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Chapter 1

Synopsis of Geometric Algebra

This chapter summarizes and extends some of the basic ideas and results of Geometric Algebra
developed in a previous book NFCM (New Foundations for Classical Mechanics). To make the
summary self-contained, all essential definitions and notations will be explained, and geometric
interpretations of algebraic expressions will be reviewed. However, many algebraic identities and
theorems from NFCM will be stated without repeating proofs or detailed discussions. And some
of the more elementary results and common mathematical notions will be taken for granted. As
new theorems are introduced their proofs will be sketched, but readers will be expected to fill-in
straightforward algebraic steps as needed. Readers who have undue difficulties with this chapter
should refer to NFCM for more details. Those who want a more advanced mathematical treatment
should refer to the book GC (Clifford Algebra to Geometric Calculus).

1-1. The Geometric Algebra of a Vector Space

The construction of Geometric Algebras can be approached in many ways. The quickest (but not the
deepest) approach presumes familiarity with the conventional concept of a vector space. Geometric
algebras can then be defined simply by specifying appropriate rules for multiplying vectors. That
is the approach to be taken here.

The terms “linear space” and “vector space” are usually regarded as synonymous, but it will be
convenient for us to distinguish between them. We accept the usual definition of a linear space
as a set of elements which is closed under the operations of addition and scalar multiplication.
However, it should be recognized that this definition does not fully characterize the geometrical
concept of a vector as and algebraic representation of a “directed line segment.” The mathematical
characterization of vectors is completed defining a rule for multiplying vectors called the “geometric
product.” Accordingly, we reserve the term vector space for a linear space on which the geometric
product is defined. It will be seen that from a vector space many other kinds of linear space are
generated.

Let Vn be an n-dimensional vector space over the real numbers. The geometric product of vectors
a,b, c in Vn is defined by three basic axioms:
The “associative rule”

a(bc) = (ab)c, (1.1)
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2 Geometric Algebra of a Vector Space

The left and right “distributive rules”

a(b + c) = ab + ac

(b + c)a = ba + ca,
(1.2)

and the “contraction rule”
a2 = |a |2 (1.3)

where |a | is a positive scalar (= real number) called the magnitude or length of a, and |a | = 0 if and
only if a = 0. Both distributive rules (1.2) are needed, because multiplication is not commutative.

Although the vector space Vn is closed under vector addition, it is not closed under multiplication,
as the contraction rule (1.3) shows. Instead, by multiplication and addition the vectors of Vn

generate a larger linear space Gn = G(Vn) called the geometric algebra of Vn. This linear space is,
of course, closed under multiplication as well as addition.

The contraction rule (1.3) determines a measure of distance between vectors in Vn called a Eu-
clidean geometric algebra. Thus, the vector space Vn can be regarded as an n-dimensional Euclidean
space; when it is desired to emphasize this interpretation later on, we will often write En instead of
Vn. Other types of geometric algebra are obtained by modifying the contraction rule to allow the
square of some nonzero vectors to be negative or even zero. In general, it is some version of the
contraction rule which distinguishes geometric algebra from the other associative algebras.

Inner and Outer Products

The geometric product ab can be decomposed into symmetric and antisymmetric parts defined by

a ·b =
1
2
(ab + ba) (1.4)

and
a ∧ b =

1
2
(ab − ba). (1.5)

Thus,
ab = a ·b + a ∧ b. (1.6)

By expanding the quantity (a+b)2, it is easy to prove that the symmetrized product a ·b is scalar-
valued. In fact, a ·a is precisely the conventional Euclidean inner product.

The antisymmetrized product a ∧ b is called the outer product. It is neither scalar nor vector
valued. For any specific vectors a and b, the quantity a∧b is a new kind of entity called a bivector
(or 2-vector). Geometrically, it represents a directed plane segment (Fig. 1.1) in much the same
way as a vector represents a directed line segment. We can regard a ∧ b as a directed area, with a
magnitude |a∧b| equal to the usual scalar area of the parallelogram in Fig. 1.1, with the direction of
the plane in which the parallelogram lies, and with an orientation (or sense) which can be assigned
to the parallelogram in the plane.

The geometric interpretations of the inner and outer products determine a geometric interpretation
for the geometric product. Equation (1.4) implies that

ab = −ba iff a ·b = 0, (1.7a)

while (1.5) implies that
ab = ba iff a ∧ b = 0, (1.7b)

where iff means “if and only if.” Equation (1.7a) tells us that the geometric product ab of nonzero
vectors a and b anticommutes iff a and b are orthogonal, while (1.7b) tells us that the geometric
product commutes iff the vectors are collinear. Equation (1.6) tells us that, in general, ab is a
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Fig. 1.1. Just as a vector a represents (or is represented by) a directed

line segment, a bivector a ∧ b represents a directed plane segment (the

parallelogram with sides a and b, and the trivector (3-vector) a∧b∧ c
represents a directed space segment (the parallelopiped with edges a,b, c).

An orientation for the bivector (and the parallelogram) is indicated in the

diagram by placing the tail of vector b at the head of vector a. An

orientation for the trivector is indicated in a similar way.

mixture of commutative and anticommutative parts. Thus, the degree of commutativity of the
product ab is a measure of the direction of a relative to b. In fact, the quantity a−1b = ab/a2 is a
measure of the relative direction and magnitude of a and b. It can also be regarded as an operator
which transforms a into b, as expressed by the equation a(a−1b) = b. This property is exploited
in the theory of rotations.

Having established a complete geometric interpretation for the product of two vectors, we turn
to consider the products of many vectors. The completely antisymmetrized product of k vectors
a1,a2, . . . ,ak generates a new entity a1 ∧ a2 ∧ . . . ∧ ak called a k-blade. The integer k is called the
step (or grade of the blade.* A linear combination of blades with the same step is called a k-vector.
Therefore, every k-blade is a k-vector. The converse that every k-vector is a k-blade holds only in
the geometric algebras Gn with n ≤ 3. Of course, G3 is the algebra of greatest interest in this book.

From a vector a and a k-vector Ak, a (k + 1)-vector a ∧ Ak is generated by the outer product,
which can be defined in terms of the geometric product by

a ∧ Ak =
1
2
(aAk + (−1)kAka)

= (−1)kAk ∧ a. (1.8)

This reduces to Eq. (1.5) when k = 1, where the term “1-vector” is regarded as synonymous with
“vector.”

The inner product of a vector with a k-vector can be defined by

a ·Ak =
1
2
(aAk − (−1)kAka) = (−1)k+1Ak ·a. (1.9)

This generalizes the concept of inner product between vectors. The quantity a ·Ak is a (k−1)-vector.
Thus, it is scalar-valued only when k = 1, where the term “0-vector” is regarded as synonymous
with “scalar.”

* The term “grade” is used in NFCM and GC. However, “step” is the term originally used by
Grassmann (“steppe” in German), and, unlike “grade,” it does not have other common mathematical
meanings.
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It is very important to note that the outer product (1.8) is a “step up” operation while the inner
product (1.9) is a “step down” operation. By combining (1.8) and (1.9) we get

aAk = a ·Ak + a ∧ Ak,

Aka = Ak ·a + Ak ∧ a. (1.10)

This can be seen as a decomposition of the geometric product by a vector into step-down and step-up
parts.

Identities

To facilitate manipulations with inner and outer products a few algebraic identities are listed here.
Let vectors be denoted by bold lower case letters a,b, . . ., and let A, B, . . . indicate quantities of
any step, for which a step can be specified by affixing an overbarred suffix. Thus Ak has step k.
The overbar may be omitted when it is clear that the suffix indicates step.

