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Abstract

A new gauge theory of gravitation on flat spacetime has recently been

developed by Lasenby, Doran, and Gull in the language of Geometric

Calculus. This paper provides a systematic account of the mathemati-

cal formalism to facilitate applications and extensions of the theory. It

includes formulations of differential geometry, Lie derivatives and inte-

grability theorems which are coordinate-free and gauge-covariant. Em-

phasis is on use of the language to express physical and geometrical

concepts.
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Introduction

Lasenby, Doran and Gull have recently created a powerful coordinate-free reformulation,
refinement, and extension of general relativity [1,2]. It is a gauge theory on flat spacetime,
but it retains the attractive geometric structure of Einstein’s theory. The mathematical
formalism which they employ comes mostly from [3], with additional pieces from [4-8]
and elsewhere. It is not easy, however, to assimilate and adapt the formalism from these
references. Although much of that has already been done in [1], further discussion and
analysis will help make the whole approach more accessible. Also, the emphasis here is
more strongly focused on notions of differential geometry in formulating the theory. Indeed,
the method amounts to a new approach to differential geometry which could fairly be called
gauge geometry.

The general mathematical formalism is called geometric calculus or, when it refers specif-
ically to spacetime, spacetime calculus. This paper presents a systematic account of space-
time calculus for the purposes of gravitation theory. It is divided into three parts.

Part I reviews the fundamentals of spacetime calculus with emphasis on those relevant
to gravitation theory. Many of the proofs are omitted, since they can easily be supplied or
found in the references. Otherwise, the treatment is self-contained.

Part II develops gauge covariant Riemannian geometry on flat spacetime. The main
objective is to clarify the fundamental ideas and provide a systematic account of the def-
initions, theorems, proofs, and computational techniques needed to apply the spacetime
calculus efficiently to any physical problem. Specific physical applications are not ad-
dressed here; excellent examples, which amply demonstrate the computational power of
the calculus, have been worked out in [1,2] and [9–13].

Part III extends the spacetime calculus to deal systematically with congruences of curves
and associated concepts, such as Lie derivatives, Killing vectors and the theorem of Frobe-
nius. The gauge covariant formulation of these concepts is a new idea with broad implica-
tions for mathematics as well as physics. The treatment here is primarily a translation of
well known concepts and results into the new formalism; proofs are consequently sketchy or
omitted. (For comparison, a standard “modern” approach to the same topics can be found
in [14]). The translation is nontrivial and we concentrate here on consolidating the main
ideas and results to facilitate applications. The main applications are likely to involve a
“relativistically gauge covariant” continuum mechanics, including gravitational wave prop-
agation. As a first step, a general definition and equation of motion for the deformation
tensor is presented.

In a lengthy and profound analysis of the relation between physics and geometry, com-
posed more than a decade before the advent of Einstein’s General Theory of Relativity
(GR), Henri Poincaré [15] concluded that: “One geometry cannot be more true than an-
other; it can only be more convenient. Now, Euclidean geometry is and will remain, the
most convenient.” After more analysis he added: “What we call a straight line in astronomy
is simply the path of a ray of light. If, therefore, we were to discover negative parallaxes, or
to prove that all parallaxes are higher than a certain limit, we should have a choice between
two conclusions: we could give up Euclidean geometry, or modify the laws of optics, and
suppose that light is not rigorously propagated in a straight line. It is needless to add that
every one would look upon this solution as the more advantageous.” Applied to GR, this
amounts to the claim that any curved-space formulation of the theory can be replaced by
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an equivalent and simpler flat-space formulation. Ironically, the curved-space formulation
has been preferred by nearly everyone since the inception of GR, and competing flat-space
formulations certainly have not exhibited any of the simplicity anticipated by Poincaré.
One wonders if the trend might have been different if Poincaré were still alive to promote
his view when GR made its spectacular appearance on the scene.

The situation has been changed dramatically by the new gauge formulation of GR [1,2].
In retrospect, the popular “vierbein” approach to GR can be seen as a step toward a
flat-space formulation, but it did not exhibit clear theoretical or practical simplifications
until it was expressed in the language of geometric calculus (GC) in [5]. The superior-
ity of GC in practical calculations involving the curvature tensor was also demonstrated
there. By reinterpreting the GC formulation the new gauge theory has greatly clarified
GR and produced numerou examples of computational simplifications. All this amounts to
compelling evidence that Poincaré was right in the first place.

Part I. MATHEMATICAL FUNDAMENTALS

1. Spacetime Algebra

We represent Minkowski spacetime as a real 4-dimensional vector space M4. The two
properties of scalar multiplication and vector addition in M4 provide only a partial spec-
ification of spacetime geometry. To complete the specification we introduce an associative
geometric product among vectors a, b, c, . . . with the property that the square of any vector
is a (real) scalar. Thus for any vector a we can write

a2 = aa = ε| a |2 , (1.1)

where ε is the signature of a and | a | is a (real) positive scalar. As usual, we say that a is
timelike, lightlike or spacelike if its signature is positive (ε = 1), null (ε = 0), or negative
(ε = −1). To specify the signature of M4 as a whole, we adopt the axioms: (a) M4 contains
at least one timelike vector; and (b) Every 2-plane in M4 contains at least one spacelike
vector.

The vector space M4 is not closed under the geometric product just defined. Rather,
by multiplication and (distributive) addition it generates a real, associative (but noncom-
mutative), geometric algebra of dimension 24 = 16, called the spacetime algebra (STA).
The name is appropriate because all the elements and operations of the algebra have a
geometric interpretation, and it suffices for the representation of any geometric structure
on spacetime.

From the geometric product ab of two vectors it is convenient to define two other products.
The inner product a · b is defined by

a · b = 1
2 (ab + ba) = b · a , (1.2)

and the outer product a ∧ b is defined by

a ∧ b = 1
2 (ab − ba) = −b ∧ a . (1.3)
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The three products are therefore related by the important identity

ab = a · b + a ∧ b , (1.4)

which can be seen as a decomposition of the product ab into symmetric and antisymmetric
parts.

From (1.1) it follows that the inner product a · b is scalar-valued. The outer product a∧ b
is neither scalar nor vector but a new entity called a bivector, which can be interpreted
geometrically as an oriented plane segment, just as a vector can be interpreted as an oriented
line segment.

Inner and outer products can be generalized. The outer product and the notion of k-
vector can be defined iteratively as follows: Scalars are regarded as 0-vectors, vectors as
1-vectors and bivectors as 2-vectors. For a given k-vector K the positive integer k is called
the grade (or step) of K. The outer product of a vector a with K is a (k +1)-vector defined
in terms of the geometric product by

a ∧ K = 1
2 (aK + (−1)kKa) = (−1)kK ∧ a , (1.5)

The corresponding inner product is defined by

a · K = 1
2 (aK + (−1)k+1Ka) = (−1)k+1K · a, (1.6)

and it can be proved that the result is a (k − 1)-vector. Adding (1.5) and (1.6) we obtain

aK = a · K + a ∧ K , (1.7)

which obviously generalizes (1.4). The important thing about (1.7) is that it decomposes
aK into (k − 1)-vector and (k + 1)-vector parts.

Manipulations and inferences involving inner and outer products are facilitated by a host
of theorems and identities given in [3] of which the most important are recorded here. The
outer product is associative, and

a1 ∧ a2 ∧ . . . ∧ ak = 0 (1.8)

if and only if the vectors a1, a2, . . . , ak are linearly dependent. Since M4 has dimension 4,
(1.8) is an identity in STA for k > 4, so the generation of new elements by multiplication
with vectors terminates at k = 4. A nonvanishing k-vector can be interpreted as a directed
volume element for Mk spanned by the vectors a1, a2, . . . , ak. In STA 4-vectors are called
pseudoscalars, and for any four such vectors we can write

a1 ∧ a2 ∧ a3 ∧ a4 = λi , (1.9)

where i is the unit pseudoscalar and λ is a scalar which vanishes if the vectors are linearly
dependent.

The unit pseudoscalar is so important that the special symbol i is reserved for it. It has
the properties

i2 = −1 , (1.10)
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and for every vector a in M4

ia = −ai . (1.11)

Of course, i can be interpreted geometrically as the (unique) unit oriented volume element
for spacetime. A convention for specifying its orientation is given below. Multiplicative
properties of the unit pseudoscalar characterize the geometric concept of duality. The dual
of a k-vector K in STA is the (4 − k)-vector defined (up to a sign) by iK or Ki. Trivially,
every pseudoscalar is the dual of a scalar. Every 3-vector is the dual of a vector; for this
reason 3-vectors are often called pseudovectors. The inner and outer products are dual
to one another. This is easily proved by using (1.7) to expand the associative identity
(aK)i = a(Ki) in two ways:

(a · K + a ∧ K)i = a · (Ki) + a ∧ (Ki) .

Each side of this identity has parts of grade (4−k±1) and which can be separately equated,
because they are linearly independent. Thus, one obtains the duality identities

(a · K)i = a ∧ (Ki) , (1.12a)

(a ∧ K)i = a · (Ki) , (1.12b)

Note that (1.12a) can be solved for

a · K = [a ∧ (Ki)]i−1 , (1.13)

which could be used to define the inner product from the outer product and duality.
Unlike the outer product, the inner product is not associative. Instead, it obeys various

identities, of which the following involving vectors, k-vector K and s-vector B are most
important:

(b ∧ a) · K = b · (a · K) = (K · b) · a = K · (b ∧ a) for grade k ≥ 2 , (1.14)

a · (K ∧ B) = (a · K) ∧ B + (−1)kK ∧ (a · B) . (1.15)

The latter implies the following identity involving vectors alone:

a · (a1 ∧ a2 ∧ . . . ∧ ak) = (a · a1)a2 ∧ . . . ∧ ak − (a · a2)a1 ∧ a3 . . . ∧ ak+
· · · + (−1)k−1(a · ak)a1 ∧ a2 . . . ∧ ak−1 . (1.16)

This is called the Laplace expansion, because it generalizes and implies the familiar expan-
sion for determinants. The simplest case is used so often that it is worth writing down:

a · (b ∧ c) = (a · b)c − (a · c)b = a · b c − a · c b . (1.17)

Parentheses have been eliminated here by invoking a precedence convention, that in am-
biguous algebraic expressions inner products are to be formed before outer products, and
both of those before geometric products. This convention allows us to drop parentheses on
the right side of (1.16) but not on the left.

5



The entire spacetime algebra is generated by taking linear combinations of k-vectors
obtained by outer multiplication of vectors in M4. A generic element of the STA is called
a multivector. Any multivector M can be written in the expanded form

M = α + a + F + bi + βi =
4∑

k=0

〈M 〉k , (1.18)

where a and b are scalars, a and b are vectors and F is a bivector. This is a decomposition
of M into its “k-vector parts” 〈M 〉k, where

〈M 〉0 = 〈M 〉 = α (1.19)

is the scalar part, 〈M 〉1 = a is the vector part, 〈M 〉2 = F is the bivector part, 〈M 〉3 = bi
is the pseudovector part and 〈M 〉4 = βi is the pseudoscalar part. Duality has been used to
simplify the form of the trivector part in (1.18) by expressing it as the dual of a vector. Like
the decomposition of a complex number into real and imaginary parts, the decomposition
(1.18) is significant because the parts with different grade are linearly independent of one
another and have distinct geometric interpretations. On the other hand, multivectors of
mixed grade often have geometric significance that transcends that of their graded parts.

Any multivector M can be uniquely decomposed into parts of even and odd grade as

M± = 1
2 (M ∓ iMi) . (1.20)

In terms of the expanded form (1.18), the even part can be written

M+ = α + F + βi , (1.21)

while the odd part becomes
M− = a + bi . (1.22)

The set {M+} of all even multivectors forms an important subalgebra of STA called the
even subalgebra. Spinors can be represented as elements of the even subalgebra.

Computations are facilitated by the operation of reversion, defined for arbitrary multi-
vectors M and N by

(MN)˜ = ÑM̃ , (1.23a)

with
ã = a (1.23b)

for any vector a. For M in the expanded form (1.18), the reverse M̃ is given by

M̃ = α + a − F − bi + βi . (1.24)

Note that bivectors and trivectors change sign under reversion while scalars and pseu-
doscalars do not.

This mathematical apparatus makes it possible to formulate and solve fundamental equa-
tions without using coordinates. Nevertheless, STA facilitates the manipulation of coordi-
nates, as shown below and in later sections of this document. Let {γµ;µ = 0, 1, 2, 3} be
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a right-handed orthonormal frame of vectors in M4 with γ0 in the forward light cone. In
accordance with (1.2), we can write

ηµν ≡ γµ · γν = 1
2 (γµγν + γνγµ) . (1.25)

This may be recognized as the defining condition for the “Dirac algebra,” which is a matrix
representation of STA over a complex number field instead of the reals. Although the
present interpretation of the {γµ} as an orthonormal frame of vectors is quite different
from their usual interpretation as matrix componentsof a single vector, it can be shown
that these alternatives are in fact compatible.

