate x3 is held constant, the function
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Fig. 1.5. A coordinate surface x3= x3(x) = constant has a normal vector

field e3=∇x3. The coordinate tangent e3 is not necessarily normal to the
surface.

x = x(x1, x2, x3) describes a surface with tangent fields e1 and e2, and this equation can in principle
be inverted to describe the surface by a scalar equation x3 = x3(x). (Note that it would be helpful
here to have different symbols for the coordinate variable x3 and the coordinate function x3(x).)
The gradient of the function x3(x) tells us the direction in which the function changes, and (1.14)
tells us that

∇x3 =
e1×e2

e
, (1.16)

which is indeed normal to the surface x3(x) = x3 = constant (Fig. 1.5).
The equations (1.14) can be inverted to give the ek as functions of the ek if desired. By symmetry

we find immediately

e1 =
e2×e3

e−1
, e2 =

e3×e1

e−1
, e3 =

e1×e2

e−1
. (1.17)

where
e−1 =

1
e

= −i(e1 ∧ e2 ∧ e3) = (e1×e2) ·e3 > 0. (1.18)

Equation (1.17) also has a geometric interpretation. According to (1.17)

e3 = e(∇x1)×(∇x2). (1.19)

This implies that e3 ·∇x1 = 0 = e3 ·∇x2, which tells us that e3 is tangent to each of the coordinate
surfaces x1 = const. and x2 = const., so it is directed along the intersection of those surfaces.
Therefore, (1.17) tells us that all the coordinate curves are intersections of coordinate surfaces.

For efficient algebraic manipulations with coordinates both frames {ek} and {ek} are needed. For
example, to express a vector field v = v(x) in the “coordinate form”

v =
∑

k vkek, (1.20a)

the ek are needed to determine its scalar components

vk = vk(x) = v ·ek. (1.20b)



3 -curve

= const.
2

3e

2e

∆

= 2

1e x

∆

= 1

= const.
1

x

x

x

x

Geometric Calculus 35

Fig. 1.6. Each coordinate curve is the intersection of two coordinate

surfaces.

This can be proved by using (1.13) to solve (1.20a) for vk; thus,

ek ·v = ek ·(∑j vjej) =
∑

j vj(ek ·ej) =
∑

j vjδk
j = vk.

For a field F = F (x) = F (x(x1, x2, x3)), the coordinate derivatives are related to directional
derivatives along the coordinate curves by the chain rule; thus,

∂F

∂xk
=

( ∂x
∂xk

)
·∇ = ek ·∇F. (1.21)

This formula expresses the coordinate derivative in terms of the vector derivative ∇, and it is useful
when the field F is given as a specific function of x which can be differentiated by ∇ using the
results of Section 1–3. However, when the field F is given as an explicit function of the coordinates
F (x1, x2, x3), it can be expressed as a function of x by writing F (x1(x), x2(x), x3(x)), and its vector
derivative can be computed by using the chain and product rules to obtain

∇F = (∇x1)
∂F

∂x1
+ (∇x2)

∂F

∂x2
+ (∇x3)

∂F

∂x2
. (1.22)

Thus, the operator equation

∇ =
∑

k

(∇xk)
∂

∂xk
=

∑
k

ek∂k (1.23)

expresses the vector derivative in terms of coordinate derivatives for any coordinate system. It is
worth noting that (1.22) applies to any scalar-valued functions xk(x) even if they do not satisfy the
condition (∇x1) ∧ (∇x2) ∧ (∇x3) �= 0 which allows them to be regarded as coordinate functions.
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Orthogonal Coordinates

Coordinate systems are most useful where they express some symmetry inherent in a given problem,
often as a consequence of boundary conditions. Orthogonal coordinate systems are most commonly
employed because they express the simplest symmetries. A coordinate system is said to be orthog-
onal if the coordinate vectors ek are mutually orthogonal. In that case we can write ek = ekêk,
where ê2

k = 1 and the ek = |ek| are coordinate scale factors. Then it follows from (1.13) that

ek = e−1
k =

êk

ek
. (1.24)

Remark on notation: In our general discussion of coordinate systems we have followed the common
practice of using a superscript as an index to distinguish the reciprocal vectors ek = ∇xk from
the coordinate vectors ek = ∂kx indexed with a subscript. Unfortunately, this systematic notation
interferes with the more important use of superscripts as exponents, so we will not employ it
exclusively. In particular, for orthogonal coordinates a subscript notation is sufficient, since (1.24)
tells us that the reciprocal vectors differ from the ek only by a scale factor. Thus for orthogonal
coordinates xk we write

ek = ∂kx =
∂x
∂xk

, (1.25)

and (1.24) combined with (1.11) gives us the reciprocal relation

∇xk =
1
ek

=
êk

ek
. (1.26)

Now let us consider the two most important examples of orthogonal coordinates.
Rectangular coordinates are characterized by the parametric equation

x(x1, x2, x3) = x1σ1 + x2σ2 + x3σ3, (1.27)

where, as always, {σk} is a standard basis. This equation is easily inverted to get the coordinate
functions

xk(x) = x ·σk . (1.28)

The coordinate vectors are therefore

∂kx = ∇xk = σk. (1.29)

36
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The σk are therefore constant vector fields which are both tangent to coordinate curves and normal
to coordinate surfaces.

Spherical coordinates x1=θ, x2=ϕ, x3=r are characterized by the parametric equation

x(θ, ϕ, r) = rRσ3R
† (1.30a)

where
R = R(θ, ϕ) = e−

1
2 iσ3ϕe−

1
2 iσ2θ (1.30b)

with 0 < r < ∞, 0 ≤ θ < π, 0 ≤ ϕ ≤ 2π (Fig. 1.7). Differentiating and using each coordinate as an
index, we obtain

er = ∂rx = Rσ3R
† = x̂, (1.31a)

eθ = ∂θx = rRσ1R
†, (1.31b)

eϕ = ∂ϕx = rσ3×er = σ3×x. (1.31c)

Therefore the scale parameters are

er = 1, eθ = r, eϕ = r(σ3×er) = r sin θ, (1.32)

and the coordinate directions are
êk = RσkR†. (1.33)

From (1.26) we obtain
êr = ∇r, êθ = r∇θ, êϕ = r sin θ∇ϕ. (1.34)

The radial coordinate function is r = |x |, but it is not convenient to solve (1.30a,b) for the coordinate
functions θ(x) and ϕ(x), as that would involve inverse trigonometric functions. It is enough to have
the gradients of θ and ϕ given by (1.34). From this we can read off the coordinate surfaces. The
point x lies at the intersection of a sphere of radius r and two orthogonal planes with equations
x ·∇θ = 0 and x ·∇ϕ = 0 where ∇θ and ∇ϕ have fixed directions though their magnitutes vary on
the planes (Fig. 1.8).