The outer product is associative and antisymmetric. Associativity is expressed by

A ∧ (B ∧ C) = (A ∧ B) ∧ C = A ∧ B ∧ C (1.11)

The outer product is antisymmetric in the sense that is reverses sign under interchange of any two
vectors in a multiple outer product, as expressed by

A ∧ a ∧ B ∧ b ∧ C = −A ∧ b ∧ B ∧ a ∧ C (1.12)

The inner product is not strictly associative. It obeys the associative relation

Ar · (Bs ·Ct ) = (Ar · Bs ) ·Ct for r + t ≤ s. (1.13)

However, it relates to the outer product by

Ar · (Bs · Ct ) = (Ar ∧ Bs ) ·Ct for r + s ≤ t . (1.14)

Our other identity relating inner and outer products is needed to carry out step reduction explicitly:

a ·(b ∧ C) = (a ·b)C + b ∧ (a ·C). (1.15)

In particular, by iterating (1.15) one can derive the reduction formula

a ·(b1 ∧ b2 ∧ · · · ∧ br)

=
r∑

k=1

(−1)r+1(a ·bk)b1 ∧ · · · ∧
∨
bk ∧ · · · ∧ br (1.16)

where
∨
bk means that the k th vector bk is omitted from the product.

Many other useful identities can be generated from the above identities. For example, from (1.14)
and (1.16) one can derive

(ar ∧ · · · ∧ a1) ·(b1 ∧ · · · ∧ br) (1.17)

= (ar ∧ · · · ∧ a2) · [a1 ·(b1 ∧ · · · ∧ br)]

=
r∑

k=1

(−1)k+1(a1 ·bk)(ar ∧ · · · ∧ a2) ·(b1 ∧ · · · ∧
∨
bk ∧ · · · ∧ br).
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This is the well-known Laplace expansion of a determinant about its first row. That can be estab-
lished by noting that the matrix elements of any matrix [aij ] can be expressed as inner products
between two sets of vectors, thus,

aij = ai ·bj . (1.18)

Then the determinant of the matrix can be defined by

det [aij ] = (ar ∧ · · · ∧ a1) ·(b1 ∧ · · · ∧ br). (1.19)

From this definition all the properties of determinants follow, including the Laplace expansion (1.17).
We will encounter many identities and equations involving the geometric product along with

inner and outer products. To reduce the number of parentheses in such expressions, it is sometimes
convenient to employ the following precedence conventions

(A ∧ B)C = A ∧ BC �= A ∧ (BC)
(A ·B)C = A ·BC �= A ·(BC)
A ·(B ∧ C) = A ·B ∧ C �= (A ·B) ∧ C (1.20)

This is to say that when there is ambiguity in the order for performing adjacent products, outer
products take precedence over (are performed before) inner products, and both inner and outer
products take precedence over the geometric products. For example, the simplest (and consequently
the most common and useful) special case of (1.16) is the identity

a ·(b ∧ c) = (a ·b)c − (a ·c)b. (1.21)

The precedence conventions allow us to write this as

a ·b ∧ c = a ·bc − a ·cb.

The Additive Structure of Gn

The vectors of a set a1,a2, . . . ,ar are linearly independent if and only if the r-blade

Ar = a1 ∧ a2 ∧ · · · ∧ ar (1.22)

is not zero. Every such r-blade determines a unique r-dimensional subspace Vr of the vector space
Vn, consisting of all vectors a in Vn which satisfy the equation

a ∧ Ar = 0. (1.23)

The blade Ar is a directed volume for Vr with magnitude (scalar volume) |Ar |. These are the
fundamental geometric properties of blades.

An ordered set of vectors {ak| k = 1, 2, . . . n} in Vn is a basis for Vn if and only if it generates a
nonzero n-blade a1 ∧ a2 ∧ · · · ∧ an. The n-blades are called pseudoscalars or Vn or Gn. They make
up a 1-dimensional linear space, so we may choose a unit pseudoscalar I and write

a1 ∧ a2 ∧ · · · ∧ an = αI, (1.24)

where α is scalar. This can be solved for the scalar volume |α | expressed as a determinant,

α = (a1 ∧ · · · ∧ an)I−1 = (a1 ∧ · · · ∧ an) ·I−1 (1.25)
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Fig. 1.2. A schematic representation of Gn showing its duality symmetry.

From the bottom up, the rth rung of the ladder represents the space

of r-vectors
(

r
n

)
. The length of the rung corresponds to the dimension

of the space, which increases from the bottom up and the top down to

the middle. The 1-dimensional space of scalars is represented by a single
point. A duality transformation Gn simply flips the diagram about its
horizontal symmetry axis.

The pseudoscalars a1 ∧ · · · ∧ an and I are said to have the same orientation if and only if α is
positive. Thus, the choice of I assigns an orientation to Vn and Vn is said to be oriented. The
opposite orientation is obtained by selecting −I as unit pseudoscalar.

From any basis {ar} for Vn we can generate a basis for the linear space Gr
n of r-vectors by forming

all independent outer products of r vectors from the set {ak}. The number of ways this can be done
is given by the binomial coefficient

(
n
r

)
. Therefore, Gr

n is a linear space of dimension
(
n
r

)
. The entire

geometric algebra Gn = G(Vn) can be described as a sum of subspaces with different grade, that is,

Gn = G0
n + G1

n + . . . + Gr
n + . . . + Gn

n =
n∑

r=0

Gr
n (1.26)

Thus Gn is a linear space of dimension

dimGn =
n∑

r=0

dimGr
n =

n∑
r=0

(
n

r

)
= 2n. (1.27)

The elements of n are called multivectors or quantities. In accordance with (1.26), any multivector
A can be expressed uniquely as a sum of its r-vector parts Ar , that is,

A = A0 + A1 + · · · + Ar + · · · + An =
n∑

r=0

Ar . (1.28)

The structure of Gn is represented schematically in Fig. 1.2. Note that the outer product (1.8)
with a vector “moves” a k-vector up one rung of the ladder in Fig. 1.2, while the inner product
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“moves” down a rung. The figure also shows the symmetry of Gn under a duality transformation.
The dual AI of a multivector A is obtained simply by multiplication with the unit pseudoscalar
I. This operation maps scalars into pseudoscalars, vectors into (n − 1)-vectors and vice-versa. In
general, it transforms on r-vector Ar into an (n − r)-vector Ar I. For any arbitrary multivector,
the decomposition (1.28) gives the term-by-term equivalence

AI =
n∑

r=0

Ar I =
n∑

r=0

(AI)n−r (1.29)

A duality transformation of Gn interchanges up and down in Fig. 1.2; therefore, it must interchange
inner and outer products. That is expressed algebraically by the identity

(a ·Ar )I = a ∧ (Ar I) (1.30)

Note that this can be solved to express the inner product in terms of the outer product and two
duality transformations,

a ·Ar = [a ∧ (Ar I)]I−1 (1.31)

This identity can be interpreted intuitively as follows: one can take a step down the ladder in Gn

by using duality to flip the algebra upside down, taking a step up the ladder and then flipping the
algebra back to right side up.