The orientation of the unit pseudoscalar i relative to the frame {γµ} is set by the equation

i = γ0γ1γ2γ3 = γ0 ∧ γ1 ∧ γ2 ∧ γ3 . (1.26)

We shall refer to {γµ} as a standard frame, without necessarily associating it with the
reference frame of a physical observer. For manipulating coordinates it is convenient to
introduce the reciprocal frame {γµ} defined by the equations

γµ = ηµνγν or γµ · γν = δν
µ . (1.27)

(summation convention assumed). “Rectangular coordinates” {xν} of a spacetime point x
are then given by

xν = γν · x and x = xνγν . (1.28)

The γµ generate by multiplication a complete basis for STA, consisting of the 24 = 16
linearly independent elements

1, γµ, γµ ∧ γν , γµi, i . (1.29)

Any multivector can be expressed as a linear combination of these elements. For example,
a bivector F has the expansion

F = 1
2Fµνγµ ∧ γν , (1.30)

with its “scalar components” given by

Fµν = γµ · F · γν = γν · (γµ · F ) = (γν ∧ γµ) · F . (1.31)

However, such an expansion is seldom needed.
Besides the inner and outer products defined above, many other products can be defined

in terms of the geometric product. The commutator product A × B is defined for any A
and B by

A × B ≡ 1
2 (AB − BA) = −B × A . (1.32)

Mathematicians classify this product as a “derivation” with respect to the geometric product,
because it has the “distributive property”

A × (BC) = (A × B)C + B(A × C) . (1.33)
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This implies the Jacobi Identity

A × (B × C) = (A × B) × C + B × (A × C) , (1.34)

which is a derivation on the commutator product. The relation of the commutator product
to the inner and outer products is grade dependent; thus, for a vector a,

a × 〈M 〉k = a ∧ 〈M 〉k if k is odd , (1.35a)

a × 〈M 〉k = a · 〈M 〉k if k is even . (1.35b)

The commutator product is especially useful in computations with bivectors. With any
bivector A this product is grade preserving:

A × 〈M 〉k = 〈A × M 〉k . (1.36)

In particular, this implies that the space of bivectors is closed under the commutator
product. It therefore forms a Lie algebra — which is, in fact, the Lie algebra of the Lorentz
group. The geometric product of bivector A with M has the expanded form

AM = A · M + A × M + A ∧ M for grade M ≥ 2 . (1.37)

This should be compared with the corresponding expansion (1.4) for the product of vectors.
For any bivector F , (1.37) assures us that we can write

F 2 = F · F + F ∧ F = | f |2ei2ϕ .

When F 2 �= 0, this can be solved for the “invariant angle ϕ,” given by

i tan 2ϕ =
F ∧ F

F · F
. (1.38)

Then F can be written in the canonical form

F = feiϕ . (1.39)

When F 2 = 0, F can still be written in the form (1.39) with

f = k ∧ e = ke , (1.40)

where k is a null vector and e is spacelike. In this case, the decomposition is not unique,
and the exponential factor can always be absorbed in the definition of f . The canonical
bivector decomposition (1.39) is especially useful in treating the electromagnetic field.

2. Vector Derivatives and Differentials

To extend spacetime algebra into a complete spacetime calculus, suitable definitions for
derivatives and integrals are required. In terms of the coordinates (1.28), an operator
∇ ≡ ∂x interpreted as the derivative with respect to a spacetime point x can be defined by

∇ = γµ∂µ (2.1)
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where
∂µ =

∂

∂xµ
= γµ ·∇ . (2.2)

The square of ∇ is the d’Alembertian

∇2 = ηµν∂µ∂ν . (2.3)

The matrix representation of (2.1) can be recognized as the “Dirac operator,” originally
discovered by Dirac by seeking a “square root” of the d’Alembertian (2.3) in order to find
a first order “relativistically invariant” wave equation for the electron. In STA, however,
where the γµ are vectors rather than matrices, it is clear that ∇ is a vector operator; indeed,
it provides an appropriate definition for the derivative with respect to any spacetime vector
variable.

Contrary to the impression given by conventional accounts of relativistic quantum the-
ory, the operator ∇ is not specially adapted to spin- 1

2 wave equations. It is equally apt
for electromagnetic field equations: in STA an electromagnetic field is represented by a
bivector-valued function F = F (x) on spacetime. The field produced by a source with
spacetime current density J = J(x) is determined by Maxwell’s Equation

∇F = J . (2.4)

Since ∇ is a vector operator the identity (1.7) applies, so that we can write

∇F = ∇ · F + ∇∧ F , (2.5)

where ∇ · F is the divergence of F and ∇∧F is the curl. We can accordingly separate (2.4)
into vector and trivector parts:

∇ · F = J , (2.6a)

∇∧ F = 0 . (2.6b)

If F is derived from a vector potential A = A(x) satisfying the “Lorentz condition” ∇ · A =
0, then F = ∇∧ A = ∇A and (1.35) becomes the familiar “wave equation”

∇2A = J . (2.7)

This demonstration illustrates the simplicity that the vector derivative ∇ brings to the
formulation of basic equations in physics. However, to make it an efficient computational
tool, its properties must be developed more fully.

As in conventional scalar calculus, the derivatives of elementary functions are often
needed for computations. The most useful derivatives are listed here:

Table of vector derivatives: (2.8)

∇(x · a) = a ·∇x = a , ∇(x · A) = A ·∇x = rA

∇|x |2 = ∇x2 = 2x , ∇(x ∧ A) = A ∧∇x = (4 − r)A

∇∧ x = 0 , ∇(Ax) = γµAγµ = (−1)r(4 − 2r)A ,
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∇x = ∇ · x = 4

∇|x |k = k|x |k−2x , ∇
(

x

|x |k
)

=
4 − k

|x |k .

In the table, ∇ = ∂x, and obvious singularities at x = 0 are excluded; a is a “free vector”
variable (i.e. independent of x), while A is a free r-vector.

The directional derivative a ·∇, that is, the “derivative in the direction of vector a” can
be obtained from ∇ by applying the inner product. Alternatively, the directional derivative
can be defined directly by

a ·∇F = a · ∂xF (x) =
d

dτ
F (x + aτ)

∣∣∣
τ=0

= lim
τ→0

F (x + aτ) − F (x)
τ

, (2.9)

where F = F (x) is any multivector valued function. Then the general vector derivative can
be obtained from the directional derivative by using (2.8): thus,

∇F = ∂xF (x) = ∂aa · ∂xF (x) . (2.10)

This relation can serve as an alternative to the partial derivative in (2.1) for defining the
vector derivative. Of course, the directional derivative has the same limit properties as the
partial derivative, including the rules for differentiating sums and products, but the explicit
display of the vector variable is advantageous in concept and calculation.

Equation (2.10) and the preceding equations above define the derivative ∂a with respect
to any spacetime vector a. As already indicated, we reserve the symbol “x” for a vector
representing a position in spacetime, and we use the special symbol ∇ ≡ ∂x for the derivative
with respect to this “spacetime point.” When differentiating with respect to any other vector
variable a, we indicate the variable explicitly by writing ∂a. Mathematically, there is no
difference between ∇ and ∂a. However, there is often an important difference in physical
or geometrical interpretation associated with these operators.

The directional derivative (2.9) produces from F a tensor field called the differential of
F , denoted variously by

F(a) = Fa ≡ a ·∇F . (2.11)

As explained in the next section, the underbar notation serves to emphasize that F(a) is a
linear function of a, though it is not a linear transformation unless it is vector valued. The
argument a may be a free variable or a vector field a = a(x).

The second differential Fb(a) = Fab is defined by

Fb(a) ≡ b ·∇F(a) − F(b ·∇a) = b · ∇̀F̀(a) , (2.12)

where the accents over ∇̀ and F̀ serve to indicate that only F is differentiated and a is not.
Of course, the accents can be dropped if a is a free variable. The second differential has
the symmetry property

Fb(a) = Fa(b) . (2.13)

Using (1.14) and (1.17), this can be expressed as an operator identity:

(a ∧ b) · (∇∧∇) = [a ·∇, b ·∇] = 0 , (2.14)
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where the bracket denotes the commutator. Differentation by ∂a and ∂b puts this identity
in the form

∇∧∇ = 0 . (2.15)

These last three equations are equivalent formulations of the integrability condition for
vector derivatives.

Since the derivative ∇ has the algebraic properties of a vector, a large assortment of
“differential identities” can be derived by replacing some vector by ∇ in any algebraic
identity. The only caveat is to take proper account of the product rule for differentiation.
For example, the product rule gives

∇ · (a ∧ b) = ∇̀ · (à ∧ b) + ∇̀ · (a ∧ b̀) ,

whence the algebraic identity (1.17) yields

a ·∇b − b ·∇a = ∇ · (a ∧ b) + a∇ · b − b∇ · a , (2.16)

The left side of this identity may be identified as a Lie bracket; a more general concept of
the Lie bracket is introduced later on. Other identities will be derived as needed.

3. Linear Algebra

The computational and representational power of linear algebra is greatly enhanced by in-
tegrating it with geometric algebra. In fact, geometric calculus makes it possible to perform
coordinate-free computations in linear algebra without resorting to matrices. Integration
of the two algebras can be achieved with the few basic concepts, notations and theorems
reviewed below. However, linear algebra is a large subject, so we restrict our attention to
the essentials needed for gravitation theory.

Though the approach works for vector spaces of any dimension, we will be concerned
only with linear transformations of Minkowski space, which map spacetime vectors into
vectors. We need a notation which clearly distinguishes linear operators and their products
from vectors and their products. To this end, we distinguish symbols representing a linear
transformation (or operator) by affixing them with an underbar (or overbar). Thus, for a
linear operator f acting on a vector a, we write

fa = f(a) . (3.1)

As usual in linear algebra, the parenthesis around the argument of f can be included or
omitted, either for emphasis or to remove ambiguity.

Every linear transformation f on Minkowski space has a unique extension to a linear func-
tion on the whole STA, called the outermorphism of f because it preserves outer products.
It is convenient to use the same notation f for the outermorphism and the operator that
“induces” it, distinguishing them when necessary by their arguments. The outermorphism
is defined by the property

f(A ∧ B) = (fA) ∧ (fB) (3.2)

for arbitrary multivectors A, B, and
fα = α (3.3)
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for any scalar α. It follows that, for any factoring A = a1 ∧ a2 ∧ . . . ∧ ar of an r-vector A
into vectors,

f(A) = (fa1) ∧ (fa2) ∧ . . . ∧ (far) . (3.4)

This relation can be used to compute the outermorphism directly from the inducing linear
operator.

Since the outermorphism preserves the outer product, it is grade preserving, that is

f〈M 〉k = 〈 fM 〉k (3.5)

for any multivector M . This implies that f alters the pseudoscalar i only by a scalar
multiple. Indeed

f(i) = (det f)i or det f = −if(i) , (3.6)

which defines the determinant of f . Note that the outermorphism makes it possible to
define (and evaluate) the determinant without introducing a basis or matrices.

The “product” of two linear transformations, expressed by

h = gf , (3.7)

applies also to their outermorphisms. In other words, the outermorphism of a product
equals the product of outermorphisms. It follows immediately from (3.6) that

det ( gf) = (det g)(det f) , (3.8)

from which many other properties of the determinant follow, such as

det (f−1) = (det f)−1 (3.9)

whenever f−1 exists.
Every linear transformation f has an adjoint transformation f which can be extended

to an outermorphism denoted by the same symbol. The adjoint outermorphism can be
defined in terms of f by

〈Mf N 〉 = 〈N fM 〉 , (3.10)

where M and N are arbitrary multivectors and the bracket as usual indicates “scalar part.”
For vectors a, b this can be written

b · f (a) = a · f(b) . (3.11)

Differentiating with respect to b we obtain, with the help of (2.8),

f (a) = ∂b a · f(b) . (3.12)

This is the most useful formula for obtaining f from f . Indeed, it might well be taken as
the preferred definition of f .

Unlike the outer product, the inner product is not generally preserved by outermorphisms.
However, it obeys the fundamental transformation law

f [f(A) · B] = A · f (B) (3.13)
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for (grade A) ≤ (grade B). Of course, this law also holds with an interchange of overbar
and underbar. If f is invertible, it can be written in the form

f [A · B] = f−1(A) · f (B) . (3.14)

For B = i, since A · i = Ai, this immediately gives the general formula for the inverse
outermorphism:

f−1A = [f (Ai)](f i)−1 = (det f)−1f (Ai)i−1 . (3.15)

This relation shows explicitly the double duality involved in computing the inverse.
Although all linear transformations preserve the outer product (by definition of the outer-

morphism (3.2)), only a restricted class preserves the inner product. This is called the
Lorentz group, and its members are called Lorentz transformations. The defining property
for a Lorentz transformation L is

(La) · (Lb) = a · (LLb) = a · b . (3.16)

This is equivalent to the operator condition

L = L−1 (3.17)

STA makes it possible to express any L in the simple canonical form

L(a) = εLaL−1 , (3.18)

where the multivector L is either even with ε = 1 or odd with ε = −1. This defines
a double-valued homomorphism between Lorentz transformations {L} and multivectors
{±L}, where the composition of two Lorentz transformations L1L2 corresponds to the
geometric product ±L1L2. Thus, the Lorentz group has a double-valued representation
as a multiplicative group of multivectors. This multivector representation of the Lorentz
group greatly facilitates the analysis and application of Lorentz transformations in STA.

From (3.18) it follows immediately that, for arbitrary multivectors A and B,

L(AB) = (LA)(LB) . (3.19)

Lorentz transformations therefore preserve the geometric product. This implies that (3.16)
generalizes to

L(A · B) = (LA) · (LB) . (3.20)

in agreement with (3.14) when (3.17) is satisfied.
From (3.18) it follows easily that

L(i) = εi , where ε = detL = ±1 . (3.21)

A Lorentz transformation L is said to be proper if ε = 1, and improper if ε = −1. It is said
to be orthochronous if, for any timelike vector v,

v · L(v) > 0 . (3.22)
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A proper, orthochronous Lorentz transformation is called a Lorentz rotation (or a restricted
Lorentz transformation). For a Lorentz rotation R the canonical form can be written

R(a) = RaR̃ , (3.23)

where the even multivector R is called a rotor and is normalized by the condition

RR̃ = 1 . (3.24)

The rotors form a multiplicative group called the Rotor group, which is a double-valued
representation of the Lorentz rotation group (also called the restricted Lorentz group).

The most elementary kind of Lorentz transformation is a reflection n by a (non-null)
vector n, according to

n(a) = −nan−1 . (3.25)

This is a reflection with respect to a hyperplane with normal n. A reflection

v(a) = −vav (3.26)

with respect to a timelike vector v = v−1 is called a time reflection. Let n1, n2, n3 be
spacelike vectors which compose the trivector

n3n2n1 = iv . (3.27)

A space inversion vs can then be defined as the composite of reflections with respect to
these three vectors, so it can be written

vs(a) = n3n2n1an1n2n3 = ivavi = vav . (3.28)

Note the difference in sign between the right sides of (3.26) and (3.28). Although vs is
determined by v alone on the right side of (3.28), the multivector representation of vs must
be the trivector iv in order to agree with (3.18). The composite of the time reflection (3.26)
with the space inversion (3.28) is the spacetime inversion

vst(a) = vsv(a) = −iai−1 = −a , (3.29)

which is represented by the pseudoscalar i. Note that spacetime inversion is proper but not
orthochronous.