When the radial coordinate r is held fixed, (1.30 a,b) is the parametric equation for a sphere
with coordinates θ, ϕ. The coordinate system has a singularity at the pole where θ = 0, for (1.31c)
implies that eϕ = 0 there, so the coordinate direction êϕ is not uniquely defined. It is not possible
to cover a sphere with a single coordinate system which does not have a singularity somewhere.
This follows from the fact that every continuous tangent vector field on a sphere must have a zero
value at some point. Note, however, that a tangent bivector field, such as the orientation I2, can be
smoothly defined on the sphere without zeros.

2-1 Exercises

(1.1) A system of skew coordinates is defined by the coordinate functions

xk(x) = x ·ak,

where the ak are constant (non-orthogonal) vectors. For this system find the coordinate
frame, reciprocal frame and explicit parametric equation for the point x.

(1.2) Carry out the derivatives of (1.30a,b) to get (1.31a,b,c).

(1.3) The parametric equation x = x(x1, x2, x3) is given explicitly below for two orthogonal
coordinate systems.

Cylindrical: x(ρ, ϕ, z) = ρσ1R
−2
ϕ + zσ3 = Rϕ(ρσ1 + zσ3)R−1

ϕ
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Parabolic: x(ξ, η, ϕ) = ηξσ1R
−2
ϕ + 1

2 (ξ2 − η2)σ3

= Rϕ(ηξσ1 + 1
2 (ξ2 − η2)σ3)R−1

ϕ

for 0 ≤ θ < π, 0 ≤ ϕ < 2π and Rϕ = e−
1
2 iσσσ3ϕ.

x
const.

const.r

const.

∇

∇ϕ

θ

θ

θ

polar axis

ϕ

Fig. 1.8. Intersecting coordinate surfaces determine the position vector x.

(a) For each coordinate system, calculate the scale factors êk = |êk| and the spinor R

determining êk = RσkR−1. Illustrate with a diagram showing coordinate curves for

each system.

(b) For a displacement in some direction a, the êk rotate at a rate

a ·∇êk = ω×êk.

Calculate the rotational velocity

ω = ω(a,x) = 2i(a ·∇R)R†

for each coordinate system.

(1.4) For any system of orthogonal coordinates, show that the divergence and curl of a vector
field v with components vk = êk ·v can be expressed in the “coordinate forms”
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∇ ·v =
1

e1e2e3

[ ∂

∂x1
(e2e3v1) +

∂

∂x2
(e3e1v2) +

∂

∂x3
(e1e2v3)

]
,

∇×v =
1

e2e3

[ ∂

∂x2
(e3v3) −

∂

∂3
(e2v2)

]
ê1

+
1

e3e1

[ ∂

∂x3
(e1v1) −

∂

∂x1
(e3v3)

]
ê2

+
1

e1e2

[ ∂

∂x1
(e2v2) −

∂

∂x2
(e1v1)

]
ê3.

These equations will not be used in this book since coordinate-free methods will be
employed.

2-2 Directed and Iterated Integrals

In this section we develop the concept of directed integral, a generalization of the standard Riemann
integral in which geometric algebra plays an essential role. In subsequent sections we shall see that
it leads to some of the most powerful formulas in all of mathematics. To motivate the general
definition of directed integral, we first consider the special cases of curves and surfaces.
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Fig. 2.1. Approximation of a curve C by directed line segments representing

vectors.

Line Integrals

Line integrals have been discussed at some length in NFCM so this will be a brief review to get at
the key idea to be generalized. The line integral of a field F = F (x) over a curve C = {x} is defined
by ∫

C
F dx =

∫
C

F (x dx) = lim
∆xi → 0

n→∞

n∑
i=1

F (xi)∆xi. (2.1)

The limit process should be understood as formally the same as the one defining a scalar integral in
elementary calculus. As indicated in Fig. 2.1 the curve is subdivided into shorter (and straighter!)
arcs by selecting a sequence of points xi, and to each arc assigning a “measure” ∆xi = xi −xi−1 of
its length and direction. This differs from the standard definition of a scalar integral only in using
vector-valued measure of “directed length” instead of a scalar measure of length. All details of the
limit process are essentially the same.

Since F is generally multivector-valued it need not commute with the vector dx, so
∫

dxF is
different than

∫
Fdx, and it is defined by the obvious reversal of factors in (2.1).
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Fig. 2.2. Triangulation of an orientable surface S.

If the curve C has a parametric representation x = x(s) with endpoints a = x(α), b = x(β), then
the line integral can alternatively be defined in terms of the “scalar integral” by

∫
C

F dx =
∫ β

α

F
dx
ds

ds =
∫ β

α

F (x(s))
dx
ds

(s) ds. (2.2)

The definition of line integral given here is more general than the usual one. To see the difference,
note that the integral of a vector field v = v(x) can be separated into scalar and bivector parts,
thus ∫

v dx =
∫

v ·dx +
∫

v ∧ dx. (2.3)

The scalar (-valued) part is ∫
v ·dx =

1
2

∫
v dx +

1
2

∫
dxv (2.4)

and the bivector part is ∫
v ∧ dx =

1
2

∫
(v dx − dxv). (2.5)

Both parts are called line integrals, and it is often of interest to consider them separately. The
ordinary concept of line integral is limited to the scalar-valued integral

∫
v ·dx. However, it will

be shown in Chapter 3 that the complete integral (2.3) is needed to obtain the powerful results of
complex variable theory.

As a specific example of a line integral, let v = dx/|dx| be the unit tangent on the curve, then
∫

v dx =
∫

v ·dx =
∫

| dx |

is the arc length of the curve. It should be noted that,

∣∣∣
∫

dx
∣∣∣ ≤

∫
| dx | (2.6)

with equality only for a straight line (see Exercise 2.1).

Surface Integrals

The directed surface integral of a field F = F (x) over an orientable surface S = {x} is defined by

∫
S

F d2x =
∫
S

F (x) d2x = lim
n→∞

n∑
k=1

F (xk) ∆2(xk). (2.7)
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d2x=dx1 ∧dx2=−in(x)| d2x | on a surface S in E3.