Reversion and Scalar Parts

Computations with geometric algebra are facilitated by the operation of reversion which reverses
the order of vector factors in any multivector. Reversion can be defined by

(a1a2 · · ·ar)† = arar−1 · · ·a1. (1.32)

It follows that a† = a and α† = α for vector a and scalar α. In general, the reverse of the r-vector
part of any multivector A is given by

(A†)r = (Ar )† = (−1)r(r−1)/2Ar . (1.33)

Moreover,

(AB)† = B†A†, (1.34)

(A + B)† = A† + B†. (1.35)

The operation of selecting the scalar part of a multivector is so important that it deserves the
special notation

〈A〉 ≡ A0. (1.36)

This generalizes the operation of selecting the real part of a complex number and corresponds to
computing the trace of a matrix in matrix algebra. Like the matrix trace, it has the important
permutation property

〈ABC〉 = 〈BCA〉. (1.37)

A natural scalar product is defined for all multivectors in the 2n-dimensional linear space Gn by

〈A†B〉 =
n∑

r=0

〈A†
r Br 〉 = 〈B†A〉. (1.38)
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For every multivector A this determines a scalar magnitude or modulus |A | given by

|A |2 = 〈A†A〉 =
∑

r

|Ar |2 =
∑

r

A†
r Ar (1.39)

The measure for the “size” of a multivector has the Euclidean property

|A |2 ≥ 0 (1.40)

with |A | = 0 if and only if A = 0. Accordingly, the scalar product is said to be “Euclidean” or
“positive definite.” The multivector is said to be unimodular if |A | = 1.

An important consequence of (1.39) is the fact that every r-vector has a multiplicative inverse
given by

A−1
r =

A†
r

|Ar |2 . (1.41)

However, some multivectors of mixed step do not have inverses.

Involutions

An automorphism of an algebra Gn is a one-to-one mapping of Gn onto Gn which preserves the
algebraic operations of addition and multiplication. An involution α is an automorphism which
equals the identity mapping when applied twice. Thus, for any element A in Gn,

α2(A) = α
(
α(A)

)
= A. (1.42)

Geometric algebra has two fundamental involutions. The first is reversion, which has just been
discussed with the notation A† = α(A). The second is sometimes called the main involution and
denoted by A∗ = α(A). It is defined as follows: Any multivector A can be decomposed into a part
A+ = A0 + A2 + · · · of even step and a part A− = A1 + A3 + · · · of odd step; thus

A = A+ + A−. (1.43)

Now the involute of A can be defined by

A∗ = A+ − A− (1.44)

It follows that, for the geometric product of any multivectors,

(AB)∗ = A∗B∗. (1.45)

1-2. The Algebra of Euclidean 3-Space

Throughout most of this book we will be employing the geometric algebra G3 = G(E3), because
we use vectors in E3 to represent places in physical (position) space. The properties of geometric
algebra which are peculiar to the three-dimensional case are summarized in this section. They all
derive from special properties of the pseudoscalar and duality in G3.

The unit pseudoscalar for G3 is so important that the special symbol i is reserved to denote
it. This symbol is particularly apt because i has the algebraic properties of a conventional unit
imaginary. Thus, it satisfies the equations

i2 = −1 (2.1)
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and
ia = ai (2.2)

for any vector a. According to (2.2), the “imaginary number” i commutes with vectors, just like
the real numbers (scalars). It follows that i commutes with every multivector in G3.

The algebraic properties (2.1) and (2.2) allow us to treat i as if it were an imaginary scalar, but
i has other properties deriving from the fact that it is the unit pseudoscalar. In particular, i relates
scalars and vectors in G3 to bivectors and pseudoscalars by duality. To make this relation explicit,
consider an arbitrary multivector A written in the expanded form

A = A0 + A1 + A2 + A3. (2.3)

For G3 the general ladder diagram in Fig. 1.2 takes the specific form in Fig. 2.1. As the diagram
shows, the bivectors of G3 are pseudovectors, therefore, every bivector in G3 can be expressed as
the dual of a vector. Thus, the bivector in G3 can be expressed as the dual of a vector. Thus,
the bivector part of A can be written in the form A2 = ib, where b is a vector. Similarly, the
trivector (=pseudoscalar) part of A can be expressed as the dual of a scalar β by writing A3 = iβ.
Introducing the notations α = A0 and a = A1 for the scalar and vector parts of A, the expansion
(2.3) can be written in the equivalent form

A = α + a + ib + iβ. (2.4)

This shows that A has the formal algebraic structure of a complex scalar α+ iβ added to a complex
vector a + ib. The algebraic advantages of the “complex expanded form” (2.4) are such that we
shall use the form often.

Fig. 2.1. Ladder diagram for G3. Each dot represents one dimension.

Using the fact that the dual of the bivector a ∧ b is a vector, the vector cross product a×b can
be defined by

a×b = −i(a ∧ b), (2.5)

or, equivalently, by
a ∧ b = i(a×b). (2.6)

Clearly, a change in the sign (orientation) of i in (2.5) will reverse the direction (orientation) of
a×b. The orientation of i can be chosen so the vector a×b is related to the vectors a and b by
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the standard right hand rule (Fig. 2.2). This choice of orientation can be expressed by calling i the
dextral (or righthanded) pseudoscalar of G3.

Now the geometric product of vectors in E3 can be decomposed in two ways:

ab = a ·b + a ∧ b = a ·b + i(a×b) (2.7)

The outer product can thus be replaced by the cross product in G3 provided the unit pseudoscalar is
introduced explicitly. This is not always advisable, however, because the outer product is geomet-
rically more fundamental than the cross product.

Another special property of the pseudoscalar i is the duality relation between inner and outer
products expressed by the identity (1.30). In G3 two specific cases of that identity are easily derived
by expanding the associative identity (ab)i = a(bi) in terms of inner and outer products and
separately equating vector and trivector parts. The result is

(a ∧ b)i = a ·(bi), (2.8a)

(a ·b)i = a ∧ (bi). (2.8b)

Applying (2.8b) to the directed volume a ∧ b ∧ c = a ∧ (ib×c), we obtain

a ∧ b ∧ c = a ·(b×c)i (2.9)

This tells us that the scalar a ·(b×c) gives the magnitude and orientation of the pseudoscalar
a ∧ b ∧ c. If a ·(b×c) is positive (negative), then a ∧ b ∧ c has the same (opposite) orientation as
i; in other words, it is a right-(left-)handed pseudoscalar.

Applying (2.5) and (2.8b) to the double cross product a×(b×c) and then using the expansion
(1.21), we obtain

a×(b×c) = −a ·(b ∧ c) = −a ·bc + a ·cb. (2.10)

This reveals a geometrical reason why the cross product is not associative. The double cross product
hides the facts that the geometrically different inner and outer products are actually involved.

Reversion and Involution

Reversion of the pseudoscalar i gives
i† = −i (2.11)

This can be concluded from (1.32) with r = 3 or from (a ∧ b ∧ c)† = c ∧ b ∧ a = −a ∧ b ∧ c. Also,
(ib)† = b†i† = b(−i) = −ib. Hence, for a multivector A in thestandard form (2.4), the reverse is
given explicitly by

A† = α + a − ib − iβ. (2.12)

The magnitude of A is now given by the obviously positive definite expression

|A |2 = 〈AA†〉 = α2 + a2 + b2 + β2 ≥ 0. (2.13)

Equation (2.12) expresses reversion in G3 as a kind of “complex conjugation.”
Physicists define space inversion as a reversal of all directions in space. This maps every vector a

in E3 into a vector
a∗ = −a. (2.14)

Since E3 generates G3, this induces an automorphism of G3 which, in fact, is precisely the main
involution defined in the preceeding section. Thus, the induced mapping of a k-blade is given by

(a1 ∧ · · · ∧ ak)∗ = a∗
1 ∧ · · · ∧ a∗

k = (−1)ka1 ∧ · · · ∧ ak. (2.15)
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This sign factor (−1)k is called the parity of the blade. The parity is said to be even (odd) when k
is an even (odd) integer.