Two basic types of Lorentz rotation can be obtained from the product of two reflections,
namely timelike rotations (or boosts) and spacelike rotations. For a boost

V (a) = V aṼ , (3.30)

the rotor V can be factored into a product

V = v2v1 (3.31)

of two unit timelike vectors v1 and v2. The boost is a rotation in the timelike plane contain-
ing v1 and v2. The factorization (3.31) is not unique. Indeed, for a given V any timelike
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vector in the plane can be chosen as v1, and v2 then computed from (3.31). Similarly, for
a spacelike rotation

Q(a) = QaQ̃ , (3.32)

the rotor Q can be factored into a product

Q = n2n1 (3.33)

of two unit spacelike vectors in the spacelike plane of the rotation.
Note that the product, say n2v1, of a spacelike vector with a timelike vector is not a

rotor, because the corresponding Lorentz transformation is not orthochronous. Likewise,
the pseudoscalar i is not a rotor, even though it can be expressed as the product of two
pairs of vectors, for it does not satisfy the rotor condition (3.24).

Any Lorentz rotation R can be decomposed uniquely into the product

R = V Q (3.34)

of a boost V and spacelike rotation Q with respect to a given timelike vector v0 = v−1
0 . To

compute V and Q from R, first compute the vector

v = Rv0 = Rv0R̃ . (3.35)

The timelike vectors v and v0 determine the timelike plane for the boost, which can therefore
be defined by

v = V v0 = V v0Ṽ = V 2v0 . (3.36)

This can be solved for
V =

(
vv0

) 1
2 = vw = wv0 , (3.37a)

where the unit vector
w =

v + v0

| v + v0 | =
v + v0[

2(1 + v · v0)
] 1

2
(3.37b)

“bisects the angle” between v and v0. The rotor Q can then be computed from

Q = Ṽ R , (3.38)

so that the spacelike rotation satisfies

Qv0 = Qv0Q̃ = v0 . (3.39)

This makes (3.36) consistent with (3.35) by virtue of (3.34).
Equations (3.31) and (3.32) show how to parametrize boosts and spacelike rotations

by vectors in the plane of rotation. More specifically, (3.37a,b) parametrizes a boost in
terms of initial and final velocity vectors. This is especially useful, because the velocity
vectors are often given, or are of direct relevance, in a physical problem. Another useful
parametrization is in terms of angle (Appendix B of [4]). Any rotor R can be expressed in
the exponential form

±R = e
1
2 F =

∞∑
k=0

1
k!

(
1
2F

)k
, (3.40)
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where F is a bivector parametrizing the rotation. The positive sign can always be selected
when F 2 �= 0, and, according to (1.39), F can be written in the canonical form

F = (α + iβ)f where f2 = 1, (3.41)

α and β being scalar parameters. Since the timelike unit bivector f commutes with its
dual if , which is a spacelike bivector, the rotor R can be decomposed into a product of
commuting timelike and spacelike rotors. Thus

R = V Q = QV , (3.42)

where
V = e

1
2 αf = cosh 1

2α + f sinh 1
2α , (3.43)

and
Q = e

1
2 iβf = cos 1

2β + if sin 1
2β . (3.44)

The parameter α is commonly called the rapidity of the boost. The parameter β is the
usual angular measure of a spatial rotation.

When F 2 = 0, equation (3.40) can be reduced to the form

R = e
1
2 αf = 1 + 1

2αf , (3.45)

where f is a null bivector, and it can be expressed in the factored form (1.40). The two
signs are inequivalent cases. There is no choice of null F which can eliminate the minus
sign. The lightlike rotor in (3.45) represents a lightlike Lorentz rotation.

The spacelike rotations that preserve a timelike vector v0 are commonly called spatial ro-
tations without mentioning the proviso (3.38). The set of such rotations is the 3-parameter
spatial rotation group (of v0). More generally, for any given vector n, the subgroup of
Lorentz transformations N satisfying

N(n) = NnÑ = n (3.46)

is called the little group of n. The little group of a lightlike vector can be parametrized as
a lightlike rotor (3.40) composed with timelike and spacelike rotors.

The above classification of Lorentz transformations can be extended to more general
linear transformations. For any linear transformation f the composite ff is a symmetric
transformation. If the latter has a well defined square root S = (ff)

1
2 = S , then f admits

to the polar decomposition
f = RS = S ′R , (3.47)

where R is a Lorentz rotation and S ′ = RSR−1. Symmetric transformations are, of course,
defined by the condition

S = S . (3.48)

On Euclidean spaces every linear transformation has a polar decomposition, but on Min-
kowski space there are symmetric transformations (with null eigenvectors) which do not
possess square roots and so do not admit a polar decomposition. A complete classification
of symmetric transformations is given in the next section.
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4. Tensors and their classification

Our development of the “tensor concept” is somewhat unconventional, to allow us to
integrate it into the spacetime calculus and take full advantage of the algebra. We begin
with a definition which is more general than the usual one.

A tensor T of degree k is a multilinear, multivector-valued function T (a1, a2, . . . , ak) of
k vectors a1, a2, . . . , ak. This means that it is a linear function of each vector variable
separately. If it is skewsymmetric under interchange of any pair of variables, it can be
regarded as a linear function L of a single k-vector variable; thus

L(a1 ∧ a2 ∧ . . . ∧ ak) = T (a1, a2 , . . . , ak) . (4.1)

This kind of function is called a k-form. Ordinarily k-forms are scalar-valued. The term
multiform can be used for the present generalization to multivector-valued functions. In
general, then, a k-form

L(A) = L(〈A 〉k) (4.2)

is a multiform of degree k. This kind of function is fundamental to the theory of integration
set out in Section 6.

In ordinary tensor algebra, tensor addition is defined only for tensors with the same rank
and degree. A tensor T of degree k has a definite rank r > k if it is (r − k)-vector valued,
that is, if

T (a1, a2, . . . , ak) = 〈T (a1, a2, . . . , ak) 〉r−k . (4.3)

We call this a tensor of type r − k. All the tensors ordinarily considered in physics are of
this type. Among the tensors to be encountered in later sections, the energy-momentum
tensor T (a) and the gauge tensor h(a) are of type 2-1; the connection ω(a) is of type 3-1;
and the curvature tensor R(a ∧ b) is of type 4-2. Of course, every multivector is trivially
a tensor of degree zero. Every scalar-valued k-form is equivalent to a k-vector, as can be
proved using relations laid out below.

Conventional tensor algebra employs the concept of rank alone, while the property of
degree is attributed to forms alone; moreover, tensors and forms are treated as completely
separate entities. Geometric algebra brings them under one roof. Two tensors (of degree
r and s, say) can be multiplied using any of the various geometric products to form a new
tensor of degree r+s. The conventional tensor product of “ranked tensors” is a tensor with
rank equal to the sum of the ranks of the multiplicands, without any particular assignment of
degree. Since the tensor product can always be expressed in terms of the geometric product
[3], it need not be introduced as a separate concept. As conceived here a tensor is a purely
algebraic object, without any of the transformation rules attached to its arguments as in
conventional tensor analysis. From the algebraic viewpoint, the linear transformations and
outermorphisms of the preceding section are all tensors. Of course, the “product” of linear
transformations by functional composition is not a tensor product, although construction of
an outermorphism by outer products is. It should also be recognized that the terms “tensor”
and “linear transformation” often indicate an important physical distinction when applied
to objects of identical algebraic structure. As a rule, physicists apply the term tensor to
quantities representing some property of a physical system, while the term transformation
is applied to changes in properties or their representation. For the purely algebraic purposes
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of this section such a distinction is irrelevant. The coupling of tensors to transformations
will be considered later.

Tensors inherit algebraic properties automatically from their definition in terms of STA.
The only problem outstanding is to give suitable names to these properties to facilitate
description. The inner product a · T (a1, . . .) with a vector a reduces the grade of T but
preserves its rank. In fact, successive inner products with s = r − k vectors produces a
tensor of grade zero:

(a1, . . . , as) · T (as+1, . . . , ar) . (4.4)

We can regard (4.3) and (4.4) as different forms of one and the same tensor, for (4.3) can
be recovered from (4.4) by successive protractions. The protraction of T (with respect to
the first variable) is defined by

∂a ∧ T (a, . . . ) . (4.5)

Unless the result vanishes, protraction raises the grade but preserves the rank. Contraction,
defined by

∂a · T (a, . . . ) , (4.6)

lowers the rank by 2 and the grade by 1. Of course, this operation is not defined if the
grade of T is zero.

It will be recognized that the protraction (4.5) is just a curl while the contraction (4.6) is
just a divergence. This introduction of new names is justified, nevertheless, by their unique
application to multilinear functions. In particular, note that these operations completely
remove a tensor’s functional dependence on one variable. Another type of contraction,
which eliminates two explicit variables, is defined by

∂a · ∂bT (. . . a, . . . , b . . . ) = T (. . . ∂a, . . . , a . . . ) = T (. . . γµ, . . . , γµ . . . ) . (4.7)

This is equivalent to the standard definition of contraction in tensor analysis. Note that the
contraction using the derivative is equivalent to the sum over a frame and its reciprocal,
as defined by (1.27). In later sections this type of contraction will arise mainly from
combinations of protractions and contractions of the “divergence type” (4.6), to which it is
equivalent in some cases.

We now have enough mathematical apparatus for systematic classification of all tensors.
However, we restrict our attention to those tensors of importance in gravitation theory — in
particular, the energy-momentum tensor and the curvature tensor. Algebraic classifications
of these tensors have been thoroughly worked out in the literature [16]. However, it will
be seen that STA brings a new perspective to the subject. The algebraic classification of
curvature tensors will be discussed in Section 11. The rest of this section is devoted to
the classification of type 2-1 tensors; this includes all linear transformations as well as the
energy-momentum tensor.

For a type 2–1 tensor f , protraction produces an “invariant” bivector

F = ∂a ∧ f(a) , (4.8)

while the contraction produces the trace

f0 ≡ Tr f = ∂a · f(a) . (4.9)
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The inner product of (4.8) with a vector recovers the skewsymmetric part of f :

f−(a) = 1
2

[
f(a) − f (a)

]
= 1

2a · F . (4.10)

From the symmetric part
f+(a) = 1

2

[
f(a) + f (a)

]
, (4.11)

we can extract a traceless part

f⊕ = f+ − 1
n

f0 1 , (4.12)

where 1 is the identity operator and n = Tr 1. Putting all the parts together, we have the
well known invariant decomposition

f = f⊕ +
1
n

f0 1 + f− . (4.13)

This kind of decomposition is especially useful when the bivector F in (4.8) and (4.10) has
a direct physical interpretation. An important example, to be considered in Part III, is the
deformation rate tensor, for which the protraction can be identified with vorticity.

As an alternative to the decomposition (4.13), the polar decomposition (3.47) is signifi-
cant in other physical problems. In both cases a symmetric tensor appears — additively in
one case, and multiplicatively in the other. A complete classification of symmetric tensors
involves much more than simply separating off a traceless part as in (4.12). There are three
major types, as is now described.

Type I

A symmetric tensor S is said to be of type I if it admits to the “spectral decomposition”

S =
∑

k

λk ek , (4.14)

where the λk = 〈λk 〉0 are real scalars and the ek are irreducible projection operators with
the properties

Idempotence: e2
k = ek, (4.15a)

Orthogonality: ej ek = 0 for j �= k, (4.15b)

Completeness:
∑

k ek = 1, (4.15c)

Eigenvectors: ej(ek) = δjkek. (4.15d)

Therefore S has a unique set of eigenvectors ek satisfying

Sek = λkek . (4.16)

The eigenvectors compose an orthogonal basis {e0, e1, e2, e3} for Minkowski space.
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Type I tensors S and S ′, related by a Lorentz rotation R according to

S ′ = RSR−1 =
∑

k

λk e ′
k , (4.17)

are equivalent in the sense that they have the same spectrum of eigenvalues {λk}. Subtypes
are distinguished by special properties of the eigenvalues, such as positivity or degeneracy.
This gives a complete classification of type I tensors.

Geometric algebra makes it possible to derive the projection operators from the eigen-
vectors; thus,

ek(a) = e−1
k ek · a = eke−1

k · a = 1
2 (a + ekae−1

k ) . (4.18)

Also, outermorphisms facilitate the analysis and applications of symmetric transformations.
For example, the bivectors

eij ≡ ei ∧ ej = eiej (4.19)

can be regarded as eigenbivectors of S satisfying (for i �= j)

S(eij) = λiλjeij . (4.20)

Similarly, there are eigentrivectors

S(eijk) = λiλjλkeijk . (4.21)

Finally, for the pseudoscalar i we have

S(i) = λ0λ1λ2λ3i , so det S = λ0λ1λ2λ3 . (4.22)

For degenerate eigenvalues λi = λj , the spectral form (4.14) can be simplified by introducing
the bivector projection

e ij(a) ≡ e−1
ij (eij · a) = e i(a) + ej(a), (4.23)

so that two terms in the sum are reduced to one according to

λi e i + λj ej = λi e ij , (4.24)

and the arbitrariness in choosing eigenvectors in the eij-plane is eliminated. Note the
outermorphism properties

ek(a ∧ b) = 0 , (4.25)

e ij(a ∧ b) = eij
−1eij · (a ∧ b) , (4.26)

e ij(a ∧ b ∧ c) = 0 . (4.27)

For vector spaces with a Euclidean inner product, all symmetric tensors are of type I.
However, for spacetime the existence of null vectors leads to other types.