The meaning of this formula is to be understood as follows. The surface can be approximated to
any desired accuracy by a connected system of n triangles as illustrated in Fig. 2.2. Each triangle
can be associated with a point xk on S near its center. The directed area ∆2(xk) of the triangle
is a bivector with direction approximating the direction of the tangent plane at xk and magnitude
|∆2(xk) | approximating a scalar area element. In the limit ∆2(xk) becomes the directed area
element

d2x = I2 d2x, (2.8)

where I2 = I2(x) is the bivector-valued orientation of S defined earlier, and

d2x = | d2x | = I†2 d2x (2.9)

is the ordinary Riemannian measure of area. As in the standard theory of the Riemann integral,
the limit requires that the subdivision of S becomes increasingly fine as new triangulation points
are added.

With standard mathematical arguments it can be proved that the limit is independent of the way
S is triangulated provided ∆2(xk) → 0 for each k as n → ∞. The surface integral is said to exist if
the limiting value of the sum is a multivector with a finite magnitude. The integral over a piecewise
smooth surface is defined as the sum of integrals over each smooth piece.

The directed integral can be reduced to a standard Riemann integral simply by writing

∫
F d2x =

∫
G d2x, (2.10)

where G = F I2. However, we shall see that the directed measure d2x should be regarded as more
fundamental than the scalar Riemann measure d2x, because it is essential for the general form of
the fundamental theorem of calculus.

If the surface S is described by a coordinate function x = x(x1, x2), as explained in the preceding
section, then the directed line element for an x1-curve is given by

dx1 = dx1 ∂x
∂x1

= dx1e1. (2.11)

Similarly, dx2 = dx2e2 for an x2-curve. Consequently the directed area element for the surface can
be given the coordinate form

d2x = dx1 ∧ dx2 = e1 ∧ e2 dx1 dx2 (2.12)
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(see Fig. 2.3). Now the surface integral of F = F (x(x1, x2)) can be expressed as an iterated integral

∫
S

F d2x =
∫
S

F dx1 ∧ dx2 =
∫ β1

α1

dx1

∫ β2(x
1)

α2(x1)

dx2F e1 ∧ e2. (2.13)

This reduces the surface integral to a succession of integrals with respect to scalar variables, thus
enabling us to use results from elementary scalar calculus for evaluating surface integrals. Equiv-
alence of the iterated integral (2.13) to the coordinate-free directed integral (2.7) is an important
mathematical result which will be taken for granted here.

As an important example of a surface integral, we take F = I†2 in (2.13) to get the surface area

A =
∫

d2x =
∫

| d2x | =
∫

| e1 ∧ e2 | dx1 dx2. (2.14)

Note that ∣∣∣∣
∫

d2x
∣∣∣∣ ≤

∫
| d2x |, (2.15)

with equality only for a flat surface (i.e. a surface lying in a plane). In fact, for any closed surface,
such as a sphere, ∮

d2x = 0, (2.16)

where
∮

indicates integration over a closed manifold. Note also that the surface index on the integral
sign is often dropped when the domain of integration is clear from the context. By the way, the
result (2.16) is an easy consequence of the fundamental theorem of calculus.

For a surface in E3, according to (1.10) we can write the directed area element in the form

d2x = −in d2x, (2.17)

where n = n(x) is the unit surface normal shown in Figs. 1.4 and 2.3. Since i is constant and
commutes with F the directed integral can then be written

∫
F d2x = −i

∫
F n d2x. (2.18)

For a vector field v = v(x), this gives

i

∫
v d2x =

∫
vn d2x =

∫
v ·n d2x +

∫
v ∧ n d2x. (2.19)

The usual definition of surface integral is limited to the scalar part
∫

v ·n d2x =
∫

v ·n | e1×e2 | dx1dx2. (2.20)

Our more general approach shows that the directed measure is the crucial concept underlying this
definition.

Integrals of Differential Forms

The generalization of our definition of surface integral to manifolds of any dimension is straightfor-
ward. On an oriented m-manifold M we can define an m-vector-valued directed measure

dmx = Imdmx, (2.21)
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where Im = Im(x) is the orientation of M defined in the previous section, and dmx = |dmx|. The
directed integral of a field F = F (x) over M can be defined by reducing it to a standard Riemann
integral with ∫

M
F dmx =

∫
M

F Imdmx. (2.22)

If M is described by a coordinate function x = x(x1, x2, . . . , xm), the directed measure can be put
in the “coordinate form”

dmx = dx1 ∧ dx2 ∧ . . . ∧ dxm

= e1 ∧ e2 ∧ . . . ∧ em dx1dx2 . . . dxm, (2.23)

where
dxk = dxk ∂x

∂xk
= dxkek. (2.24)

Also,
dmx = | dmx | = | e1 ∧ . . . ∧ em | dx1dx2 . . . dxm (2.25)

By substitution of (2.23) or (2.25) into (2.22) the directed integral can be converted to an iterated
integral with respect to m successive scalar variables.

For a 3-manifold M in E3, the directed measure is

d3x = id3x, (2.26)

where i is the unit pseudoscalar. The directed integral can therefore be put in the form
∫
M

F d3x = i

∫
M

F d3x

= i

∫ β1

α1

dx1

∫ β2

α2

dx2

∫ β3

α3

dx3|e1 ∧ e2 ∧ e3|F (2.27)

Of course, for F = 1 this reduces to an integral for the volume of M:

V =
∫

d3x =
∫

dx1dx2dx3 | e1 ∧ e2 ∧ e3 |. (2.28)

We have not yet arrived at the most general definition of a directed integral. To achieve that we
introduce the general concept of differential form. A differential form of degree m (or m-form) L on
an m-dimensional manifold M = {x} is a multivector-valued field which is also a linear function of
the directed measure, that is, L = L(x, dmx). With the x-dependence taken for granted we write

L = L(dmx). (2.29)

By (2.21) and (2.23), the linearity of L implies that

L(dmx) = dmx L(Im) = dx1 . . . dxmL(e1 ∧ . . . ∧ em). (2.30)

Therefore the integral of a differential form over M can be defined or reduced to the Riemann
integral of a field F (x) = L(x, Im(x)) as expressed by

∫
M

L =
∫
M

L(dmx) =
∫
M

F dmx. (2.31)
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By the very definition of a differential form its integral is a directed integral, that is, an integral
based on the directed measure dmx.