The term “space inversion” is not well chosen, because no notion of inverse is involved. Moreover,
the term “inversion” is commonly applied to another kind of mapping (discussed later) which does
involve inverses. For that reason, the term space involution will be adopted in this book.

The composite of reversion and space involution produces a new operation which is important
enough in some applications to deserve a name and a notation. The conjugate Ã can be defined by

Ã = (A†)∗ = (A∗)†. (2.16)

It follows from (1.34) and (2.15) that the conjugate of a product is given by

(AB)˜ = B̃Ã. (2.17)

From (2.16) and (2.12) we get
Ã = α − a − ib + iβ. (2.18)

This could be adopted as an alternative definition of conjugation. It should not be thought that
conjugation is less important than reversion and space involution. Actually, we shall have more
occasion to employ the operations of conjugation and reversion than space involution.

Polar and Axial Vectors

Physicists commonly define two kinds of vector distinguished by opposite parities under space inver-
sion. Polar vectors are defined to have odd parity, as expressed by (2.14). Axial vectors are defined
to have even parity, and the cross product of polar vectors a and b is defined to be axial, so

(a×b)∗ = a∗×b∗ = (−a)×(−b) = a×b. (2.19)

This property is inconsistent with our definition (2.5) of the cross product, for (1.45) and (2.15)
imply

(a×b)∗ = −i∗(a∗ ∧ b∗) = −(−i)(−a) ∧ (−b) = −a×b. (2.20)

Note that our definition recognized the duality implicit in the definition of the cross product, so we
get a sign change from the pseudoscalar under space inversion. Thus, every vector is a polar vector
for us, whether obtained from a cross product or not.

On the other hand, it should be noted that bivectors have the same parity as axial vectors, for

(a ∧ b)∗ = a∗ ∧ b∗ = (−a) ∧ (−b) = a ∧ b. (2.21)

This shows that the concept of an axial vector is just a way of representing bivectors by vectors. In
geometric algebra the conventional distinction between polar and axial vectors is replaced by the
deeper distinction between vectors and bivectors.

One more remark should help avoid confusion in applications of the parity concept. The quantity
a ·(b×c) is commonly said to be a pseudoscalar in the physics literature. That is because it
changes sign under space inversion if b×c is an axial vector. In geometric algebra it is also true
that pseudoscalars have odd parity; however, a ·(b×c) is a scalar with even parity. The change in
sign comes from the unit pseudoscalar in (2.9); thus,

(a ∧ b ∧ c)∗ = a ·(b×c)i∗ = −a ∧ b ∧ c. (2.22)
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Quaternions

It follows from (1.45) that the product of two multivectors with the same parity always has even
parity. Therefore, the linear space of all even multivectors,

G+
3 = G0

3 + G2
3 (2.23)

is closed under multiplication, whereas the space of odd (parity) multivectors is not. Thus, G+
3 is a

subalgebra of G3. It is called the even subalgebra of G3 or the quaternion algebra. Its elements are
called quaternions. The name derives from the fact that G+

3 is a 4-dimensional linear space, with
one scalar and three bivector dimensions. Thus, any quaternion Q can be written in the expanded
form

Q = α + ib (2.24)

Every quaternion has a conjugate
Q̃ = Q† = α − ib, (2.25)

and, if it is nonzero, an inverse

Q−1 =
1
Q

=
Q†

QQ† =
Q†

|Q |2 . (2.26)

In expanded form,

Q−1 =
α − ib
α2 + b2

. (2.27)

Most of the literature on the mathematical and physical applications of quaternions fails to recog-
nized how quaternions fit into the more comprehensive mathematical language of geometric algebra.
It is only within geometric algebra that quaternions can be exploited to fullest advantage.

As a point of historical interest, it may be noted that all multivectors in G3 can be regarded
formally as complex quaternions, also called biquaternions. To make the point explicit, note that
the expanded form (2.4) is equivalent to

A = Q + iP, (2.28)

where Q = α+ib and P = β−ia are “real quaternions.” Here the unit imaginary in the biquaternion
appears explicitly.

In biquaternion theory the “complex conjugate” is therefore given by

A∗ = Q − iP, (2.29)

and the “quaternion conjugate” is given by

Ã = Q̃ + iP̃ . (2.30)

These correspond exactly to our space involution (2.14) and conjugation (2.19). During the last
century applications of biquaternions to physics have been repeatedly rediscovered without being
developed very far. The literature on biquaternions is limited by a failure to recognize that the
unit imaginary in (2.28) should be interpreted as a unit pseudoscalar. The notion of a “complex
quaternion” is of little interest in geometric algebra, because it does not give sufficient emphasis to
geometric meaning, and the decomposition (2.28) is of interest mainly because it is a separation of
even and odd parts.



Synposis of Geometric Algebra 13

1-3 Differentiation by Vectors

In this section differentiation by vectors is defined in terms of partial derivatives and is used to
establish basic relations needed to carry out differentiation efficiently. This is the quickest way to
introduce vector differentiation to readers who are already familiar with partial differentiation. A
more fundamental approach is taken in §2–3 where the vector derivative is generalized and defined
ab initio without employing coordinates.

Let F = F (x) be a multivector-valued function of a vector variable x in En. The variable x can
be parameterized by rectangular coordinates x1, x2, . . . , xn by writing

x = σ1x1 + σ2x2 + σ2x2 + · · · + σnxn =
∑

σkxk, (3.1)

where {σ1,σ2, . . . ,σn} is a fixed orthonormal basis. The function F = F (x) is then expressed as a
function of the coordinates by

F (x) = F (σ1x1 + σ2x2 + · · · + σnxn) = F (x1, x2, . . . , xn). (3.2)

It is convenient to express the derivative with respect to the kth coordinate as an operator ∂xk

abbreviated to ∂k and defined by

∂kF = ∂xk
F =

∂F

∂xk
. (3.3)

Then the vector derivative can be introduced as a differential operator ∇ (called “del”) defined by

∇ =
∑

σk∂k. (3.4)

Operating on the function F = F (x), this gives

∇F = σ1∂1F + σ2∂2F + · · · + σn∂nF. (3.5)

The operation of ∇ on the function F = F (x) thus produces a new function ∇F called “the gradient
of F ,” which means that it is “the derivative of F” with respect to a vector variable. This concept of
the vector derivative along with its notation and nomenclature is unconventional in that it employs
the geometric product in an essential way. However, as its implications are developed it will be seen
to unify the various conventional notions of differentiation.

The variable x is suppressed in the notation ∇F . The dependence can be made explicit by writing
∇ = ∇x and ∇xF = ∇xF (x). When dealing with functions of two or more vector variables, the
subscript on ∇x indicates which variable is being differentiated.