Before continuing the classification, it is convenient to make a short excursion into the
properties of null vectors. Two null vectors k, k∗ are said to be a conjugate pair if

k2 = k∗2 = 0 , k · k∗ = 1 . (4.28)
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These vectors determine a unique timelike bivector

K ≡ k ∧ k∗ , (4.29)

with
K2 = (k · k∗)2 = 1 . (4.30)

Also,
Kk = K · k = k and Kk∗ = −k∗ . (4.31)

Therefore k and k∗ are eigenvectors of the tensor

K−(a) ≡ K · a (4.32)

with real eigenvalues ±1, even though K− is a skew symmetric tensor. Relations (4.28)
and (4.29) can be combined into

kk∗ = 1 + K , (4.33)

which has the idempotence property

(kk∗)2 = (1 + K)2 = 2kk∗ . (4.34)

All the above relations between k and k∗ are invariant under the rescaling

k → αk , k∗ → 1
α

k∗ , (4.35)

by an arbitrary nonzero scalar α.
By analogy with the structure of the projection operators ek in (4.18), we can construct

from k and k∗ the elementary tensors

k(a) ≡ kk · a = 1
2kak and k∗(a) ≡ k∗k∗ · a . (4.36)

These tensors are not projections because, instead of being idempotent, they are nilpotent,
satisfying

k2 = 0 = k∗2 . (4.37)

However, they are also symmetric tensors and are obviously not of type I.
Two other elementary tensors can be formed from k and k∗, namely

k∗(a) ≡ kk∗ · a (4.38a)

and its adjoint
k ∗(a) ≡ k∗k · a . (4.38b)

These tensors are idempotent, but they are not symmetric. However, they do have the
symmetric combination

K(a) ≡ KK · a = k∗(a) + k ∗(a) , (4.39)

which is just the projection onto the K-plane.
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We are now ready to continue the classification of symmetric tensors. To simplify com-
parison with type I we identify the K-plane with the e30-plane in the notation of (4.19).

Type II

A symmetric tensor of type II has the canonical form

S = S0 + λ1 e1 + λ2 e2 , (4.40)

where the ek satisfy (4.15a–d) and

S0 ek = ekS0 = 0 . (4.41)

It has an irreducible eigenbivector K satisfying

S(K) = λ2
0K . (4.42)

In other words, S leaves a timelike plane invariant. The eigenbivector K is irreducible in
the sense that, unlike the eigenbivectors eij of a type I tensor, it cannot be factored into
a product of two eigenvectors. The dual of K is proportional to e12, so it is a reducible
eigenbivector satisfying

S(iK) = λ1λ2iK . (4.43)

The type II tensors fall into three distinct subtypes, which can be characterized by specifying
the operator S0 in terms of the three distinct elementary symmetric operators defined by
(4.36) and (4.39).

Type II±

S0 = K[λ0 ± k] = λ0K ± k . (4.44)

In this case there is exactly one null eigenvector when λ0 �= 0,

Sk = S0k = λ0k . (4.45)

If both k and k∗ were eigenvectors we would have a type I tensor. The coefficient of the
last term in (4.44) has been set to unit magnitude without loss of generality, because k can
be rescaled using (4.35) without affecting K in the other term. Because rescaling cannot
change the sign of the coefficient, there are two distinct cases II±.

Type II0

S0 = λ0K + β(k∗ − k) . (4.46)

In this case, with β nonzero, there are no eigenvectors in the K-plane. Rescaling has been
used to set the coefficients of k and k∗ to the same magnitude, but they are necessarily
opposite in sign. The characteristic equation for S0 has complex roots z = λ0 ± iβ, though
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the unit imaginary here is devoid of geometric meaning and cannot be identified with the
unit pseudoscalar. Instead this “imaginary” originates from the combination of nilpotent
operators on the right side of (4.46).

Type III

In this case there is a single irreducible eigentrivector K1, which can be written in the
form

K1 = k ∧ k∗ ∧ e1 = Ke1 = −ie2 . (4.47)

Defining

K1(a) ≡ K1K
−1
1 · a , (4.48)

k1(a) ≡ ke−1
1 · a and k 1(a) ≡ e−1k · a , (4.49)

a type III tensor can be put in the canonical form

S = λ1K1 + k1 + k 1 + λ2 e2 . (4.50)

Here the symmetric tensor k1 + k 1 has been scaled to unity without loss of generality. It
is readily verified that

S(K1) = λ3
1K1 , (4.51)

and the 3-dimensional hyperplane “spanned” by K1 “contains” exactly one eigenvector

S(k) = λ1k (4.52)

and one eigenbivector
S(k ∧ e1) = λ2

1k ∧ e1 . (4.53)

In addition, there is one other eigenvector

S(e2) = λ2e2 (4.54)

and one other eigenbivector
S(k ∧ e2) = λ1λ2k ∧ e2 . (4.55)

Equations (4.53) and (4.55) characterize two invariant null planes intersecting in the null
line of k.

This completes the classification of the main types of symmetric tensors on Minkowski
space. An important application is to the classification of energy-momentum tensors. For
any nonspacelike vector u, a given energy-momentum tensor T (u) is usually assumed (at
least tacitly) to satisfy the conditions

u · T (u) ≥ 0 , (4.56)

[T (u) ]2 ≥ 0 . (4.57)

The first condition ensures that the energy density is never negative. This is formally
equivalent to the condition (3.22) for a Lorentz transformation to be orthochronous, though
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equality never occurs in that case. Accordingly, we refer to any tensor T (a) as orthochronous
if it satisfies (4.56). The conditions (4.56) eliminate classes II−, II0 and III. Moreover, for
classes I and II+ they require that

λ0 ≥ |λk | (4.58)

for k = 1, 2, 3 in the first case, or k = 1, 2 in the second.
As an important example, consider the energy-momentum tensor for an arbitrary elec-

tromagnetic field F , which can be put in the form

T (a) = −1
2FaF = − 1

2faf , (4.59)

where the last equality arises on using the canonical form (1.39). There are two cases.
When f = e3e0 is a timelike bivector, (4.49) has two pairs of doubly degenerate eigenvalues

λ0 = λ3 = 1
2f2 = −λ1 = −λ2 , (4.60)

so that it is a type I tensor. When f is a null bivector with the form (1.40), (4.59) can be
written

T (a) = 1
2ekake = ekk · ae = kk · a , (4.61)

so that it is a type II+ tensor of the most elementary kind (4.36).

5. Transformations on spacetime

This section describes the apparatus of geometric calculus for handling transformations
of spacetime and the induced transformations of multivector fields on spacetime. We con-
centrate on the mappings of 4-dimensional regions, including the whole of spacetime, but
the apparatus applies with only minor adjustments to the mapping of any submanifold
in spacetime. Throughout, we assume whatever differentiability is required to perform
indicated operations, so that we might as well assume that the transformations are diffeo-
morphisms and defer the analysis of discontinuities in derivatives. We therefore assume
that all transformations are invertible unless otherwise indicated.

Let f be a diffeomorphism which transforms each point x in some region of spacetime
into another point x′, as expressed by

f : x → x′ = f(x) . (5.1)

This induces a linear transformation of tangent vectors at x to tangent vectors at x′, given
by the differential

f : a → a′ = f(a) = a ·∇f . (5.2)

More explicitly, it determines the transformation of a vector field a = a(x) into a vector
field

a′ = a′(x′) ≡ f [a(x); x] = f [a(f−1(x′)); f−1(x′) ] . (5.3)

The outermorphism of f determines an induced transformation of specified multivector
fields. In particular,

f(i) = Jf i, where Jf = det f = −ifi (5.4)
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is the Jacobian of f .
The transformation f also induces an adjoint transformation f which takes tangent

vectors at x′ back to tangent vectors at x, as defined by

f : b′ → b = f (b′) ≡ ∇̀f̀ · b′ = ∂xf(x) · b′ . (5.5)

More explicitly, for vector fields

f : b′(x′) → b(x) = f [ b′(x′); x ] = f [ b′(f(x)); x ] . (5.6)

The differential is related to the adjoint by

b′ · f(a) = a · f (b′) . (5.7)

According to (3.15), f determines the inverse transformation

f−1(a′) = f (a′i)(Jf i)−1 = a . (5.8)

Also, however,
f−1(a′) = a′ · ∂x′f−1(x′) . (5.9)

Thus, the inverse of the differential equals the differential of the inverse.
Since the adjoint maps “backward” instead of “forward,” it is often convenient to deal

with its inverse
f−1 : a(x) → a′(x′) = f−1 [ a(f−1(x′)) ] . (5.10)

This has the advantage of being directly comparable to f . Note that it is not necessary to
distinguish between f−1 and f −1.

Thus, we have two kinds of induced transformations for multivector fields: The first, by f ,
is commonly said to be contravariant, while the second, by f or f −1, is said to be covariant.
The first is said to “transform like a vector,” while the second is said to “transform like
a covector.” The term “vector” is thus associated with the differential while “covector” is
associated with the adjoint. This linking of the vector concept to a transformation law is
axiomatic in ordinary tensor calculus. In geometric calculus, however, the two concepts are
kept separate. The algebraic concept of vector is determined by the axioms of geometric
algebra without reference to any coordinates or transformations. Association of a vector or
a vector field with a particular transformation law is a separate issue.

The transformation of a multivector field can also be defined by the rule of direct
substitution: A field F = F (x) is transformed to

F ′(x′) ≡ F ′(f(x)) = F (x) . (5.11)

Thus, the values of the field are unchanged — although they are associated with different
points by changing the functional form of the field. For the purposes of “gauge gravity
theory” discussed in the next section, it is very important to note that the alternative
definition F ′(x) ≡ F (x′) is adopted in [1]. Each of these two alternatives has something to
recommend it.
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Directional derivatives of the two different functions in (5.11) are related by the chain
rule:

a ·∇F = a · ∂xF ′(f(x)) = (a ·∇xf(x)) ·∇x′F ′(x′) = f(a) ·∇′F ′ = a′ ·∇′F ′ . (5.12)

The chain rule is more simply expressed as an operator identity

a ·∇ = a · f (∇′) = f(a) ·∇′ = a′ ·∇′ . (5.13)

Differentiation with respect to the vector a yields the general transformation law for the
vector derivative:

∇ = f (∇′) or ∇′ = f −1(∇) . (5.14)

This is the most basic formulation of the chain rule, from which its many implications are
most easily derived. All properties of induced transformations are essentially implications
of this rule, including the transformation law for the differential, as (5.13) shows.

The rule for the induced transformation of the curl is derived by using the integrability
condition (2.15) to prove that the adjoint function has vanishing curl; thus, for the adjoint
of a vector field,

∇̀ ∧ f̀ (a′) = ∇b ∧ fb(a′) = ∇b ∧∇cfcb · a′ = ∇∧∇f · a′ = 0 . (5.15)

The transformation rule for the curl of a vector field a = f (a′) is therefore

∇∧ a = ∇∧ f (a′) = f (∇′ ∧ a′) . (5.16)

To extend this to multivector fields, note that the differential of an outermorphism is not
itself an outermorphism; rather it satisfies the “product rule”

fb(A′ ∧ B′) = fb(A′) ∧ f (B′) + f (A′) ∧ fb(B′) . (5.17)

Therefore, it follows from (5.15) that the curl of the adjoint outermorphism vanishes, and
(5.16) generalizes to

∇∧ A = f (∇′ ∧ A′) or ∇′ ∧ A′ = f −1(∇∧ A) , (5.18)

where A = f (A′). Thus, the outermorphism of the curl is the curl of an outermorphism.
The transformation rule for the divergence is more complex, but it can be derived from

that of the curl by exploiting the duality of inner and outer products (1.12) and the trans-
formation law (3.14) relating them. Thus,

f (∇′ ∧ (A′i)) = f [ (∇′ · A′)i ] = f −1(∇′ · A′)f (i) .

Then, using (5.18) and (5.4) we obtain

∇∧ f (A′i) = ∇∧ [ f−1(A′)f (i) ] = ∇ · (JfA)i .

For the divergence, therefore, we have the transformation rule

∇′ · A′ = ∇′ · f(A) = Jf
−1 f [∇ · (JfA) ] = f [∇ · A + (∇ lnJf ) · A ] , (5.19)
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where A′ = f(A). This formula can be separated into two parts:

∇̀′ · f̀ (A) = f [ (∇ ln Jf ) · A ] = (∇′ ln Jf ) · f(A) , (5.20)

∇̀′ · f(À) = f(∇ · A) . (5.21)

The whole may be recovered from the parts by using the following generalization of (5.13)
(which can also be derived from (3.14)):

f(A) ·∇′ = f(A ·∇) . (5.22)

6. Directed Integrals and the Fundamental Theorem

In the theory of integration, geometric calculus absorbs, clarifies and generalizes the
calculus of differential forms. Only the essentials are sketched here; details are given in [3],
and [7] discusses the basic concepts at greater length with applications to physics.

The integrand of any integral over a k-dimensional manifold is a differential k-form

L = L(dkx) = L [ dkx; x ], (6.1)

where dkx is a k-vector-valued measure on the manifold. If the surface is not null at x, we
can write

dkx = Ik | dkx | , (6.2)

where Ik = Ik(x) is a unit k-vector field tangent to the manifold at x, and | dkx | is an
ordinary scalar-valued measure. Thus, dkx describes the direction of the tangent space
to the manifold at each point. For this reason it is called a directed measure. Since the
integrals are defined from weighted sums, the integrand L(dkx) must be a linear function
of its k-vector argument; accordingly it is a k-form as defined in Section 4. Of course, the
values of L may vary with x, as indicated by the explicit x-dependence shown on the right
side of (2.17).

The exterior differential of a k-form L is a (k + 1)-form dL defined by

dL = L̀[ (dk+1x) · ∇̀ ] = L[ (dk+1x) · ∇̀; x̀ ] , (6.3)

where the accent indicates that only the implicit dependence of L on x is differentiated.
The exterior derivative of any “k-form” which is already the exterior derivative of another
form necessarily vanishes, as is expressed by

d2L = 0. (6.4)

This is an easy consequence of the integrability condition (2.15); thus,

d2L = dL̀[ (dk+1x) · ∇̀ ] = L̀[ (dk+1x) · (∇̀ ∧ ∇̀) ] = 0 .
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The Fundamental Theorem of Integral Calculus (also known as the “Boundary Theorem”
or the “Generalized Stokes’ Theorem”) can now be written in the compact form

∫
dL =

∫
dL (dk+1x) =

∮
L(dkx) =

∮
L . (6.5)

This says that the integral of any k-form L over a closed k-dimensional manifold is equal
to the integral of its exterior derivative over the enclosed (k + 1)-dimensional manifold. It
follows from (6.4) that this integral vanishes if L = dN where N is a (k − 1)-form.