It can be proved that any differential m-form can be expressed in the form

L(dmx) =
∑

k

FkdmxGk, (2.32)

where the Fk = Fk(x) and Gk = Gk(x) are multivector-valued fields. Of particular importance is
the special case ∫

M
L(dmx) =

∫
M

F dmxG. (2.33)

Obviously, this reduces to (2.22) when G = 1.
Another important special case is the scalar-valued differential form. Taking the scalar part of

(2.32), with the help of (1–1.37) we find

〈L〉 =
∑

k〈FkdmxGk〉 = 〈dmxF 〉 = dmx ·Fm, (2.34)

where F is defined by F =
∑

k GkFk, and we note that only the m-vector part of F contributes,
because dmx is an m-vector. The scalar-valued integral

〈
∫

L 〉 =
∫

〈L 〉 =
∫

dmx ·Fm (2.35)

is obviously just what we would have obtained by taking the scalar part of (2.22).
The differential forms ordinarily employed in mathematics and physics are scalar-valued, and they

are equivalent to m-forms defined by (2.34). It will be seen in subsequent sections that the more
general concept of multivector-valued differential form introduced here is much more powerful. The
most important thing to understand is that the concept of differential form is subsidiary to the more
fundamental concepts of directed measure and directed integrals. Mathematicians have been slow
to recognize this fact.

2-2 Exercises

(2.1) For a curve C with endpoints a,b, evaluate the following integrals by using definitions (2.1)
and (2.2) respectively. ∫

e
dx = b − a

∫
e
x ·dx = 1

2 (b2 − a2)

Note that the result is the same for all curves with the same endpoints.

(2.2) For spherical coordinates evaluate | e1∧e2 | and | e1∧e2∧e3 | as functions of the coordinates.
For a sphere of radius r, compute the surface area A = 4πr2 and the volume enclosed
v = 4πr3/3.

(2.3) For more exercises, get some good coordinate-surface integrals from calculus texts.
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2-3 Tangential Derivatives

We are now prepared to formulate the general concept of differentiation with respect to a point on
a vector manifold. The tangential derivative ∂F = ∂xF (x) of a field F = F (x) on an m-manifold
M is defined by

∂F (x) = I−1
m (x) lim

N→0

1
N

∮
∂N

dm−1x′F (x′), (3.1)

which is to be understood as follows:

(1) A neighborhood N = N (x) of the point x in M is an oriented m-dimensional submanifold
of M with x as an interior point. A scalar measure N is defined by

N =
∫
N

dmx (3.2)

The orientation at x is specified by the unit tangent Im(x).

(2) The neighborhood boundary ∂N has a directed measure

dm−1x′ = Im−1(x′)| dm−1x′ |

with the standard orientation
Im = Im−1n, (3.3)

where n = n(x′) is the boundary normal (as explained in Section 2–1).

(3) The limit is taken by shrinking N (x) to the point x, and this entails N→0. By stan-
dard mathematical argument it can be proved that the limit is independent of the choice
of successively smaller neighborhoods provided their boundaries are not allowed to have
“pathological shapes.”

(4) Ordinarily the derivative ∂F (x) is said to exist at x if the limit converges to a multivector
of finite magnitude. However, we shall find it convenient later to allow infinite limits in
certain circumstances.

The tangential derivative should be regarded as the derivative with respect to a point on a vector
manifold. The adjective “tangential” is hardly necessary here, and it will be employed mainly for
emphasis, marking the difference from other concepts of derivative. The term “tangential” is meant
to indicate that the domain of the vector variable is restricted to a given manifold as assumed in
the definition (3.1). However, the domain of the variable is taken for granted in other definitions of
derivatives.

There are good reasons to regard the tangential derivative as the most fundamental of all concepts
of derivative. The best reason is the central role it plays in the generalized Fundamental Theorem
of Calculus, developed in Section 2–4. We show below that tangential derivative is a natural
generalization of the conventional derivative in “scalar calculus.” Moreover, it generalizes the “vector
derivative” introduced in Section 1–3 and can be regarded as a generalized partial derivative. To
establish these points, we examine the limit in the tangential derivative definition (3.1) for each of
the three cases m = 1, 2, 3.

On the manifold En, the tangential derivative is identical to the vector derivative ∇ defined in
terms of rectangular coordinates in Section 1–3. Furthermore, (3.1) supplies us with a coordinate-
free definition of ∇. It can be related to coordinate partial derivatives, however, by expressing the
integral in (3.1) in terms of coordinates before taking the limit.
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Fig. 3.1. Features of rectangular neighborhood of a point x in E3.

For E3 we recognize (3.2) as the volume integral V =
∫
| d3x |, and since I3 = i is constant, (3.3)

allows us to write i−1d2x = nd2x, so the definition (3.1) can be put in the form

∂F (x) = lim
V →0

1
V

∮
∂N

d2xnF. (3.4)

For the neighborhood N , we choose a parallelepiped parametrized by rectangular coordinates
x1, x2, x3. The boundary consists of six faces S±

1 ,S±
2 ,S±

3 centered at the points x±
1 ,x±

2 ,x±
3 with

constant outer normals ±σ1,±σ2,±σ3, as indicated in Fig. 3.1. The boundary integral is the sum
of the integrals over the six faces as indicated by

∮
∂N

=
∫

S+
1

+
∫

S−
1

+
∫

S+
2

+
∫

S−
1

+
∫

S+
3

+
∫

S−
3

.

We take the limit in (3.4) by first shrinking the area integral over each face to zero and then
evaluating the limit as opposing faces are brought together at x. Thus, we put (3.4) in the form

∂F = lim
V →0

1
V

3∑
k=1

{ ∫
S+

k

d2xσk F +
∫
S−

k

d2x (−σk)F
}

=
3∑

k=1

σk lim
∆xk→0

1
∆xk

{
F (x+

k ) − F (x−
k )

}
=

∑
k

σk
∂F

∂xk
.