The partial derivative obeys the three general rules for scalar differentiation: the distributive,
product, and chain rules. For functions F = F (x) and G = G(x) the distributive rule is

∂k(F + G) = ∂kF + ∂kG, (3.6)

and the product rule is
∂k(FG) = (∂kF )G + F∂kG. (3.7)

If G = α is a scalar constant, the produce rule reduces to

∂k(αF ) = α∂kF. (3.8)
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Note that (3.6) along with (3.8) are the requirements making the derivative a linear operator in Gn.
Finally, for a function of the form F = F (λ(x)) where λ = λ(x) is scalar-valued, the chain rule is

∂kF = (∂kλ)
∂F

∂λ
= (∂kF )

[
∂F (λ)

∂λ

]
λ=λ(x)

(3.9)

It should be noted that the symbol λ is used in two distinct but related senses here; in the expression
∂F (λ)/∂λ it denotes an independent scalar variable, while in λ = λ(x) it denotes a scalar-valued
function. This kind of ambiguity is frequently introduced by physicists to reduce the proliferation
of symbols, but it is not so often employed by mathematicians. The reader should be able to resolve
the ambiguity from the context.

The general rules for vector differentiation can be obtained from those of scalar differentiation by
using the definition (3.4). Multiplying (3.6) by σk and summing, we obtain the distributive rule

∇(F + G) = ∇F + ∇G. (3.10)

Similarly, from (3.7) we obtain the product rule

∇(FG) = (∇F )G +
∑

σkF∂kG (3.11)

In general σk will not commute with F . In G3, since only scalars and pseudoscalars commute with
all vectors, the product rule can be put in the form

∇(FG) = (∇F )G + F (∇G) (3.12)

if and only if F = F0 + F3. The general product rule (3.11) can be put in a coordinate-free form by
introducing various notations. For example, we can write

∇(FG) = ∇̀F̀G + ∇̀FG̀, (3.13)

where the accent indicates which function is being differentiated while the other is held fixed.
Another version of the product rule is

G∇F = G∇̀F̀ + G̀∇̀F. (3.14)

In contrast to scalar calculus, the two versions of the product rule (3.13) and (3.14) are needed
because ∇ need not commute with factors which are not differentiated.

In accordance with the usual convention for differential operators, the operator ∇ differentiates
quantities immediately to its right in a product. So in the expression ∇(FG), it is understood
that both F = F (x) and G = G(x) are differentiated. But in the expression G∇F only F is
differentiated. The parenthesis or the accents in (∇F )G = ∇̀F̀G indicates that F but not G is
differentiated. Accents can also be used to indicate differentiation to the left as in (3.14). Of course,
the left derivative F̀∇̀ is not generally equal to the right derivative ∇F , but note that

F̀∇̀ = (∇F †)†. (3.15)

Besides this, the accent notation helps formulate a useful generalization of the product rule:

∇H(x,x) = ∇̀H(x̀,x) + ∇̀H(x, x̀)
= [∇yH(y,x) + ∇yH(x,y)]y=x, (3.16)
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where H(x,x) is a function of a single variable formed from a function of two variables H(x,y),
and the accents indicate which variable is differentiated.

To complete the list of general rules for vector differentiation, from (3.9) we get the chain rule

∇F = (∇λ)
∂F

∂λ
(3.17)

for differentiating F (λ(x)). For a function of the form F = F (y(x)) where y = y(x) is a vector-
valued function, the chain rule can be derived by decomposing y into rectangular coordinates yk

and applying (3.17). Thus, differentiating

F (y(x)) = F (σ1y1(x) + σ2y2(x) + · · · + σnyn(x))

we get

∇xF =
∑

k

(∇xyk(x))
∂F

∂yk
= (∇xy(x) ·∇y) F (y).

Hence the chain rule for differentiating F (y(x)) can be put in the form

∇xF = ∇̀ỳ ·∇yF. (3.18)

In a later chapter we will see the deep meaning of this formula, and it will appear somewhat simpler.

Differential Identities

Let v = v(x) be vector-valued function. Since ∇ is a vector operator, we can use it in the algebraic
formula (2.7) to write

∇v = ∇·v + ∇ ∧ v = ∇·v + i(∇×v). (3.19)

In (3.19), the last equality holds only in G3 because it involves the vector cross product, but the
first equality holds in Gn insofar as they involve inner and outer products, but a restriction to G3 is
tacitly understood where the vector cross product appears.

This decomposes the derivative of v into two parts. The scalar part ∇·v is called the divergence
of v. The bivector part ∇∧ v is called the curl of v, and its dual ∇×v is also called the curl. The
divergence and curl of a vector as well as the gradient of a scalar are given separate definitions in
standard texts on vector calculus. Geometric calculus unites all three in a single vector derivative.

From every algebraic identity involving vectors we can derive a “differential identity” by inserting
∇ as one of the vectors and applying the product rule to account for differentiation of vector
functions in the identity. For example, from the algebraic identity

− a×(b×c) = a ·(b ∧ c) = a ·bc − a ·cb

we can derive several important differential identities. Thus, let u = u(x) and v = v(x) be vector-
valued functions. Then

∇·(u ∧ v) = ∇·uv − ∇·vu.

But, ∇·uv = (∇·u)v + u ·∇v. Hence, we have the identity

−∇×(u×v) = ∇·(u ∧ v)
= u ·∇v − v ·∇u + v∇·u − u∇·v. (3.20)

Alternatively,
u ·(∇ ∧ v) = u ·∇v − ∇u ·v (3.21)
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But, ∇(u ·v) = ∇̀ù ·v + ∇̀u · v̀. Therefore, by adding to (3.21) a copy of (3.21) with u and v
interchanged, we get the identity

∇(u ·v) = u ·∇v + v ·∇u − u ·(∇ ∧ v) − v ·(∇ ∧ u)
= u ·∇v + v ·∇u + u×(∇×v) + v×(∇×u).

By the way, the differential operator u ·∇ is called the directional derivative.
Differentiating twice with the vector derivative, we get a differential operator ∇2 called the

Laplacian. Since ∇ is a vector operator, we can write ∇2 = ∇·∇ + ∇ ∧ ∇. However, operating
on any function F = F (x), and using the commutativity ∂j∂k = ∂k∂j of partial derivatives, we see
that

∇ ∧ ∇F = (
∑

j σj∂j) ∧ (
∑

k σk∂k)F =
∑

j,k σj ∧ σk∂j∂kF

= σ1 ∧ σ2∂1∂2F + σ2 ∧ σ1∂2∂1F + · · ·
= σ1 ∧ σ2∂1∂2F − σ1 ∧ σ2∂1∂2F + · · · = 0

Thus, we have ∇ ∧ ∇F = 0, or, expressed as an operator identity

∇ ∧ ∇ = i∇×∇ = 0 (3.22)

As a corollary, the Laplacian
∇2 = ∇·∇ (3.23)

is a “scalar differential operator” which does not alter the step of any function on which it operates.

Basic Derivatives

As in the conventional scalar differential calculus, to carry out computations in geometric calculus
we need to know the derivatives of a few elementary functions. The most important functions are
algebraic functions of a vector variable, so let us see how to differentiate them.

By taking the partial derivative of (3.1) we get

∂kx = σk (3.24)

Then, for a vector variable x in En, the definition (3.4) for ∇ gives us

∇x =
∑

σk∂kx = σ1σ1 + σ2σ2 + · · · + σnσn.