To emphasize their dependence on a directed measure, the integrals in (6.5) may be
called directed integrals. In conventional approaches to differential forms this dependence
is disguised and all forms are scalar-valued. For that special case we can write

L = 〈A dkx 〉 = (dkx) · A(x) , (6.6a)

where A = A(x) is a k-vector field. Then

dL = [(dk+1x) ·∇ ] · A = (dk+1x) · (∇∧ A) . (6.6b)

In this case, therefore, the exterior derivative is equivalent to the curl.
An alternative form of the Fundamental Theorem called “Gauss’s Theorem” is commonly

used in physics. If L is a 3-form, its 3-vector argument can be written as the dual of a
vector, and a tensor field T (n) = T [n(x); x] can be defined by

T (n) = L(in) . (6.7)

According to (6.2) we can write

d4x = i | d4x | and d3x = in−1 | d3x | , (6.8)

where n is the outward unit normal defined by the relation I3n = I4 = i. Substitution into
(6.5) then gives Gauss’s Theorem:

∫
T̀ (∇̀) | d4x | =

∮
T (n−1) | d3x | . (6.9)

where n−1 = εn with signature ε. Though T̀ (∇̀) may be called the “divergence of the tensor
T ,” it is not generally equivalent to the divergence as defined earlier for multivector fields.
However, if L is scalar-valued as in (6.6a), then (6.7) implies that

T (n) = n · a , (6.10a)

where a = a(x) = A(x)i is a vector field. In this case, we do have the divergence

T̀ (∇̀) = ∇ · a . (6.10b)

Note that duality has changed the curl in (6.6b) into the divergence in (6.10b).
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A change of integration variables in a directed integral is a transformation on a differential
form by direct substitution. Thus, for the k-form defined in (6.1) we have

L′(dkx′) = L(dkx) , (6.11)

where
dkx′ = f(dkx) or dkx = f−1(dkx′) (6.12)

In other words, L′ = Lf−1 or, more explicitly,

L′(dkx′; x′) = L[ f−1(dkx); f−1(x) ] = L(dkx;x) . (6.13)

The value of the integral of (6.11) is thus unaffected by the change of variables,

∫
L′(dkx′) =

∫
L[ f−1(dkx′) ] =

∫
L(dkx) . (6.14)

The exterior derivative and hence the fundamental theorem are likewise unaffected. In
other words,

dL′ = dL . (6.15)

This follows from
(dkx′) ·∇′ = f(dkx) · f (∇) = f [ (dkx) ·∇ ] (6.16)

and
df(dkx) = f̀ [ (dkx) · ∇̀ ] = 0 . (6.17)

Like (6.4), the last equation is a consequence of the integrability condition.

Part II. INDUCED GEOMETRY ON FLAT SPACETIME

7. Gauge Tensor and Gauge Invariance

We shall regard (Minkowski) spacetime as a mathematical device for representing the
ordering of physical events. A spacetime map represents the ordering of particular events
by points (vectors) in spacetime. No other physical property is attributed to spacetime
itself. Instead, all other properties of physical entities are represented as fields on spacetime
or as constructs from such fields.

A given ordering of events can be represented by a map in many different ways, just as
the surface of the earth can be represented by Mercator projection, stereographic projection
or many other equivalent maps. As the physical world is independent of the way we
construct our maps, we seek a physical theory which is equally independent. This idea can
be formulated as a general theoretical principle, which, with deference to Einstein, we dub
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The Principle of General Invariance (PGI): The equations of
physics must be invariant under arbitrary smooth remappings of events
onto spacetime.

The precise mathematical implementation of this principle leads naturally to a geometric
theory of gravitation, as we shall show.

A smooth remapping of spacetime is a diffeomorphism of spacetime onto itself. The
mathematical apparatus for handling such transformations was set out in Section 5. We
saw there that, via the chain rule, differentiation automatically induces transformations of
vectors and covectors. For example, let x = x(τ) be a timelike curve representing a particle
history. According to (5.2), the diffeomorphism (5.1) induces the transformation

x
. =

dx

dτ
→ x

.′ = f(x.) . (7.1)

Thus the description of particle velocity by x
. is “covariant” under spacetime diffeomor-

phisms. An “invariant” description by a velocity vector v = v(x(τ)) can be achieved by
introducing an invertible tensor field h such that

x
. = h(v), (7.2)

while supposing that h undergoes the induced transformation

f : h → h′ = f h , (7.3)

where it is understood that h is a function of x while, using (5.1), h′ is expressed as a
function of x′. Then (7.1) implies that

x
.′ = h′(v) (7.4)

where v = v(f−1(x′)) ≡ v(x′) has the same value as in (7.2), but it is taken as a function

of x′(τ) instead of x(τ). To distinguish the velocity representation x
. from

v = h−1(x.) , (7.5)

let us refer to x
. as the map velocity. Otherwise the term velocity designates v. The

normalization
v2 = 1 (7.6)

fixes the scale on the parameter τ , which can therefore be interpreted as proper time.
The transformation of h defined by (7.3) is called a “position gauge transformation,” and

h (or h) is called the “gauge tensor” or simply the “gauge” on spacetime. Actually, the
term “gauge” is more appropriate here than elsewhere in physics, because h does indeed
determine the “gauging” of a metric on spacetime. To see that, use (7.1) in (7.5) to derive
the following expression for the invariant line element on a timelike particle history:

dτ2 = [ h−1(dx) ]2 = dx · g(dx) , (7.7a)

where
g = h−1h−1 (7.7b)
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is a symmetric metric tensor. Our formulation indicates the gauge as a more fundamental
geometric entity than the metric, and this view will be confirmed by developments below.
Einstein has taught us to interpret the metric tensor physically as a gravitational potential,
making it easy and natural to transfer this interpretation to the gauge tensor. Some readers
will recognize h as equivalent to a “vierbein field,” which has been proposed before to
represent gravitational fields on flat spacetime [17]. However, availability of the spacetime
calculus makes all the difference in turning this idea into a practical reality.

To verify that (7.7a) is equivalent to the standard invariant line element in general rela-
tivity, coordinates can be introduced. Let x = x(x0, x1, x2, x3) be a parametrization of the
points, in some spacetime region, by an arbitrary set of coordinates {xµ}. Partial deriva-
tives then give tangent vectors to the coordinate curves ∂µx, which, in direct analogy to
(7.2) and (7.5), determine a set of position gauge invariant vector fields {gµ} according to
the equation

∂µx =
∂x

∂xµ
= h(gµ) , (7.8)

or, equivalently, by
gµ = h−1(∂µx) . (7.9)

The components for this coordinate system are then given by

gµν = gµ · gν = (∂µx) · g(∂νx) . (7.10)

Therefore, with dx = dxµ∂µx, the line element (7.7a) can be put in the familiar form

dτ2 = gµνdxµdxν . (7.11)

More about coordinates in Part III.
The adjoint of (7.3) gives us the transformation rule

h′ = hf . (7.12)

Applying this to the vector derivative ∇ with its transformation rule (5.14), we can define
a position gauge invariant derivative by

/� ≡ h(∇) = h′(∇′) . (7.13)

Applied to a gauge invariant field ϕ = ϕ(x) this gives the position gauge invariant gradient

/�ϕ ≡ h(∇ϕ) = h′(∇′ϕ′) . (7.14)

where ϕ′ = ϕ(x′) = ϕ(f−1(x′)). From the operator /� we obtain a position gauge invariant
directional derivative

a · /� = a · h(∇) = (ha) ·∇ , (7.15)

where a is a “free vector,” which is to say that it can be regarded as constant or as
transforming by substitution:

a′ = a′(x′) = a(f−1(x′)) = a(x) = a . (7.16)
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The transformation rules (7.3) and (7.12) now give us

h′(a′) ·∇′ = [f h(a)] ·∇′ = h(a) · f (∇′) = h(a) ·∇,

which makes the invariance of (7.15) explicit.
For any field F = F (x(τ)) defined on a particle history x(τ), the chain rule gives the

operator relation
d

dτ
= x

. ·∇ = h(v) ·∇ = v · /� , (7.17)

so that
dF

dτ
= v · /�F . (7.18)

For F (x) = x, this gives
dx

dτ
= v · /�x = (hv) ·∇x = hv , (7.19)

recovering (7.2).
Besides the gauge transformation (7.3) or (7.12), there is another kind of gauge trans-

formation that leaves invariant the form of the above equations. From the discussion in
Section 3, we know that the velocity normalization (7.6) is invariant under the Lorentz
rotation

R : v = v(x) → v′ = R v = R (v(x); x) . (7.20)

Here, however, v is a vector field and the rotation R varies smoothly from point to point
but is otherwise arbitrary. Let us signify this local variability of R by calling it a local
Lorentz rotation. Since R = R−1, the relation

x
. = h(v) = h′(v′)

is left invariant by (7.20) if it is accompanied by the adjoint gauge change

h′ = hR . (7.21)

This kind of gauge transformation leaves the metric tensor (7.7b) invariant, since

(R h)−1(hR)−1 = h−1RR h−1 = h−1h−1 = g .

The gauge change (7.21) does not entail any remapping of spacetime points. Rather, via
(7.20), it induces a change of direction at each spacetime point. We express this fact by
referring to (7.21) as a directional gauge change. This name distinguishes it from the
positional gauge change (7.3). Of course, the two kinds are combined in the most general
spacetime gauge change:

h′ = f hR . (7.22)

The idea expressed by (7.2), that the tangent vector x
. to a particle history is not generally

collinear with its velocity v, is unfamiliar to most physicists. It may be of some comfort,
therefore, to note that if x

. is timelike, as is usual for a material particle except in an extreme
gravitational field, then it can be aligned with v by a local Lorentz rotation along a segment
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of the particle history. In that case the gauge is set so that v is an eigenvector of the gauge
tensor, and (7.3) reduces to

x
. = h(v) = γv . (7.23)

The eigenvalue γ evidently characterizes a gravitationally induced shift in the particle’s
proper time rate, as does the equation (7.7a) for the invariant line element.

In general, the noncollinearity of v and x
. in (7.2) signifies the presence of a gravitational

field, so it cannot be transformed away globally. A major problem for gravitation theory is
therefore to ascertain precisely the global constraints on gauge freedom induced by various
physical assumptions. Just as positional gauge freedom has been theoretically formalized
by the Principle of General Invariance (PGI), directional gauge freedom can be formalized
by

The Principle of Local Relativity (PLR): The equations of physics
must be covariant (i.e. form invariant) under local Lorentz rotations.

This principle, first formulated with spacetime calculus in [4], can be interpreted physically
as asserting that the relative directions of multivector fields representing physical properties
at each spacetime point have an absolute physical significance, while the comparison of
directions at different points generally does not. Equation (3.19) tells us that the geometric
product is preserved by Lorentz rotations at a point, so that relative directions at each
spacetime point are invariant. Obviously, the position dependence of local Lorentz rotations
implies that this is not so for relative directions at different points — although solutions to
the equations of physics may determine some physical significance for this so-called “distant
parallelism,” as in the case of flat spacetime.

An important consequence of local relativity is that, although the operator /� defined by
(7.13) is positionally gauge invariant, it is not directionally invariant. The gauge change
(7.21) induces a transformation of /� to

/�′
= R /� . (7.24)

Except when operating on scalars, as in (7.14), /� is not directionally covariant. To satisfy
the Principle of Local Relativity a directionally covariant differential operator must be
defined. That will be the main task in the next section.

Our two general gauge principles PGI and PLR are obviously closely related to Einstein’s
principles of general and special relativity. To make the relation definite, let us regard the
PGI as a gauge formulation of Einstein’s Principle of General Covariance (PGC). Recall
that Einstein regarded the PGC as a cornerstone of his general theory, but that shortly
after publication Kretschmann and Cartan argued that it is devoid of physical content.
Einstein retreated but continued to assert that the PGC plays an essential heuristic role in
his theory. Precisely what that role might be has remained obscure to this day. Mutually
incompatible attempts to pin it down by various commentators range as far as outright
rejection of Einstein’s claim. All obscurity is removed, however by the restatement of the
PGC as the PGI, with its precise formulation in terms of the spacetime calculus. We have
seen that implementation of the PGI requires the existence of a gauge tensor and of the
geometry it entails. This is a nontrivial heuristic consequence of great importance, for it is
the main idea driving the construction of the whole gauge theory of gravitation in [1]. Thus
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it provides strong grounds for asserting that: Once again, Einstein’s physical intuition is
unerring — outstripping the analysis of his critics.

Another obscure point in Einstein’s work which has been endlessly discussed, is the
relation between his Special and General Theories. Gauge theory throws new light on this
issue with its sharp distinctions between positional and directional gauge transformations.
Since the latter are Lorentz rotations {R}, the PLR can be regarded as a generalization
of the Principle of Special Relativity, to which it reduces when each R is a constant. The
justification for this reduction is that, in the absence of gravity, there is a preferred gauge
h = 1 and all points are geometrically equivalent. From (7.21), therefore, all other gauges
are given by h′ = R. This fact can be interpreted as an expression of the isotropy of the
spacetime gauge. Homogeneity of the spacetime gauge is expressed by the existence of
preferred position gauge changes, called Poincaré transformations, with the general form

x′ = f(x) = Rx + c , (7.25)

where R and c are constant. The differential of this transformation is

f = R . (7.26)

Thus, positional and directional gauge changes merge in Special Relativity. Conversely,
the Lorentz transformations of Special Relativity are generalized in two distinctly different
ways by General Relativity. This fact is obscured in the usual covariant formulation in
terms of tensor analysis.