This establishes the equivalence
∂ = ∇ (3.5)

on E3 and any 3-dimensional submanifold within E3.
Let us next examine the definition of the tangential derivative (3.1) for the case m = 1. In this

case, the neighborhood N is a curve through x with endpoints x±. The integral (3.2) gives the arc
length ∆s =

∫
| dx |, and I1(x) = e is the unit tangent. Since the boundary of N consists only of

the two points x±, the integral over the boundary is evaluated by a trivial appeal to the definition
of the an integral as the limit of a sum. The sum is not affected by the limit in this case, so we
obtain ∮

d0x′F (x′) = ∆0(x+)F (x+) + ∆0(x−)F (x−) = F (x+) − F (x−) , (3.6)
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Fig. 3.2. A neighborhood of a point x on a surface parametrized by or-

thogonal curvilinear coordinates. Note that the outer normal is e1 on the

curve C+
1 and −e1 on the curve C−1 .

where the orientations ∆0(x+) = I0(x+) = 1 and ∆0(x−) = I0(x−) = −1 have been assigned to the
endpoints in accordance with the condition (3.3). Consequently, for the case m = 1 the definition
(3.1) for the tangential derivative reduces to

∂F (x) = e(x) lim
∆s→0

F (x+) − F (x−)
∆s

= e
dF

ds
. (3.7)

Thus, on a curve the tangential derivative is essentially equivalent to the derivative with respect to
arc length.

There is an important lesson to be learned from this result. In elementary calculus differentiation
is introduced before integration and the derivative is defined as the limit of a “difference quotient,”
just as in (3.6) with ∆s ∼ |x+ − x−|. Many attempts to generalize calculus beyond scalar variables
by the same approach have proved unsatisfactory, and now we can see why. The emphasis on
difference quotients was misguided. According to (3.1) and (3.2) the derivative should be based on
the quotient of two integrals, and by (3.5) this just happens to reduce to a difference quotient in the
1-dimensional case. Of course, this means that integrals should be regarded as more fundamental
than derivatives—not unreasonable considering that sums are more fundamental than quotients.

Finally, let us examine the definition of tangential derivative for the case m = 2. In this case
the point x lies on a surface and we can enclose it with four coordinate curves C+

1 , C−
1 , C+

2 , C−
2 ,

as shown in Fig. 3.2, thus determining a neighborhood N of the point. Employing the notations
introduced earlier for coordinates, we use (3.3) to relate the orientation I2 to the coordinate frame
by I†2 = e1 ∧ e2/| e1 ∧ e2 |, and we note that the reciprocal frame is given by

e1 = −(e1 ∧ e2)−1e2, e2 = (e1 ∧ e2)−1e1

For the purpose of investigating the limit, we may assume that the neighborhood N is small enough
so the ek can be regarded as constant on N while F is regarded as constant on each of the bounding
curves. Then (3.2) gives

N =
∫

d2x =
∫

| e1 ∧ e2 | dx1dx2 ∼ | e1 ∧ e2 |∆x1∆x2
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Also, with reference to Fig. 3.2,∮
∂N

dx′F ′ =
∫

e+
1

(dx2e2)F +
∫

e−
1

(−dx2e2)F +
∫

e+
2

(−dx1e1)F +
∫

e−
2

(dx1e1)F

∼ ∆x2e2(F (x+
1 ) − F (x−

1 )) − ∆x1e1(F (x+
2 ) − F (x+

2 )).

Accordingly, we can put (3.1) in the form

∂F = lim
∆xk→0

(e2 ∧ e1)−1

∆x1∆x2

{
∆x2e2(F (x+

1 ) − F (x−
1 ))

− ∆x1e1(F (x+
2 ) − F (x−

2 ))
}

=
2∑

k=1

ek lim
∆xk→0

F (x+
k ) − F (x−

k )
∆xk

.

Hence

∂F =
2∑

k=1

ek ∂F

∂xk
. (3.8)

This is the desired result relating the tangential derivative to partial derivatives for arbitrary surface
coordinates.

Recall that for the flat manifold E3 we proved the result (1.23)

∇ = e1 ∂

∂x1
+ e2 ∂

∂x2
+ e3 ∂

∂x3
. (3.9)

For any surface embedded in E3 we can take x1 and x2 as coordinates so n = ê3 is a unit normal to
the surface. Consequently, (3.8) is related to (3.9) by

∂ = nn ∧∇ . (3.10)

This is a coordinate-free relation of the tangential derivative to the vector derivative for any surface
in E3 with unit normal n.

Similarly, for any curve in E3 we can identify a parametrization locally with one coordinate of a
coordinate system for E3. With the choice x1 for parameter, the unit tangent for the curve is e = ê1,
so (3.9) yields

∂ = e e ·∇. (3.11)

For any curve in E3 with unit tangent e, this is a coordinate-free relation of the tangential derivative
(3.7) to the vector derivative ∇.

Equations (3.10), (3.11) and (3.5) can be combined in a single formula

∂ = P (∇) (3.12)

expressing the tangential derivative for any manifold in E3 as a projection of ∇ onto the manifold.
The projection operator P simply annihilates the component of ∇ which differentiates in a direction
normal to the manifold. Note that for any unit vector field n = n(x) on E3 we can write

∇ = n2∇ = nn ·∇ + nn ∧∇. (3.13)

According to (3.10) and (3.11), this can be interpreted as a decomposition of ∇ into the sum of a
tangential derivative and a “normal derivative” with respect to a surface (if n is its normal) or a
curve (if n is its tangent).
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Our derivation of the result (3.7) did not assume that the surface is embedded in E3. Moreover, its
generalization to vector manifolds of any dimension is so obvious that we can simply write down the
result with complete confidence. Thus, for any oriented vector m-manifold with coordinate function
x = x(x1, . . . , xm), the tangential derivative (3.1) is related to the coordinate (partial) derivatives
by

∂ =
m∑

k=1

ek ∂

∂xk
. (3.14)

It follows immediately that, for coordinate functions xk = xk(x),

ek = ∂xk . (3.15)

This is the promised generalization of (1.11) which applies to any manifold, flat or not. Also, from
(3.14) we have

∂x =
∑

k

ek ∂x
∂xk

=
∑

k

ekek .

Thus, we obtain the basic formula for coordinate-free differentiation on manifolds:

∂x = m . (3.16)

Since ∂ is a vector operator we also have ∂x = ∂ ·x + ∂ ∧ x; hence

∂ ·x = m , (3.17a)

∂ ∧ x = 0 . (3.17b)

This generalizes the result ∇x = m which we found for the flat manifold Em. One other general
property of ∂ should be noted here. Since the ek are all tangent vectors on the manifold, they satisfy
Im ∧ ek = 0 and Imek = Im ·ek. Therefore, (3.14) implies

Im ∧ ∂ = 0 (3.18a)

and
Im∂ = Im ·∂, (3.18b)

where Im = Im(x) is the unit tangent (or orientation) of the manifold.
As a final generalization of the tangential derivative, we need to define it for differential forms.