Hence
∇x = n. (3.25)

Separating scalar and bivector parts, we get

∇·x = n, (3.26a)

∇ ∧ x = 0. (3.26b)

Similarly, if a is a constant vector, then

∇x ·a =
∑

k

σk(∂kx) ·a =
∑

σkσk ·a = a

and
a ·∇x =

∑
a ·σk(∂kx) = a.
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Therefore,
∇x ·a = a ·∇x = a, (3.27)

where a is a constant vector.
The two basic formulas (3.25) and (3.27) tell us all we need to know about differentiating the

variable x. They enable us to differentiate any algebraic function of x directly without further
appeal to partial derivatives. We need only apply them in conjunction with algebraic manipulations
and the general rules for differentiation. By way of example, let us derive a few more formulas which
occur so frequently they are worth memorizing. Using algebraic manipulation we evaluate

∇(x ∧ a) = ∇(xa − x ·a) = na − a

Therefore, since ∇ ∧ (x ∧ a) = (∇ ∧ x) ∧ a = 0, we have

∇(x ∧ a) = ∇·(x ∧ a) = (n − 1)a, (3.28a)

or alternatively in G3, by (2.10),
∇×(x×a) = −2a. (3.28b)

Applying the product rule we evaluate

∇x2 = ∇̀(x̀ ·x + x · x̀) = x + x.

Therefore,
∇x2 = 2x (3.29)

On the other hand, application of the chain rule to the left side of |x |2 = x2 yields

∇|x |2 = 2|x |∇|x | = 2x

Therefore,
∇|x | = x̂ =

x
|x | . (3.30)

This enables us to evaluate the derivative of |x |n by further application of the chain rule. Thus,
for integer n we get

∇|x |n = n|x |n−1x̂ (3.31)

This applies when n < 0 except at |x | = 0.
All these basic vector derivatives and their generalizations in the following exercises will be taken

for granted throughout the rest of this book.

1-3 Exercises

(3.1) Let r = r(x) = x − x′ and r = | r | = |x − x′ |, where x′ is a vector independent of x.
Establish the basic derivatives

∇(r ·a) = a ·∇r = a,

∇r = r̂,

∇r = n.
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Note that r can be regarded as a new variable differing from x only by a shift of origin
from 0 to x′. Prove that

∇r = ∇x .

Thus, the vector derivative is invariant under a shift of origin.
Use the above results to evaluate the following derivatives:

∇r̂ =
2
r

= ∇2r

∇×(a×r) = ∇·(r ∧ a) = 2a

a×(∇×r) = 0

∇rk = krk−2r (for any scalar n)

∇ r
rk

=
2 − k

rk

∇ log r =
r
r2

= r−1

Of course, some of these derivatives are not defined at r = 0 for some values of k.

(3.2) For scalar field φ = φ(x) and vector fields u = u(x) and v = v(x), derive the following
identities as instances of the product rule:

(a) ∇·(φv) = v ·∇φ + φ∇·v
(b) ∇ ∧ (u ∧ v) = v ∧ ∇ ∧ u − u ∧ ∇ ∧ v

(c) ∇·(u×v) = v ·(∇×u) − u ·(∇×v)

(d) ∇·(u ∧ v) = ∇×(v×u) = u ·∇v − v ·∇u + v∇·u − u∇·v
(e) ∇(u ·v) = u ·∇v + v ·∇u − u ·(∇ ∧ v) − v ·(∇ ∧ u)

= u ·∇v + v ·∇u + u×(∇×v) + v×(∇×u)

(f) v ·∇v = ∇(1
2v

2) + v ·(∇ ∧ v)

(3.3) (a) In NFCM the directional derivative of the function F = F (x) is defined by

a ·∇F =
dF (x + aτ)

dτ

∣∣∣∣
τ=0

= lim
τ→0

F (x + τa) − F (x)
τ

Prove that this is equivalent to the operator a ·∇ obtained algebraically from the vector
derivative ∇ through the identity

2a ·∇F = a∇F + ∇̀aF̀ ,

where the accent indicating that only F is differentiated is unnecessary if a is constant.
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(b) The directional derivative of F = F (x) produces a new function of two vector vari-
ables

F ′ = F ′(a,x) = a ·∇F (x)

called the differential of F . Prove that it is a linear function of the first variable a. Prove
that

∇F = ∇a(a ·∇F ) = ∇aF ′(a,x),

and so establish the operator equation

∇x = ∇aa ·∇x .

This tells us how to get the vector derivative of F from its differential F ′ if we know how
to differentiate a linear function. It can also be used to establish the properties of the
vector derivative without using coordinates and partial derivatives.

(c) The function F = F (x) is said to be constant in a region if its differential vanishes
at every point x in the region, that is, if a ·∇F (x) = 0 for all a. Prove that

∇F = 0 if F is constant,

and prove that the converse is false by using the results of Exercise (3.1) to construct a
counterexample.

(d) The second differential of F is defined by

F ′′(a,b) = b ·∇̀a ·∇̀F (x̀)

Explain why it is a linear symmetric function of the variables a and b, and show that

∇2F = ∇b∇aF ′′(a,b).

Use this to prove the identity (3.22).

(3.4) Taylor’s Formula. Justify the following version of a “Taylor expansion”

F (x + a) = F (x) + a ·∇F (x) +
(a ·∇̀)2

2!
F (x̀) + · · · ,

=
∞∑

k=0

(a ·∇̀)k

k!
F (x̀) ≡ ea ·∇F (x)

by reducing it to a standard expansion in terms of a scalar variable.

Note that this leads to a natural definition of the exponential operator ea·∇ and its inter-
pretation as a displacement operator, shifting the argument of F from x to x + a. The
operator a ·∇ is called the generator of the displacement.
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1-4 Linear Transformations

A function F = F (A) is said to be linear if preserves the operations of addition and scalar multi-
plication, as expressed by the equations

F (A + B) = F (A) + F (B) (4.1a)

F (αA) = αF (A), (4.1b)

where α is a scalar. We will refer to a linear function which maps vectors into vectors as a linear
transformation or a tensor. The term “tensor” is preferred especially when the function represents
some property of a physical system. Thus, we will be concerned with the “stress tensor” and
the “strain tensor” in Chapter 4. In this mathematical section the terms “linear transformation”
and “tensor” will be used interchangeably with each other and some times with the term “linear
operator.”

Outermorphisms

Every linear transformation (or tensor) f on the vector space E3 induces a unique linear transforma-
tion f on the entire geometric algebra G3 called the outermorphisms of f . Supposed that f maps
vectors a,b, c into vectors a′,b′, c′. The outermorphisms of a bivector a ∧ b is defined by

f(a ∧ b) = f(a) ∧ f(b) = a′ ∧ b′ (4.2)

Similarly, the outermorphisms of a trivector a ∧ b ∧ c is defined by

f(a ∧ b ∧ c) = f(a) ∧ f(b) ∧ f(c) = a′ ∧ b′ ∧ c′ (4.3)

The trivectors a∧ b∧ c and a′ ∧ b′ ∧ c′ can differ only by a scale factor which depends solely on f .
That scale factor is called the determinant of f and denoted by det f . Thus the determinant of a
linear transformation can be defined by

det f =
f(a ∧ b ∧ c)
a ∧ b ∧ c

=
a′ ∧ b′ ∧ c′

a ∧ b ∧ c
, (4.4)

provided a ∧ b ∧ c �= 0. We can interpret a ∧ b ∧ c as a directed volume, so (4.4) tells us that det f
can be interpreted as a dilation of volumes induced by f as well as a change in orientation if det f
is negative. We say that f is singular if det f = 0; otherwise f or f is said to be nonsingular.