8. Covariant Derivative and Parallel Transport

To satisfy the Principle of Local Relativity we construct a new differential operator which
is covariant (i.e. form invariant) under directional gauge transformations. Generalizing
(7.20) and using (3.22), the directional gauge change of an arbitrary Multivector field
A = A(x) can be written

R (A) = RAR̃ (8.1)

where R = R(x) is a rotor field. The directional derivative of the rotor can be written in
the form

a · /�R = 1
2RΩ(a) , (8.2)

where the quantity

Ω(a) = 2R̃ a · /�R = −2(a · /�R̃)R = −Ω̃(a) (8.3)

is a bivector field. Therefore, the directional derivative of R (A) can be written

a · /̀�R̀ (A) = R [Ω(a) × A ] = [R Ω(a) ] × R (A) (8.4)

where × is the commutator product defined by (1.32). According to (1.36), the commutator
product with Ω(a) is grade-preserving.
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A gauge covariant directional derivative can now be defined in a standard way by intro-
ducing a so-called gauge field ω(a) = ω(a;x) with the operator definition

a · D ≡ a · /� + ω(a) × . (8.5)

Applied to any multivector field A this gives, of course,

a · DA = a · /�A + ω(a) × A . (8.6)

The idea is to assign to ω(a) the gauge transformation rule

ω′(a′) = R (ω(a) − Ω(a)) = Rω(a)R̃ − 2(a · /�R)R̃ (8.7)

with a′ = Ra, so that its last term cancels (8.4) and a · D satisfies the gauge covariance
condition

a′ · D′R (A) = R (a · DA) (8.8)

with
a′ · D′ = a′ · /�′

+ ω′(a′)× = a · /� + ω′(Ra) × . (8.9)

Clearly the gauge field ω(a) must be bivector-valued to satisfy (8.7).
To distinguish a · D from the directional derivative defined by (7.15) we call it the direc-

tional coderivative. A vectorial coderivative D can then be defined by

D = ∂aa · D = /� + ∂aω(a)× , (8.10)

where /� is given by (7.13). In geometry the gauge field ω(a) is called a linear connection
or connexion. The term “coderivative” can be regarded as short for covariant derivative.

Besides gauge invariance (8.8), the directional coderivative has a number of easily derived
properties which are listed here for convenience:

(1) Linearity:
(a + b) · D = a · D + b · D . (8.11)

a · D(A + B) = a · DA + a · DB . (8.12)

(2) Leibniz: For geometric products,

a · D(AB) = (a · DA)B + A(a · DB) (8.13a)

and for tensor fields,
a · Df h = a · D̀f̀ h + fa · Dh . (8.13b)

(3) Grade-preserving:
a · D〈A 〉k = 〈 a · DA 〉k . (8.14)

(4) Gradient: For the scalar field ϕ = ϕ(x),
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Dϕ = /�ϕ = h(∇ϕ) , (8.15)

a · Dϕ = a · /�ϕ = h(a) ·∇ϕ (8.16)

(5) Codifferential. The codifferential δaT of a tensor T (a1, a2, . . . , ak) is defined by

δaT (a1, . . . , ak) = a · D̀T̀ (a1, . . . , ak)

≡ a · DT (a1, . . . , ak) − T (a · Da1, a2, . . . , ak) − T (a1, a · Da2, . . . , ak) − . . . (8.17)

(6) Curvature from commutator:

[δa, δb ]A = [a · D, b · D ]A − [a, b ] · DA = R(a ∧ b) × A , (8.18)

where the commutator of codifferentials is defined by

[ δa, δb ] ≡ δaδb − δbδa , (8.19a)

the Lie bracket is defined by
[ a, b ] ≡ a · Db − b · Da , (8.19b)

and the curvature tensor R(a∧ b) is a bivector-valued field of a bivector variable a∧ b given
by

R(a ∧ b) ≡ δaω(b) − δbω(a) + ω(a) × ω(b)

= a · /̀�ὼ(b) − b · /̀�ὼ(a) + ω(a) × ω(b) − ω([a, b]) . (8.20)

(7) Spinor derivatives. For a spinor field ψ = ψ(x), the gauge rule (8.1) is replaced by

ψ → Rψ (8.21)

so, to achieve the condition
a · D(Rψ) = Ra · Dψ (8.22)

for gauge invariance, the definition (8.5) must be revised to

a · Dψ = (a · /� + 1
2ω(a))ψ , (8.23)

while (8.7) is retained.

If C is a constant multivector, then
A = ψCψ̃ (8.24)

is a multivector field satisfying (8.1), and differentiation of A by the two different rules (8.6)
and (8.23) give the same result. This justifies using the same symbol a · D in both cases.
The difference can then be attributed to the different types of quantity being differentiated,
the two types being distinguished by two different rules, (8.1) and (8.21), for gauge change.
An alternative approach to spinor derivatives is adopted in [1] where (8.23) is regarded
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as defining a new differential operator, an operator which acts only on spinors — to be
distinguished from the operator defined for multivector fields by (8.6). Spinor fields will
not be considered further in this paper.

The equation for a particle history x = x(τ) generated by a timelike velocity v = v(x(τ))
in the presence of an “ambient” gauge tensor h is

x
. = h(v) . (8.25)

We have seen that, applied to any field A = A(x(τ)), the derivative

d

dτ
= v · /� = x

. ·∇ (8.26)

is positionally gauge invariant. Now we can define a directionally gauge invariant coderiva-
tive by

δ

δτ
= v · D =

d

dτ
+ ω(v) × . (8.27)

Obviously, all this applies to arbitrary differentiable curves in spacetime if the requirement
that v be timelike is dropped.

The equation for a geodesic can now be written

δv

δτ
= v · Dv = v̇ + ω(v) · v = 0 (8.28)

With ω(v) specified by the “ambient geometry,” this equation can be integrated for v and
then (8.24) solved for the curve x(τ). The solution is facilitated by noting that (8.28)
implies

v · v̇ = 1
2

dv2

dτ
= v · ω(v) · v = ω(v) ·(v ∧ v) = 0 .

Therefore v2 is constant on the curve and the value of v at any point on the curve can be
obtained from a reference value v0 by a Lorentz rotation. Thus,

v = R v0 = Rv0R̃ , (8.29)

where R = R(x(τ)) is a rotor field on the curve satisfying the differential equation

δR

δτ
= v · DR = Ṙ + 1

2ω(v)R = 0 . (8.30)

Note that the rotor R submits to the spinor derivative (8.23); it can in fact be regarded as
a special kind of spinor. A solution of equation (8.30) gives more than the velocity; it also
determines the gravitational precession of a small rigid body, gyroscope or electron spin
moving on the curve [18].

Indeed, the parallel transport of any fixed multivector A0 to a field A = A(x(τ)) defined
on the whole curve is given by

A = R A0 = RA0R̃ . (8.31)
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Of course, it satisfies the differential equation

δA

δτ
= Ȧ + ω(v) × A = 0 . (8.32)

The similarity of this formulation for parallel transport to a directional gauge transforma-
tion is obvious.

With the spinor coderivative defined by (8.30) (and not necessarily vanishing), we can
rewrite (8.27) as

δ

δτ
= R

d

dτ
R , (8.33)

or equivalently, as

R
δ

δτ
= R v · D = v · /�R =

d

dτ
R . (8.34)

This shows that a coderivative can be locally transformed to an ordinary derivative by a
suitable gauge transformation.

The entire gauge covariant geometry on spacetime, including the curvature tensor (8.20),
derives from the properties of the coderivative and its connexion ω(a). This Section has
emphasized the directional coderivative ahead of the vector coderivative and considered
only those properties which do not depend explicitly on the role of the gauge tensor. The
next three sections derive those properties that do depend on the gauge and show that the
vector coderivative demands a more prominent role. All of the results follow from (8.18),
which embraces in one equation both the so-called “first and second fundamental forms”
of Riemannian geometry.

9. From Gauge to Connexion

A Riemannian geometry on spacetime is completely determined by specifying a definite
gauge tensor h or, equivalently, its adjoint h. Although the connexion ω(a) was introduced
in the last Section without reference to the gauge, it is in fact related to the gauge by “com-
patibility conditions” on the commutator of derivatives. In this section we determine the
dependence of ω(a) on h and establish a number of results which are helpful in calculations.
Definitions and results from previous sections will be used freely without further comment.

For a scalar field ϕ = ϕ(x) the fundamental equation (8.18) reduces to

(a · Db · D − b · Da · D)ϕ = 0 (9.1)

when a and b satisfy [a, b] = 0. The operator D, however, must be differentiated, because
it is a function of h, as is now made explicit. Differentiating by ∂a∂b we obtain

D ∧ Dϕ = D ∧ /�ϕ = D ∧ h(∇ϕ) = 0 . (9.2)

This is one of the fundamental equations determining the spacetime geometry. Its equivalent
in the language of differential forms was dubbed the “first fundamental form” by Cartan.
It could have been taken as a defining property for the vector coderivative in place of the
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scalar equation (9.1) for the directional coderivative. All results in this section and the
next derive from it.

For ϕ = a · x and constant a, (9.2) becomes

D ∧ h(a) = 0 . (9.3)

By (8.10) this can be expanded to

/�∧ h(a) + ∂b ∧ [ω(b) · h(a) ] = 0 . (9.4)

This equation can be solved for ω(a). Define

H(a) ≡ −h(∇∧ h−1(a)), (9.5)

and note that
H(a) = −h(∇̀) ∧ h[ h̀−1(a) ] = /̀�∧ h̀[h−1(a) ] , (9.6)

so (7.4) becomes
H(a) = ∂b ∧ [a · ω(b) ] . (9.7)

Protraction of this equation gives the position gauge invariant quantity

H ≡ ∂b ∧ ω(b) = − 1
2∂b ∧ H(b) . (9.8)

It follows that
a · H = ω(a) − ∂b ∧ [a · ω(b) ] .

Adding this to (9.7), we obtain the desired result

ω(a) = H(a) + a · H . (9.9)

This formula enables us to calculate ω(a) from a given h by first calculating H(a) from
(9.5) and then H from (9.8). The simple functional form (9.5) makes H(a) seem almost as
important as ω(a) itself; that impression will be reinforced as we learn more about it.

In the absence of gravity we can choose the gauge h = 1, so ω(a) vanishes everywhere,
and the coderivative reduces to the derivative. This is most easily proved from (9.5). Every
other h can be generated from 1 by a transformation f(x), so its adjoint h becomes a
gradient and

h−1(a) = f −1(a) = ∂xf−1(x) · a . (9.10)

Inserted into (9.5), this makes H(a) vanish by (2.15), so ω(a) vanishes by (9.9). Similarly,
position gauge invariance of H(a), and hence of ω(a), can be verified directly by substituting
h′ = hf into (9.5).

For the geodesic equation (8.28), we see from (9.8) that

v̇ = v · ω(v) = v · H(v) , (9.11)

so H(v) determines the geodesic directly. Using (9.5) and (3.14) we can write

v · H(v) = h−1(x.) · H(v) = −h[x. · (∇̀ ∧ h̀−1(v)) ] ,
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and consequently (9.11) can be put in the form

h−1(v̇) = −x
. · (∇̀ ∧ h̀−1(v)) .

Introducing the metric tensor g defined by (7.7b) and expanding the right hand side alge-
braically, we obtain

d

dτ
g(x.) = 1

2∇̀[x. · g̀(x.) ] . (9.12)

Solved for
..
x, this becomes

..
x = g−1

[
1
2∇̀x

. · g̀(x.) − ġ(x.)] . (9.13)

This may be recognized as the standard formulation for the geodesic equation in terms
of the “Christoffel connection.” Note how the metric tensor appears when the equation of
motion is formulated in terms of a particular spacetime map.

For future use, it is convenient to set down the algebraic properties of the connexion
systematically with the help of some definitions. Contraction of (9.9) gives the position
gauge invariant

Γ ≡ ∂a · ω(a) = ∂a · H(a) . (9.14)

The traction ( = contraction + protraction) of ω(a) can therefore be written

∂aω(a) = Γ + H , (9.15)

where the right side can be obtained from H(a) by (9.8) and (9.14).
The dependence of ω(a) on Γ and H can be made explicit. The derivatives

∂a · (a ∧ Γ) = 3Γ and ∂a ∧ (a · H) = 3H (9.16)

enable us to define a “tractionless part” of H(a):

H0(a) ≡ H(a) − 1
3a ∧ Γ + 2

3a · H , (9.17)

so that
∂aH0(a) = 0 . (9.18)

Therefore
ω(a) = H0(a) + 1

3 (a ∧ Γ + a · H) . (9.19)

Though this is a position gauge invariant decomposition of ω(a), the “less complete” de-
composition (9.9) appears to be more useful.

Both H(a) and ω(a) are bivector-valued linear functions of a vector variable, so they
have adjoints H(B) and ω(B) which are linear vector-valued functions of a bivector B. As
usual, the adjoint can be defined by

H(a) · B = a · H(B) , (9.20)

so that
H(B) = ∂aH(a) · B . (9.21)
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From (9.6) and (9.9) we find that

H(a ∧ b) = h−1[b · /�h(a) − a · /�h(b)] = ω(a) · b − a · ω(b) . (9.22)

This is the adjoint counterpart of (9.5). The counterpart of (9.9) is

ω(a ∧ b) = H(a ∧ b) + H · (a ∧ b) . (9.23)

Note that (9.22) involves h while its counterpart (9.5) involves h. Thus, the adjoints of
the connection reflect adjoints of the gauge. The underbar notations H and ω reflect this
correspondence. Using the definitions (9.21) and (9.14), for the contraction of (9.23) we
find

∂b · ω(a ∧ b) = ∂b · H(a ∧ b) = Γ · a . (9.24)

For the protraction, with the help of (9.7) and the definition (9.21), we find

∂b ∧ ω(a ∧ b) = H(a) . (9.25)

This suggests that the adjoint of the connexion may have a deeper significance than the
connexion itself, but that possibility will not be pursued in this paper.

10. Coderivatives and Integrals

The main task of this section is to ascertain the properties of the coderivative D that
derive from the fundamental equation (9.2). In perfect analogy to (2.5), for an arbitrary
multivector field A = A(x), we can write

DA = D · A + D ∧ A . (10.1)

where D · A and D ∧ A are respectively called the codivergence and the cocurl. Their
properties will be analyzed separately, because their dependence on the gauge is different.

From the field A another field A′ = A′(x) is uniquely determined by writing

A = h(A′) . (10.2)

Supposing, for the moment, that A is a vector field, direct differentiation using the Leibniz
rule and (9.3) gives

D ∧ A = h(∇∧ A′ ) . (10.3)

However, this result holds also for multivector fields of arbitrary grade, as is proved easily
from the vector case by factoring A and A′ into outer products of vectors and exploiting
the outermorphism property of h.