For the differential form L(dm−1x) = L(x, dm−1x) of degree (m−1) defined on an m-manifold with
orientation Im the appropriate definition of tangential derivative is

L̀(Im∂̀) = lim
N→0

1
N

∮
L(dm−1x′), (3.19)

where the limit is defined in the same way as for (3.1). The notation

L̀(Im∂̀) = L(x̀, Im∂̀) = L̀(Im · ∂̀) (3.20)

is meant to indicate that the x-dependence of L is differentiated while Im = Im(x) is not, although
it is proved in GC that ∂ ·Im = 0. Note that the last equality in (3.20) is a consequence of (3.18b).
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2-3 Exercises

(3.1) Let x be a point on a manifold M in En with tangential derivative ∂ = ∂x. For r = x − x′

where x′ is a constant vector, establish the basic derivatives

∂r = m,

∂r ·a = a ·∂r = P (a),

∂|r| = P (r̂),

where a is a constant vector and P is a projection into the tangent space Tx(M).

2-4 The Fundamental Theorem of Calculus

In this Section we establish one of the most important theorems in all of mathematics. The theorem
has many different versions with different names attached to them. In its most elementary form it is
called “the fundamental theorem of integral calculus.” This well-established title is commensurate
with the theorem’s importance, so let us adopt it here. However, the term “integral” in the title
should be dropped as redundant, a relic of times when differential calculus was developed apart
from integral calculus. Indeed, we have seen that on manifolds of more than one dimension the
“differential calculus” should be based on “integral calculus.” The Fundamental Theorem is often
called “Stokes’ Theorem” or “the Generalized Stokes’ Theorem,” but without much historical justice.

Geometric algebra makes it possible to simplify the formulation and applications of the fundamen-
tal theorem significantly. The theorem is presented below in two versions which apply with equal
efficiency to all special cases. It generalizes the ordinary formulation in terms of differential forms
and yields the special formulations most widely used in physics by simple algebraic manipulations.

The Fundamental Theorem of Calculus (Basic Version):

Let F = F (x) be a field with tangential derivative ∂F defined on a piecewise smooth oriented
m-manifold M with boundary ∂M. Then∫

M
dmx ∂F =

∮
∂M

dm−1xF, (4.1)

where the orientations of M and ∂M have the standard relation on ∂M
Im = Im−1n, (4.2)

with dmx = Imdmx and boundary normal n.
The fundamental theorem can be proved by establishing the following sequence of equations∫

M
dmx ∂F = lim

n→∞

n∑
k=1

∆mxk∂F (xk)

= lim
n→∞

n∑
k=1

∆mxk

{ 1
∆mxk

∮
∂Mk

dxm−1F
}

= lim
n→∞

n∑
k=1

∮
∂Mk

dxm−1F =
∮

∂M
dxm−1F.

In the first step the integral is expressed as the limit of a sum. This involves partitioning M
into n pieces Mk. The piece Mk contains the point xk, and it has a directed measure ∆mxk =
Im(xk)|∆mxk | where

|∆mxk | =
∫
Mk

dmx.
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In the second step the definition (3.1) is used to approximate the tangential derivative at each xk

by an integral over ∂Mk. The third step is just a simple cancellation of factors. The key point
in the final step is that adjacent regions Mk share a common boundary, and their integrals over
this boundary exactly cancel because they have opposite orientation. This follows from (4.2) since
the outer normals for adjacent regions are oppositely directed. With complete cancellation for all
internal boundaries, only integrals over those pieces of ∂Mk which are on ∂M remain to produce
the final result.

The reason that this proof is so simple is that the tangential derivative has been defined to make
the formulation and proof of the fundamental theorem as simple as possible. Note that if M is
sufficiently small so that ∂F = ∂F (x) is approximatly constant in M, then (4.1) yields

( ∫
M

dmx′
)
∂F (x) ∼

∮
∂M

dm−1x′F (x′),

and this approximation becomes exact as M shrinks to the point x. Thus we recover the definition
(3.1) of the tangential derivative from the fundamental theorem.

Note that the fundamental theorem relates the derivative ∂F inside M to F itself on ∂M. Thus
the derivative is a kind of “boundary operator” for functions. Moreover, this holds for vector
manifolds of any dimension.

Special Cases in E3

Special cases of the fundamental theorem have many different forms which we now consider.
If M is a 3-manifold in E3, we can write

d3x = id3x, ∂ = ∇, d2x = in d2x (4.3)

So, after factoring out the pseudoscalar i the fundamental theorem (4.1) gives us Gauss’ Theorem
(Basic version): ∫

d3x∇F =
∮

d2xnF. (4.4)

For a scalar field ϕ = ϕ(x), this gives us a formula for the integral of a gradient,
∫

d3x∇ϕ =
∮

d2xnϕ. (4.5)

If F = v = v(x) is a vector field, we can use ∇v = ∇ ·v + i∇×v in (4.4) and separate scalar and
bivector parts to get the divergence theorem∫

d3x∇ ·v =
∮

d2xn ·v, (4.6)

as well as a curl theorem ∫
d3x∇×v =

∮
d2xn×v. (4.7)

The divergence theorem (4.6) is also called Gauss’ theorem, but is seems better to retain the latter
name for the more general result (4.4).

For the case m = 2, M is a surface in E3, and according to (2.17) we can write

d2x = −in d2x, d1x = dx, (4.8)

where n is the surface normal shown in Figs. 1.4 and 2.3 (not to be confused with the boundary
normal in (4.2)). As noted in (3.10), we can also write

∂ = nn ∧∇ = (in)n×∇ (4.9)
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Hence
d2x ∂ = d2xn×∇, (4.10)

and the fundamental theorem (4.1) for a surface in E3 takes the form of Stokes’ theorem:
∫

d2xn×∇F =
∮

dxF. (4.11)

For a vector field F = v, we can separate (4.11) into scalar and bivector parts to get the well-known
scalar Stokes’ Theorem: ∫

d2xn ·(∇×v) =
∮

dx ·v, (4.12)

and a less well-known vector Stokes’ Theorem:
∫

d2x (n×∇)×v =
∮

dx×v. (4.13)

In most of the physics literature only (4.12) is known as Stokes’ theorem. However, the theorem
was originally due to Kelvin who told Stokes about it in a letter; Stokes’ only contribution was to
set the proof of the theorem as an examination question.