Note that (4.4) is independent of the chosen trivector, so the determinant can be defined by

det f = i−1 f(i) = −if(i), (4.5)

where, as always, i is the unit pseudoscalar. Comparison of (4.2) with (4.3) shows that if f is
nonsingular then a′ ∧ b′ cannot vanish unless a ∧ b vanishes.

Further insight into the geometrical significance of outermorphisms comes from considering the
equation

a ∧ (x − b) = 0,

where x is a vector variable. This is the equation for a straight line with direction a passing through
a point b. Under an outermorphisms it is transformed to

f [a ∧ (x − b)] = a′ ∧ (x′ − b′) = 0.

Thus, every nonsingular linear transformation maps straight lines into straight lines.
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The above definition of the outermorphism for k-vectors has a unique extension to all multivectors
A, B, . . . of the algebra G3. In general, the outermorphisms f of a linear transformation f is defined
by the following properties: It is linear,

f(αA + βB) = αf(A) + βf(B); (4.6)

It is identical with f when acting on vectors,

f(a) ≡ f(a); (4.7)

It preserves outer products
f(A ∧ B) = f(A) ∧ f(B); (4.8)

Finally, it leaves scalars invariant,
f(α) = α (4.9)

It follows that f is grade-preserving,

f(Ak ) = [f(A)]k . (4.10)

Operator Products and Notation

The composite h(a) = g(f(a)) of linear functions g and f is often called the product of g and f . It
is easily proved that the outermorphisms of a product is equal to the product of outermorphisms.
This can be expressed as an operator product

h = gf (4.11)

provided we follow the common practice of dropping parentheses and writing f(A) = fA for linear
operators. To avoid confusion between the operator product (4.11) and the geometric product of
multivectors, we need some notation to distinguish operators from multivectors. The underbar
notation serves that purpose nicely. Accordingly, we adopt the underbar notation for tensors as well
as their induced outermorphisms. The ambiguity in this notation will usually be resolved by the
context. But if necessary, the vectorial part can be distinguished from the complete outermorphisms
by writing fa or f = fa. For example, when the operator equation (4.11) is applied to vectors it
merely represents the composition of tensors,

ha = gfa = g(fa).

However, when it is applied to the unit pseudoscalar i it yields

hi = g((det f)i) = (det f) gi = (det f)(det g)i.

Thus, we obtain the theorem
det ( gf) = (det g)(det f). (4.12)

As a final remark about the notation for operator products, when working with repeated applications
of the same operator, it is convenient to introduced the “power notation”

f2 = f f and fk = f fk−1, (4.13)

where k is a positive integer. From (4.12) we immediately obtain the theorem

det (fk) = (det f)k. (4.14)
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Adjoint Tensors

To every linear transformation f there corresponds another linear transformation f defined by the
condition that

a ·(fb) = (f a) ·b (4.15)

holds for all vectors a,b. Differentiation gives

f a = ∇b(fb) ·a = ∇̀f̀ ·a. (4.16)

where f = f(b). The tensor f is called the adjoint or transpose of f . Being linear, it has a unique
outermorphisms also denoted by f . It follows that for any multivectors A, B

〈AfB〉 = 〈Bf A〉. (4.17)

This could be taken as the definition of f . It reduces to (4.15) when A and B are vectors. Taking
A = i−1 and B = i in (4.17) yields the theorem

det f = i−1 fi = −〈ifi〉 = det f . (4.18)

When f is nonsingular it has a unique inverse f−1 which can be computed from f by using the
equation

f−1a = f (ai)/fi =
f (ai)
idet f

(4.19)

Of course, the inverse of an outermorphism is equal to the outermorphism of an inverse, so we can
write

f−1 fA = A (4.20)

for any multivector A. As a consequence, by inserting g = f−1 into (4.12) we get the theorem

det f−1 = (det f)−1. (4.21)

Bases and Matrices

A basis {σ1,σ2,σ3} for E3 is said to be orthogonal if

σ1 ·σ2 = σ2 ·σ3 = σ3 ·σ1 = 0.

It is said to be normalized if

σ2
1 = σ2

2 = σ2
3 = 1.

It is said to be orthonormal if both conditions hold. The two conditions can be expressed together
by writing

σi ·σj = δij , (4.22)

where i, j = 1, 2, 3 and [δij ] is the identity matrix. The orthonormal basis {σk} is said to be dextral
(or right-handed) if it is related to the dextral unit pseudoscalar by

σ1 ∧ σ2 ∧ σ3 = σ1σ2σ3 = i (4.23)
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We will refer to a given dextral orthonormal basis {σk} as a standard basis.
A tensor f transforms each basis vector σk into a vector fk which can be expanded in the standard

basis; thus
fk = fσk = σjfjk, (4.24)

where the summation is understood to be over the repeated indices. Each scalar coefficient

fjk = 〈σjfσk〉 = σj ·fk (4.25)

is called a matrix element of the tensor f , and [ f ] = [fjk] denotes the matrix of f in the standard
basis.

The matrix [f ] is called a matrix representation of the operator f , because operator addition and
multiplication are thereby represented as matrix addition and multiplication, as expressed by

[αf + β g ] = α[ f ] + β[ g ],
[ gf ] = [ f ][ g ]. (4.26)

Note that the matrix [f ] does not represents the entire outermorphism, but only the action of f on
vectors. In fact, the complete properties of outermorphisms are not easily represented by matrices,
because matrix algebra does not directly characterize the outer product. However, the determinant
of f is equal to the determinant of its matrix in any basis; thus,

det f = if1 ∧ f2 ∧ f3 = (σ3 ∧ σ2 ∧ σ1) ·(f1 ∧ f2 ∧ f3)
= det [σj ·fk] = det [ f ]. (4.27)

This determinant can be evaluated in terms of the matrix elements by the Laplace expansion (1.17).
A tensor f is completely determined by specifying a standard basis {σk} and the transformed

vectors {fk = fσk} or, equivalently, the transformation matrix [fjk] = [σj ·fk]. This has the
disadvantage of introducing vectors with no relation to the properties of f . For this reason, we will
take the alternative approach of representing f in terms of multivectors and geometric products.
One way to do that is with dyadics. A dyad D is a tensor determined by two vectors u,v, as
expressed by

D = uv · . (4.28)

Here the incomplete dot product v · is regarded as an operator which, in accordance our “precedence
convention,” is to be completed before multiplication by u; thus,

Da = vu ·a. (4.29)

A dyadic is a tensor expressed as a sum of dyads. Any tensor can be represented in dyadic form,
but other representations are more suitable for some tensors or some purposes. The dyadic form is
especially well suited for symmetric tensors.

Symmetric Tensors

A tensor S is said to be symmetric if

a ·(Sb) = b ·(Sa) (4.30)

for all vectors a,b. Comparison with (4.15) shows that this is equivalent to the condition

S = S. (4.31)
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The canonical form for a symmetric tensor is determined by the

Spectral Theorem:

For every symmetric tensor S there exists an orthonormal basis {e1, e2, e3} and scalars λ1, λ2, λ3

so that S can be represented in the dyadic form

S =
∑

λkekek · . (4.32)

The λk are eigenvalues and the ek are eigenvectors of S , for they satisfy the equation

Sek = λkek. (4.33)

With the eigenvectors ek as basis, the matrix representation has the diagonal form

[S ] =


λ1 0 0

0 λ2 0
0 0 λ3


 . (4.34)

The representation (4.32) is called the spectral decomposition of S .
The set of eigenvalues {λ1, λ2, λ3} is called the spectrum of S . If all the eigenvalues are distinct

the spectrum is said to be nondegenerate; otherwise it is degenerate. The unit eigenvectors of a
symmetric tensor are unique (except for sign) if and only if its spectrum is nondegenerate. If only
two of the eigenvalues are distinct with λ2 = λ3, say, then (4.32) implies that all vectors in the
e2 ∧ e3-plane are eigenvectors of S with eigenvalue λ2. If the spectrum is completely degenerate
(λ1 = λ2 = λ3), then Sa = λa for every vector a, that is, S reduces to a multiple of the identity
operator.