Employing the integrability condition (2.15), from (10.3) we obtain

D ∧ D ∧ A = h(∇∧∇ ∧ A′) = 0 . (10.4)

Replacing the A in this equation by Ai and using the duality of inner and outer products
to remove the i, we obtain

(D ∧ D) · A = D · (D · A) = 0 for (grade A) ≥ 2 . (10.5)
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Since D ∧D = D ×D is algebraically a bivector operator, the identity (1.37) enables us to
combine (10.4) and (10.5) into the single equation

D ∧ DA = (D ∧ D) × A . (10.6)

As will be seen in the next section, the value of the right side depends on the curvature
tensor, but for a scalar field it vanishes and we recover (9.2).

The explicit dependence of the codivergence D · A on the gauge can be derived from
(10.3) by exploiting duality. The derivation is essentially the same as that for (5.19) and
yields the result

D · A = hh−1[∇ · (h−1h(A))] = /� · A + Γ(A) , (10.7)

where,
Γ(A) ≡ ∂a · Ha(A) − (/� lnh) · A , and h = det h = deth . (10.8)

Some new notation has been introduced here, because it is useful in other contexts. It is
motivated and explained in the next paragraph and is then used to derive more explicit
expressions for Γ.

The position gauge invariant differential a · /�h appears so frequently that it is convenient
to have more compact notations for it; so write

ha ≡ a · /�h = hHa , (10.9)

with
Ha = h−1ha = −h−1

a h . (10.10)

The operator Ha has already appeared in the important formula (9.22). Here we generalize
it. The problem is that, if (10.10) is defined for operations on vectors, it cannot be extended
to multivectors by an outermorphism, because the differential of an outermorphism is not
the outermorphism of a differential. For example, for h(b ∧ c) = h(b) ∧ h(c), we have

ha(b ∧ c) = ha(b) ∧ h(c) + h(b) ∧ ha(c) . (10.11)

To make the right side an explicit function of b ∧ c and then generalize to an arbitrary
multivector A, we write

ha(A) =
[
ha h−1(c)

] ∧ [
∂c · h(A)

]
= Ha(∂c) ∧

[
h(c) · h(A) ] . (10.12)

It may be checked that (10.11) is recovered for A = b ∧ c. The important point is that
ha(A) denotes the differential of the outermorphism h(A), so (10.9) and (10.10) can be
regarded as applicable to outermorphisms, not just to the type 2-1 tensor h(b). The messy
expression (10.12) is cleaned up by operating on it with the outermorphism h−1 and using
(3.14), to get

Ha(A) = Ha(∂c) ∧ (c · A) = Ha(c) ∧ (∂c · A) . (10.13)

This expresses the differential of an outermorphism in terms of the differential for a vector
Ha(c). A simple but important application of (10.13) with (10.10) is to the outermorphism
h(i) = hi. Thus,

Ha(i) = h−1hai = Ha(∂c) · ci ,
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whence
a · /�( lnh) = ∂c · Ha(c) = TrHa . (10.14)

The results and notations in this paragraph apply to any type 2-1 tensor field, so (10.14) is
a general relation between the derivative of its determinant and the trace of its differential.

In the equation
DA = /�A + ∂aω(a) × A , (10.15)

the term on the right gives an alternative way to evaluate the operator Γ(A) in (10.7). Just
like Ha(A), the factor ω(a) × A is a “derivation,” so it can be evaluated in much the same
way. Accordingly, we write

ω(a) × A = [ω(a) · ∂b] ∧ (b · A) = [ω(a) · b ] ∧ (∂b · A) . (10.16)

Then
∂a · [ω(a) × A] = [ ∂a · ω(a) · ∂b ] ∧ (b · A) − [ω(a) · b ] ∧ [ (∂a ∧ ∂b) · A ]

= Γ · A − 1
2H(a ∧ b) ∧ [(∂a ∧ ∂b) · A]

= Γ · b(∂b · A) − Ha(b) ∧ [ (∂a ∧ ∂b) · A ]

= (b · /� lnh)(∂b · A) + ∂aHa(A) ,

where (9.22), (10.14) and (10.13) have been used, and it has been ascertained that

Γ = ∂a · H(a) = Ha(∂a) − ∂c∂a · Hc(a) = h̀ (∇̀) − /� lnh , (10.17)

where Ha is the vector-valued adjoint of Ha.
Finally, we can express Γ(A) in two alternative explicit forms:

Γ(A) = Γ · A + H(a ∧ b) ∧ [ 1
2 (∂b ∧ ∂a) · A ]

= (/� lnh) · A + ∂a · [Ha(∂b) ∧ (b · A) ] , (10.18)

where it is understood that the last term vanishes for (grade A) < 2. The appearance of Γ
in (10.18) motivates the notation Γ. Indeed, for a vector field (10.7) reduces to

D · A = h∇ · (h−1h(A)) = /� · A + Γ · A . (10.19)

For a bivector field F = F (x), (10.18) puts (10.7) in the form

D · F = /� · F + H(F ) + Γ · F . (10.20)

By duality, with N = ai, (10.19) yields

D ∧ N = /�∧ N + Γ ∧ N . (10.21)

Of course, this holds for any trivector N .
Similar general results can be obtained for the cocurl. From (10.16) with (9.7), we obtain

∂a ∧ [ω(a) × A ] = [ ∂a ∧ (ω(a) · b) ] ∧ (∂b · A) = −H(b) ∧ (∂b · A) . (10.22)
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Hence (10.15) gives
D ∧ A = /�∧ A − H(b) ∧ (∂b · A) . (10.23)

For a vector field this reduces to

D ∧ A = /�∧ A − H(A) . (10.24)

This result has important consequences.
A vector field a = a(x) is said to be constant (independent of x) if b · /�a = 0 for all x

and any vector b. It follows that /�∧ a = 0, and (10.24) gives

H(a) = −D ∧ a . (10.25)

Of course, this is not a gauge covariant quantity because the assumption that a is constant
does not allow a to be a gauge covariant field. Combining (10.25) with (10.19) we have

Da = Γ · a − H(a) . (10.26)

Thus, the coderivative of a constant vector is not zero. Indeed, “pure geometry” is generated
by differentiating constant vectors. Equation (10.26) shows the fundamental significance of
H(a) and Γ — though we know that Γ can be derived from H(a). In fact, we could have
adopted (10.25) as a defining property of the coderivative together with

D ∧ H(a) = −D ∧ D ∧ a = 0 , (10.27)

which, instead, we obtain here as a consequence of (9.5) and (10.14). Note that, in effect,
the connexion was defined in the preceding section by

b · Da = ω(b) · a . (10.28)

Thus, ω(a) relates to the directional coderivative as H(a) relates to the vector coderivative.
If the operator D is regarded as more fundamental than a · D, then H(a) and (10.23) are
more fundamental than ω(a) and (10.28). A reason for starting with H(a) instead of ω(a)
is the simplicity of the “integrability condition” (10.27). Of course, (9.9) makes it easy to
translate between H(a) and ω(a), so we have the benefit of both “points of view.”

Another important consequence of (10.24) comes from applying it to a nonconstant vector
field v = v(x). Using the identity

v · (D ∧ v) = v · Dv − 1
2Dv2 , (10.29)

and assuming constant v2, we obtain from (10.24)

v · (D ∧ v) = v · Dv = v · /�v − v · H(v) . (10.30)

This agrees with (8.28) and (9.11), so it can be used to find the “integral curves” of a given
vector field.
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The above results have important applications to integral theorems. Putting (10.19) into
(6.9), we get the scalar version of Gauss’s Theorem in the manifestly gauge invariant form∫

D · A h−1 | d4x | =
∮

A · h(n−1) h−1 | d3x | , (10.31)

where A is a vector field. The explicit appearance of the gauge here comes from putting
the directed measures (6.8) in the gauge covariant form

h−1(d4x) = ih−1 | d4x | , (10.32)

h−1(d3x) = h−1(in−1) | d3x | = h−1ih(n−1)| d3x | . (10.33)

Of course, the gauge covariant form h(n−1) for the normal is necessary to make the value
of the integral independent of the chosen spacetime map.

To get a version of Gauss’s theorem for a general tensor field T (a) which makes the role
of the connexion explicit, use (10.17) to write

h̀−1 T̀ h(∇̀) = h−1 [ T̀ (∇̀) + T (Γ) ] . (10.34)

By inserting this into (6.9), we get the general Gauss’s theorem in the form∫
[ T̀ ( /̀�) + T (Γ)]h−1 | d4x | =

∮
T (hn−1) h−1 | d3x | . (10.35)

This formula is position gauge invariant, but it is not rotation gauge covariant although
it does admit a kind of “asymptotic rotation gauge invariance” where the rotor field is
assigned a fixed value on the boundary. Evidently such a condition is essential for a global
energy-momentum conservation law.

The formula (10.35) can be expressed in terms of the coderivative by using the relation

T̀ ( /̀�) = T̀ (D̀) − ω(a) × T (∂a) . (10.36)

Remarkably, equation (10.35) is identical in form to a result derived in [3] for vector mani-
folds, although the analogue of Γ there is orthogonal to the tangent space of the manifold.

To express the Generalized Stokes’ Theorem (6.5) as an explicit function of the gauge
covariant measure h−1(dkx), we define a gauge invariant k-form M(〈A 〉k) by writing (6.1)
in the form

M = L(dkx) = M(h−1dkx) . (10.37)

Since
h−1((dk+1x) ·∇) = [ h−1dk+1x ] · h(∇) = [ h−1dk+1x ] · /� , (10.38)

the exterior differential (6.3) can be written

dM = M̀ [ h̀−1((dk+1x) · /̀�) ] + M [ h−1((dk+1x) · Γ0) ] , (10.39)

where
Γ0 = h̀(∇̀) = Γ + /� lnh . (10.40)
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Consequently Stokes’ Theorem (6.5) retains the same form as before:∫
dM =

∮
M . (10.41)

When M is scalar-valued there exists a k-vector field A = h(A′) so that

M = (h−1dkx) · A = (dkx) · A′ . (10.42a)

Moreover, by virtue of (10.3), the exterior differential (10.39) simplifies to

dM = (h−1dk+1x) · (D ∧ A) = (dk+1x) · (∇∧ A′) . (10.42b)

This is exactly the result (6.6a,b) obtained before gauge invariance was incorporated in
the formulation. It shows that the cocurl is equivalent to a curl in Stokes’ Theorem for
scalar-valued forms, but the role of the gauge should be noted.

The above results enable us to make electrodynamics positionally and directionally gauge
invariant, and thus to incorporate the influence of gravity on the formation and propa-
gation of electromagnetic fields. The generalization is achieved simply by replacing the
vector derivative by the coderivative in (2.4). Thus, we obtain the gauge covariant form of
Maxwell’s equation

DF = J . (10.43)

This separates into trivector and vector parts:

D ∧ F = 0 , (10.44a)

D · F = J . (10.44b)

By virtue of (10.19), the latter implies local charge conservation:

D · J = h∇ · (h−1hJ) = 0 . (10.45)

Gauss’s theorem (10.31) puts it in the integral form∮
J · h(n−1) | d3x | = 0 . (10.46)

By virtue of (10.4), (10.44a) allows us to derive F from a vector potential:

F = D ∧ A . (10.47)

If we adopt the “Lorentz condition”

D · A = 0 , (10.48)

then F = DA, and Maxwell’s equation (10.42) can be put in the form

D2A = D · DA + R(A) = J , (10.49)
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where, as will be seen in the next section,

R(A) = D ∧ DA (10.50)

is the Ricci tensor.
One interpretation of (10.2) is as describing the effect of the gravitational potential h

acting on a flat space vector potential A′ to produce the “physical field” A. On the other
hand, it describes the relation of a map dependent representation A′ to the position gauge
invariant representation A, and its only use has been in deriving properties of D from
properties of ∇. The gravitational field can be regarded as entering entirely through D
rather than partially through A.

Evidently D · D is a generalization of the d’Alembertian, so let us call it the co-d’Alem-
bertian. This operator can be expressed as an explicit function of the vector derivatives
with the help of (10.7). For example, the scalar wave equation can be written

D · Dϕ = [ /� + Γ ] · /�ϕ = [ g−1(∇) + Γg ] ·∇ϕ = 0 . (10.51)

where g is the metric tensor and

Γg ≡ h(Γ) + h̀( /̀�) = g̀−1 (∇̀) + g−1(∇ ln h) . (10.52)

Again we see the appearance of the metric tensor when an equation is put in covariant
form.

11. Curvature

This section analyzes and summarizes properties of the (Riemann) curvature R(a ∧ b).
As defined by (8.20), it is a tensor of type 4-2. It can also be regarded as a linear bivector-
valued function of a bivector variable B, as determined by

R(B) ≡ 1
2B · (∂b ∧ ∂a) R(a ∧ b) . (11.1)

The curvature tensor is related to the directional coderivative by (8.18), which, for vector
fields a and b satisfying [a, b] = 0 reduces to

[a · D, b · D ]A = R(a ∧ b) × A (11.2)

The existence of such fields is established in Section 13. They are employed here to simplify
the derivation of properties of the curvature tensor from the coderivative, after which the
results hold for arbitrary fields.