Finally, if M is a curve in E3 with endpoints a and b, we can write

d1x = dx = e| dx | and ∂ = ee ·∇

Hence,
dx∂ = dx ·∇, (4.14)

and the fundamental theorem (4.1) reduces to the elementary result
∫

dx ·∇F =
∫

dF = F (b) − F (a) (4.15)

Generalizations

We noted in Section 2-2 that the most general integrand for a directed integral is a differential form.
Therefore the most general version of the fundamental theorem must involve differential forms as
well. To give it a compact formulation we introduce the concepts of exterior differential. The
exterior differential of an (m − 1)-form L = L(dm−1x) is an m-form dL = dL(dmx) defined by

dL = L̀(dmx ∂̀), (4.16)

where dmx = Imdmx and the accent indicates the tangential derivative defined by (3.19). Now we
can state

The Fundamental Theorem of Calculus (General Version):

If L is a differential (m− 1)-form with exterior derivative dL defined on an oriented m-manifold M
with boundary ∂M, then ∫

M
dL =

∮
∂M

L. (4.17)

More details of the theorem included in the basic version are regarded as understood here. The
proof of this general version of the theorem does not differ from the proof of the basic version in
any essential way, so it need not be discussed here.
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The compact form (4.17) for the fundamental theorem is deceptively simple. In particular, it
suppresses the dependence on the directed measure, so it might be desirable to make that explicit
by writing ∫

dL(dmx) =
∮

L(dm−1x) .

To get the conventional formulation of the fundamental theorem in terms of scalar-valued differential
forms, we simply take the scalar part of (4.16). According to (2.34) we can write

〈L〉 = (dm−1x) ·F (4.18a)

where F = F(x) is an (m − 1)-vector-valued field. Whence

d〈L〉 = 〈dL〉 = 〈dmx ∂F〉 = (dmx) ·(∂ ∧ F), (4.18b)

where the last form follows from ∂F = ∂ ·F + ∂ ∧ F and the fact that ∂ ∧ F is an m-vector while
∂ ·F is an (m − 2)-vector.

By using (4.18 a,b) we obtain from (4.16) the scalar Stokes’ Theorem (General Form):

∫
(dmx) ·(∂ ∧ F) =

∮
(dm−1x) ·F (4.19)

Obviously, this contains (4.12) as a special case.
For a flat manifold the fundamental theorem has an important alternative formulation. Since the

orientation Im is constant on a flat manifold, we can write

dL = L̀(Im∂̀)dmx = ImT̀ (∂̀)dmx , (4.20a)

L = L(Imn)dm−1x = ImT (n)dm−1x , (4.20b)

where T (n) = T (x,n) is a tensor field defined by

T (n) = I−1
m L(Imn), (4.21)

and its tangential derivative is
T̀ (∂̀) = T (x̀, ∂̀) . (4.22)

Any linear function T (n) of a vector variable n is called a tensor, and it is called a tensor field when
it is also a field on a manifold, that is, when T (n) = T (x,n) = T (x,n(x)). Now by substituting
(4.20 a,b) into (4.17) and factoring out the Im, we obtain

Gauss’ Theorem (General form):

If T (n) is a tensor field on a flat manifold M, then

∫
M

dmx T̀ (∇̀) =
∮

∂M
dm−1x T (n). (4.23)

For rectangular coordinates on a flat manifold we can write ∂ =
∑

k σk∂k and

T̀ (∂̀) =
m∑

k=1

∂kTk , (4.24)
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where Tk ≡ T (σk). The derivative (4.24) is often called the divergence of the tensor field T because
of its similarity to the divergence of a vector field v in the coordinate form ∇ ·v = ∂kvk. Since
T (n) =

∑
k nkTk where nk = n ·σk, (4.23) can be put in the alternative form

∫
dmx

∑
k∂nTk =

∮
dm−1x

∑
knkTk. (4.25)

We will not be using this form, however.
For the important case of a tensor field with the form

T (n) = GnF = G(x)nF (x), (4.26)

the derivative can be expanded by the product rule,

T̀ (∂̀) = G̀∂̀F̀ = G̀∂̀F + G∂F. (4.27)

As asserted before for ∇, we understand that ∂ differentiates to the right only, while ∂̀ differentiates
all functions or variables with accents on both the left and the right. Applying Gauss’ theorem to
(4.26) we obtain for any flat manifold

∫
dmx G̀∂̀F̀ =

∫
dm x G̀∂̀F +

∫
dmx G∂F =

∮
dm−1x GnF. (4.28)

This result applies only to a flat manifold, since it depends on requiring that the orientation Im

constant so it can be removed from under the integral sign. The appropriate generalization to
nonflat manifolds is obtained by applying (4.17) to L = Gdxm−1F , with the result

∫
G̀ dmx ∂̀F̀ = (−1)m−1

∫
G̀ ∂̀ dmxF +

∫
Gdmx ∂F

=
∮

G dm−1xF, (4.29)

where (3.18b) has been used to deduce that

dmx ∂̀ = dmx · ∂̀ = (−1)m+1∂̀dmx, (4.30)

so factors can be reordered.
The formula (4.29) has very important applications in the next chapter. Here we apply it to the

case G = I†m with dmx = Imdmx as before. It is proved in GC that

∂Im = NIm, (4.31a)

where N = N(x) is a vector field normal to the manifold as expressed by

∂ ·Im = N ·Im = 0. (4.31b)

The proof involves differential geometry of vector manifolds which we cannot go into here. Accepting
the result as given and using it in (4.29), we obtain

∫
dm x (∂F + NF ) =

∮
dm−1xnF (4.32)
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This is a generalization to arbitrary manifolds of Gauss’ theorem (4.4) for flat manifolds. For the
important special case of a vector field v = v(x), the scalar part of (4.32) yields

∫
dmx (∂ ·v + N ·v) =

∮
dm−1xn ·v. (4.33)

Note that (4.31b) implies N ·v = 0 if v is a tangent field on the manifold.