A symmetric tensor is said to be positive definite if

a ·(Sa) > 0 (4.35)

for every nonzero vector a. This is equivalent to the condition that all the eigenvalues of S be
positive. The terminology helps us formulate the

Square Root Theorem:

Every positive definite symmetric tensor S has a unique positive definite and symmetric square
root S

1
2 with the canonical form

S
1
2 =

∑
k

(λk)
1
2 ekek · . (4.36)

When (4.32) is the canonical form for S . The terminology “square root” is justified by the operator
equation

(S
1
2 )2 = S (4.37)

The Square Root Theorem is needed for the Polar Decomposition Theorem given in the next section.
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Invariants of a Linear Transformation

By vector differentiation of a tensor and its outermorphisms we obtain a complete set of invariants
which characterize the tensor. Thus, writing f = fx, we obtain

∇f = ∇·f + ∇ ∧ f . (4.38)

To see the significance of the curl, consider

a ·(∇ ∧ f) = a ·∇f − ∇f ·a

Since f is linear and a ·∇ is a scalar operator

a ·∇f = a ·∇fx = f(a ·∇x) = fa. (4.39)

Along with (4.16), this gives us
a ·(∇ ∧ f) = fa − f a. (4.40)

The right side vanishes when f is symmetric. Therefore, a linear transformation is symmetric if and
only if its curl is zero. On the other hand, for a skew symmetric tensor (defined by the condition
fa = −f a), (4.40) gives the canonical form

fa = a ·Ω = ω×a (4.41a)

where the bivector Ω and its dual vector ω are given by

Ω = iω = 1
2∇ ∧ f . (4.41b)

Taking the divergence of (4.41a) we get

∇·f = ∇·(x ·Ω) = (∇ ∧ x) ·Ω = 0

Thus, the divergence of a skewsymmetric tensor vanishes and the tensor is completely determined
by its curl.

For an arbitrary tensor f , its divergence is related to its matrix representation by

∇·f =
∑

σk · f(∂kx) = σk ·fk =
∑

fkk

The sum of diagonal matrix elements fkk is called the trace of the matrix [fjk], so let us define the
trace of the operator f by

Trf = ∇·f = Tr[ f ] =
∑

fkk (4.42)

The trace is an invariant of f in the sense that it is independent of any particular matrix represen-
tation for f as (4.42) shows.

Another invariant is obtained by differentiating the outermorphism

f(x1 ∧ x2) = (fx1) ∧ (fx2).

For the calculation, it will be convenient to simplify our notation with the abbreviations fk ≡ fxk

and ∇k for the derivative with respect to xk. Differentiating with respect to the first variable, we
obtain

∇1 ·(f1 ∧ f2) = (∇1 ·f1)f2 − f2 ·∇1f1 = (∇·f)f2 − f2
2 ,
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where (4.39) was used to get

f2 ·∇1fx1 = f(f2) = f(fx2) = f2x2 ≡ f2
2 (4.43)

Now differentiating with respect to x2 we get the invariant

∇2 · [∇1 ·(f1 ∧ f2)] = (∇·f)∇2f2 − ∇2 ·f2
2

or,

(∇b ∧ ∇a) · f(a ∧ b) = (∇2 ∧ ∇1) ·(f1 ∧ f2)

= (∇·f)2 − ∇·f2 = (Tr f)2 − Tr f2 (4.44)

We get a third invariant from

(∇c ∧ ∇b ∧ ∇a)f(a ∧ b ∧ c) =
∑

i

∑
j

∑
k

σi ∧ σj ∧ σk f(σk ∧ σj ∧ σi)

= 6σ3 ∧ σ2 ∧ σ1 f(σ1 ∧ σ2 ∧ σ3) = 6 det f. (4.45)

Summarizing, we have the following list of principal invariants for any tensor f .

α1(f) ≡ ∇·f = Tr f,

α2(f) ≡ 1
2 (∇b ∧ ∇a) · f(a ∧ b) = 1

2 [(Tr f)2 − Tr . f2],

α3(f) ≡ 1
6 (∇c ∧ ∇b ∧ ∇a) · f(a ∧ b ∧ c) = det f. (4.46)

For a symmetric tensor S the principal invariants can be expressed in terms of its eigenvalues {λk}
by a simple calculation from the canonical form (4.32) or its matrix (4.34). The result is

α1(S) = λ1 + λ2 + λ3

α2(S) = λ1λ2 + λ2λ3 + λ3λ1

α3(S) = λ1λ2λ3 (4.47)

The principal invariants appear in one of the most celebrated theorems of linear algebra, to which
we now turn.

Cayley-Hamilton Theorem

Repeated application of a tensor f to a vector a generates a series of vectors a, fa, f2a, f3a, . . .. At
the most three of these vectors can be linearly independent in E3. Therefore, it must be possible
to express all higher powers of the tensor as linear combinations of the three lowest powers. The
precise relation among tensor powers is given by the

Cayley-Hamilton Theorem: Every tensor f on E3 satisfies the operator equation

f3 − α1 f2 + α2 f − α3 f0 = 0, (4.48)

where f0 = 1 is the identity operator and the αk = αk(f) are the principal invariants given by
(4.45). It should be understood that this operator equation holds for the tensor operator on E3 but
not for its outermorphisms.
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a X b

a

b

a    b

Fig. 2.2. The right-hand rule for the vector cross product.

If e is an eigenvector of f with eigenvalue λ then fke = λke, so operation on e with the Cayley-
Hamilton equation (4.48) produces a cubic equation for the eigenvalue:

λ3 − α1λ
2 + α2λ − α3 = 0. (4.49)

This is called the characteristic (or secular) equation for f . Being cubic, it has at least one real
root. Therefore every tensor on E3 has at least one eigenvector.

We turn now to a proof of the Cayley-Hamilton equation, obtaining it from a differential identity
applied to a linear transformation. We employ the abbreviated notation and results from the above
discussion of principal invariants along with several algebraic tricks which the reader is invited to
identify.

6aα3 = a ·(∇3 ∧ ∇2 ∧ ∇1)f1 ∧ f2 ∧ f3
= ∇2 ∧ ∇1f1 ∧ f2 ∧ f − ∇3 ∧ ∇1f1 ∧ f ∧ f3 + ∇3 ∧ ∇2f ∧ f2 ∧ f3
= 3∇2 ∧ ∇1f1 ∧ f2 ∧ f = 3(∇2 ∧ ∇1) ·(f1 ∧ f2 ∧ f)
= 3{(∇2 ∧ ∇1) ·(f1 ∧ f2)f − (∇2 ∧ ∇1) ·(f1 ∧ f)f2 + (∇2 ∧ ∇1) ·(f2 ∧ f)f1}
= 6{α2f − (∇2 ∧ ∇1) ·(f1 ∧ f)f2}
= 6{α2f − [(∇·f)f ·∇2 − f ·∇1f1 ·∇2]f2}
= 6{α2f − α1f2 + f3}.