Implications of the Fundamental Theorem

The Fundamental Theorem, with all its many forms, is the single most powerful tool for investi-
gating the properties of fields on a manifold, because it completely specifies the relation between
differentiation and integration. Derivatives describe local properties of a field, that is, behavior of
the field in the immediate neighborhood of a point. On the other hand, integrals describe global
properties of the field over the whole manifold. Therefore, the Fundamental Theorem interrelates
local and global properties. Let us consider some simple but important examples to illustrate this.

Suppose that a manifold M is the boundary of some other manifold V, as expressed by M = ∂V.
Then M itself has no boundary, as can be expressed by the equation ∂∂V = 0, which applies to
any manifold. If we apply the Fundamental Theorem (4.1) to a closed manifold M, the right side
of (4.1) vanishes automatically, so we have

∮
dmx ∂F = 0. (4.34)

for any closed manifold. More specially, if M is a surface bounding a region V in E3, we can rewrite
this in the form (4.11) and use Gauss’ Thm. to get

∫
V

d3x∇×∇F =
∮

∂V
d2xn×∇F = 0. (4.35)

This must hold for any region V and any differentiable function F , so we must have ∇×∇F = 0
at every point, a result which we found by different means in Section 1–3. Now we see that the
operator equation ∇ ∧∇ = i∇×∇ = 0 corresponds to the “topological equation” ∂∂V = 0; it can
be regarded as a local expression of the global topological property that a closed manifold has no
boundary. Sometimes this is expressed by calling ∇∧∇ = 0 “the integrability condition.”

As another example, if we put F = 1 in the Fundamental Theorem (4.1), we immediately get for
any closed m-manifold ∮

dmx = 0 (4.36)

This generalizes the result
∮

dx = 0 for a closed curve, which we noted in Section 2–2. It tells us
that the directed area integral over any closed surface is zero.

If we take F = x in (4.1) and use ∂x = m, we get
∫

dm+1x =
1
m

∮
dmxx =

1
m

∮
dmx ∧ x, (4.37)

with
∮

dmx ·x = 0 as a corollary. For the case m = 2, this becomes a general formula for the
directed area A of a surface,

A ≡
∫

d2x =
1
2

∮
dx ∧ x. (4.38)

For the case m = 3, in accordance with the notation (4.3), we have

V =
∫

d3x =
1
3

∮
d2xnx =

1
3

∮
d2xn ·x (4.39)
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for any closed surface bounding a region with volume V .
The above examples are special cases of the obvious general theorem that if a field G can be

expressed as the derivative ∂F of some other function F on a manifold M, then the integral of G
over M can be expressed as the integral of F over ∂M, that is, if G = ∂F on M, then∫

M
dmxG =

∮
∂M

dm−1xF (4.40)

This result is more general than one might imagine at first. In the next chapter we shall prove that
if the derivative of G is continuous on a flat space (or even singular in certain ways), then there
exists an F such that G = ∂F . Therefore, it is generally possible to express a volume integral as an
equivalent surface integral. A couple more examples are given in the exercises.

The Fundamental Theorem provides us with general conditions for the path independence of
a line integral. Suppose we have two oriented curves C1 and C2 with common endpoints. If the
orientation of one of them is reversed, the two curves can be combined into a single oriented closed
curve C = C1 − C2. The line integrals along these curves are related by∮

C
L(dx) =

∫
C1

L(dx) −
∫
C2

L(dx). (4.41)

So if
∮

L(dx) = 0 for all closed curves in some region R, then the line integrals
∫

L(dx) over all paths
in R with common endpoints have the same value. In this case, we say that the line integral

∫
L(dx)

is path independent in R. It follows, then, from the fundamental theorem (4.17) that dL = 0 at every
point in calR is a necessary and sufficient condition for this path independence. For the particular
integrand L(dx) = v ·dx, Stokes’ Theorem (4.12) implies that if ∇×v = 0 in a region R in E3, then∮

v ·dx = 0 for all closed curves in R. The condition that R be simply-connected is necessary to
ensure that each closed curve is the complete boundary of a surface on which ∇×v = 0 so Stokes’
Theorem applies. A region is simply-connected if any closed curve in the region can be shrunk
continuously to a point without leaving the region. Since the surface bounded by a given closed
curve in R can be chosen arbitrarily, Stokes’ Theorem also implies that if

∮
v ·dx = 0 then ∇×v = 0.

Thus, we have proved that ∇×v = 0 in a simply-connected region R iff
∮

v ·dx = 0 for all closed
curves in R. Therefore, ∇×v = 0 is a necessary and sufficient condition for path independence of
the line integral

∫
v ·dx in R. Note that this is a relation between local and global properties of

the field v in the region R. Tese theorems on path independence of line integrals have counterparts
in theorems about surface integrals, which follow in a similar way from the Fundamental Theorem
(see Ex. 3.3).

2-4 Exercises
(4.1) Use the definition (3.1) to prove ∇x = 3 in E3 by evaluating the integral on a sphere

surrounding the point before taking the limit. Show that the result is independent of the
choice of origin.

(4.2) Use Eq. (4.1) to prove that the surface area A for a sphere of radius r in En is related to
the volume V enclosed by rA = mV . Note that it is unnecessary to use coordinates in the
proof.

(4.3) For multivector fields F = F (x) and G = G(x) on E3, derive Green’s Theorem

∫
d3x [(∇2G)F − G∇2F ] =

∮
d2x [(n ·∇G)F − Gn ·∇F ]

from Gauss’ theorem (4.23) by determining T .
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(4.4) Suppose S1 and S2 are surfaces in E3 with a common oriented boundary. Prove that if
∇F = 0 in a simply-connected region enclosed by these surfaces, then

∫
S1

d2xF =
∫
S2

d2xF

Thus, state and prove a theorem about the independence of directed surface integral on the
choice of surface spanning a given closed curve.

(4.5) Prove that ∫
S

d2xn ·∇F = −
∮

∂S
dxF

for any surface S with surface normal n in a region where ∇F = 0.

(4.6) Let B be a solid ball with radius R and center at r = 0. Use Gauss’ theorem to help evaluate
the volume integral ∫

B
d3r r2k =

4πR2k+3

2k + 3

for any integer k.

(4.7) For a continuous body with a uniform mass density and volume V , derive the following
formulas expressing the center of mass X and the inertia tensor I(a) as integrals over the
surface of the body:

X =
1

2V

∮
d2xnx2,

I(a) ≡ 1
V

∫
d3r r r ∧ a =

i

V

∮
d2r

r2

10
(3r ∧ a − 2r ·a),

where v = x − X.