As was noted in Section 9, (11.2) amounts to the “first fundamental equation” of Rie-
mannian geometry when A is a scalar field. When A is not a scalar, it becomes the “second
fundamental equation.” The fact that the right side of (11.2) is a linear function of A shows
that the equation does not depend on whether A is constant; its content depends only on
the grade of A. Recall from (10.26) that the coderivative of a constant vector is not zero.
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Results of the preceding section which were derived from the “first fundamental equation”
imply restrictions on the curvature tensor. These can be readily expressed by reformulating
(11.2) as a condition on the vector coderivative D. For a vector c the commutator product
is equivalent to the inner product and (11.2) becomes

[a · D, b · D ]c = R(a ∧ b) · c . (11.3)

To reformulate this as a condition on the vector coderivative, we simply eliminate the
variables a and b by traction. Protraction of (11.3) gives

∂b ∧ [ a · D, b · D ]c = ∂b ∧ [R(a ∧ b) · c ] = R(c ∧ a) + c · [ ∂b ∧ R(a ∧ b) ] . (11.4)

Another protraction together with

D ∧ D = 1
2 (∂b ∧ ∂a)[ a · D, b · D ] (11.5)

gives
D ∧ D ∧ c = [ ∂b ∧ ∂a ∧ R(a ∧ b) ] · c + ∂a ∧ R(a ∧ c) . (11.6)

The left side of this equation vanishes by (10.4), and since the terms on the right have dif-
ferent functional dependence on the free variable c, they must vanish separately. Therefore

∂a ∧ R(a ∧ b) = 0 . (11.7)

This constraint on the curvature tensor is called the Ricci identity.
The requirement (11.7) that the curvature tensor is protractionless has an especially

important consequence. The identity

∂b ∧ [B · (∂a ∧ R(a ∧ b)) ] = ∂b ∧ ∂aB · R(a ∧ b) − B · (∂b ∧ ∂a)R(a ∧ b) (11.8)

vanishes on the left side because of (11.7), and the right side then implies that

A · R(B) = R(A) · B . (11.9)

Thus, the curvature is a symmetric bivector function. This symmetry can be used to recast
(11.7) in the equivalent form

e · R
(
(a ∧ b ∧ c) · ∂e

)
= 0 . (11.10)

On expanding the inner product in its argument, it becomes

a · R(b ∧ c) + b · R(c ∧ a) + c · R(a ∧ b) = 0 , (11.11)

which is closer to the usual tensorial form for the Ricci identity.
Contraction of the curvature tensor defines the Ricci tensor

R(a) ≡ ∂b · R(b ∧ a) . (11.12)
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The Ricci identity (11.7) implies that we can write

∂b · R(b ∧ a) = ∂bR(b ∧ a) , (11.13)

and also that the Ricci tensor is protractionless:

∂a ∧ R(a) = 0 . (11.14)

This implies the symmetry
a · R(b) = R(a) · b . (11.15)

An alternative expression for the Ricci tensor is obtained by operating on (11.3) with (11.5)
and establishing the identity

1
2 (∂a ∧ ∂b) · [R(a ∧ b) · c ] = R(c) . (11.16)

The result is
D ∧ D a = (D ∧ D) · a = R(a) . (11.17)

This could be adopted as a definition of the Ricci tensor directly in terms of the coderivative.
Equation (11.17) shows the fundamental role of the operator D ∧D, but operating with

it on a vector gives only the Ricci tensor. To get the full curvature tensor from D ∧D, one
must operate on a bivector. To that end, we take A = a∧ b in (11.2) and use (10.6) to put
it in the form

D ∧ D(a ∧ b) = D ∧ D × (a ∧ b) = 1
2 (∂d ∧ ∂c) × [R(c ∧ d) × (a ∧ b) ] .

Although the commutator products make it possible to use the Jacobi identity, a fair amount
of algebra is involved in reducing the right side of this equation. The result is

D ∧ D(a ∧ b) = R(a) ∧ b + a ∧ R(b) − 2R(a ∧ b) , (11.18)

or equivalently

2R(a ∧ b) = (D ∧ Da) ∧ b + a ∧ (D ∧ Db) − D ∧ D(a ∧ b) . (11.19)

This is the desired expression of the curvature tensor in terms of D ∧ D.
Contraction of the Ricci tensor defines the scalar curvature

R ≡ ∂aR(a) = ∂a · R(a) , (11.20)

where (10.15) has been used. Since R(a ∧ b), R(a), and R can be distinguished by their
arguments, there is no danger of confusion from using the same symbol R for each.

Besides the Ricci identity, there is one further general constraint on the curvature tensor,
which can be derived as follows. The commutators of directional coderivatives satisfy the
Jacobi identity

[a · D, [ b · D, c · D ] ] + [b · D, [c · D, a · D ] ] + [c · D, [a · D, b · D ] ] = 0 . (11.21)
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By operating with this on an arbitrary nonscalar A and using (11.2), we can translate it
into a condition of the curvature tensor that is known as the Bianchi identity:

a · DR(b ∧ c) + b · DR(c ∧ a) + c · DR(a ∧ b) = 0 . (11.22)

Like the Ricci identity (11.10), this can be expressed more compactly as

R̀[ (a ∧ b ∧ c) · D̀ ] = 0 . (11.23)

“Dotting” it with a free bivector B, we obtain

R̀[ (a ∧ b ∧ c) · D̀ · B = (a ∧ b ∧ c) · (D ∧ R(B)) .

Therefore the Bianchi identity can be expressed in the compact form

D̀ ∧ R̀(a ∧ b) = 0 . (11.24)

This condition on the curvature tensor is the source of general conservation laws in General
Relativity.

Contraction of (11.24) with ∂a gives

R̀(D̀ ∧ b) − D ∧ R(b) = 0 . (11.25)

A second contraction yields

G̀(D̀) = R̀(D̀) − 1
2DR = 0 , (11.26)

where
G(a) ≡ R(a) − 1

2aR (11.27)

is the Einstein tensor.
In General Relativity, for a given energy-momentum tensor T (a), the spacetime geometry

is determined by Einstein’s equation

G(a) = κT (a) . (11.28)

The contracted Bianchi identity (11.27) implies the generalized energy-momentum conser-
vation law

T̀ (D̀) = 0 . (11.29)

This is not a conservation law in the usual sense, because, as (10.36) explicitly shows, it is
not generally a perfect divergence and so is not convertible to a surface integral by Gauss’s
theorem (10.35).

To solve Einstein’s equation (11.28) for a given energy-momentum tensor, Einstein’s
tensor G(a) must be expressed so as to make (11.28) a differential equation for the gauge.
A direct expression for G(a) in terms of the gauge and its derivatives is very complicated
and its structure is not very transparent. A simpler approach has been developed in [1,2].
First a gauge is chosen to make the gauge h and its derivatives as simple as possible, in
particular by incorporating symmetries of the given physical situation. Then (9.5) and
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(9.9) can be used to translate these simplifications into conditions on the functional form
of the connexion ω(a). Note that introduction of H(a ∧ b) from (9.22) allows us to express
the curvature tensor (8.20) in the form

R(a ∧ b) = a · /�ω(b) − b · /�ω(a) + ω(a) × ω(b) − ω(H(a ∧ b)) , (11.30)

a relation which holds for arbitrary vector fields a and b. Contraction of (11.30) gives the
Ricci tensor and the Einstein tensor. Then Einstein’s equation and the contracted Bianchi
identity become differential equations for the undetermined functional parameters in the
connexion.

Let us consider an alternative approach. Using (11.17), we can put Einstein’s equation
(11.28) in the form.

D ∧ Da = κ(T (a) + 1
2aTr T ) . (11.31)

Now the gradient
a = Dϕ = /�ϕ = h(∇ϕ) (11.32)

is a function of the gauge tensor, and let us suppose that ϕ can be chosen to satisfy the
“gauge condition”

D · a = D · Dϕ = 0 . (11.33)

Then
Da = D · a + D ∧ a = 0 , (11.34)

so that
D2a = D · Da + D ∧ Da = 0 . (11.35)

That enables us to put (11.31) in the form

D · Da = −κ(T (a) + 1
2aTr T ) . (11.36)

This appears to be a simplification in the form of Einstein’s equation. Indeed, in the linear
approximation it reduces immediately to the wave equation

∇2a = ∇2h(∇ϕ) = −κ(T (a) + 1
2aTr T ) (11.37)

for the gauge h. The formulation (11.36) for Einstein’s equation was first derived in [4], but
it has never been studied to see if its apparent simplicity leads to any practical advantages.
Indeed, there may be some difficulty in satisfying the gauge condition.

We close this section with comments on the algebraic classification of curvature tensors.
The curvature tensor can be put in the form

R(a ∧ b) = W (a ∧ b) + 1
2 [ a ∧ R(b) + b ∧ R(a) ] − 1

6Ra ∧ b , (11.38)

which implicitly defines the Weyl tensor W (a ∧ b) as its “tractionless part”; thus,

∂aW (a ∧ b) = ∂a · W (a ∧ b) + ∂a ∧ W (a ∧ b) = 0 . (11.39)

The complete Petrov classification of Weyl tensors is worked out in language of spacetime
calculus in [3] and adapted in [1]. Together with the classification of symmetric tensors given

51



in Section 4 and applied to the Ricci tensor, this gives a complete algebraic classification of
Riemann curvature tensors for spacetime geometry. Further details will not be presented
here.

Part III. SPACETIME FLOWS

12. Gauge Covariant Flows and Flow Derivatives

This section extends the theory of spacetime transformations in Section 5 to one-parameter
families called flows. Although flows appear in a variety of physical contexts, we will be
most interested in using them to describe the “physical flow (or motion)” through space-
time of a material body or some other physical entity such as electromagnetic radiation.
The main problem will be to define a suitable “flow derivative” to describe how quantities
change along a flow.

The method developed here should be of considerable interest to physicists and mathe-
maticians, because it enables a complete treatment of transformation group geometry on
flat manifolds. In other words, it provides the foundation for a gauge theory of transforma-
tion groups. Applications will not be pursued here. Rather, we construct the tools of Lie
group theory within the context of gauge geometry so they are ready to be applied within
the gauge theory of gravitation.

Let v = v(x) be a vector defined on some region of spacetime, possibly on the whole of
spacetime, or possibly on some k-dimensional submanifold. A curve x(τ) is said to be an
integral curve of the vector field v(x) if

dx(τ)
dτ

= hv(x(τ)) . (12.1)

As explained in Section 7, the gauge tensor h appears in this equation to make it gauge
covariant. According to a fundamental theorem in the theory of differential equations, for
nonvanishing hv equation (12.1) has the unique solution

x(τ) = f(x, τ) (12.2)

for a given initial value x(0) = f(x, 0). Here x is any convenient vector parametrization
for the region of interest. The 1-parameter family of transformations f(x, τ) describes a
congruence of curves, with a single integral curve through each point of the region. This
congruence is called the flow generated by v.

Sometimes it is convenient to identify an arbitrary x in (12.2) with an initial value for
the flow. That choice will be indicated with the subscript notation

fτ (x) = f(x, τ) so that fτ (f(x, t)) = f(x, t + τ) . (12.3)

The function fτ = fτ (x) can be called the relative flow to distinguish it from the flow (12.2),
though the difference is usually obvious in context. The relative flows have the following
properties of a “transformation group”:
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(a) Composition: fτ ◦ ft = ft+τ . (12.4a)

(b) Associativity: (fτ ◦ ft) ◦ fs = fτ ◦ (ft ◦ fs), (12.4b)

(c) Identity: f0(x) = x, (12.4c)

(d) Inverse: f−1
τ = f−τ . (12.4d)

Generally the inverse is only a “local inverse,” which is to say that, if the parameter τ is
restricted to some finite open interval, then an inverse may not exist for “large” values of
τ . This is sometimes expressed by saying that the relative flows compose a pseudogroup.

Given a vector field u = u(x) defined on the same region as v, the differential fτ of the
flow generated by v determines a gauge covariant transformation of u(x) from any chosen
point x to another point along the flow, as defined by

fτ : hu(x) → fτ h(u(x)) ≡ hu′(fτ (x)) . (12.5)

This transformation is described by saying that u(x) is dragged along or transported by the
flow. In this way the vector u(x) at a given point x is extended to a vector field u′(fτ (x))
defined on the whole integral curve of v through that point.

The vector field u = u(x) is said to be an invariant of the flow generated by v if its value
at every point along the flow is equal to its “dragged along” value, so that

u(fτ (x)) = h−1 fτ h(u(x)) ≡ u′(fτ (x)) . (12.6)

To measure the deviation from this invariance we define the flow derivative, more commonly
known as the Lie derivative and denoted by Lv. The definition can be given in the equivalent
forms

Lvu ≡ h−1
{

lim
τ→0

1
τ

[
hu(fτ (x)) − fτ h(u(x))

]}
= h−1

{
lim
τ→0

1
τ

[
f−1

τ hu(fτ (x)) − hu(x)
]}

= h−1 d

dτ
f−1

τ hu
∣∣∣
τ=0

= h−1 f
d

dτ

[
f−1hu

]
. (12.7)

The last form has the advantage of applying to the arbitrary parametrization of points
by (12.2) and so holds for any value of τ . The second form simplifies evaluation of the
derivative. With the help of (7.17), (9.22) and (8.5). we find

Lvu = h−1[(hv) ·∇(hu) − (hu) ·∇(hv)] = h−1[(v · /�(hu) − u · /�(hv)]
= v · /�u − u · /�v + H(u ∧ v) = v · Du − u · Dv . (12.8)

Recalling the definition (8.19b) for the Lie bracket and introducing the notation

v(u) ≡ u · Dv (12.9)

for the codifferential of a vector field v, we can write

Lvu = [v, u] = v(u) − u(v) . (12.10)
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The advantage of the codifferential notation (12.9) will appear when its outermorphisms
are examined. The Lie derivative can also be expressed in terms of the codivergence using
the identity

[ v, u ] = D · (v ∧ u) − uD · v + vD · u . (12.11)

The definition (12.7) reduces to the conventional definition of the Lie derivative for con-
stant h. Ordinarily the same definition is used for curved and flat manifolds. Here, the
incorporation of h into the definition is an alternative to the usual generalization to curved
manifolds. With (12.7) we have, for the first time, a gauge-invariant formulation of the
Lie derivative on a flat space. The essential role of the gauge tensor in achieving gauge
invariance is a new idea for Lie theory. Among its implications is the likelihood that the
theory of manifolds with Lie group structure can be reduced to the study of gauge tensor
fields on flat space. In gravitation theory, it is a sharp tool for studying gauge-invariant
flows and conserved quantities.

The Lie derivative definition (12.7) generalizes immediately to any k-vector field A =
A(x) by interpreting f and h as outermorphisms. Thus,

LvA = h−1 d

dτ
fτ

−1hA
∣∣∣
τ=0

= h−1 f
d

dτ

[
f−1h(A)

]
, (12.12)

which evaluates to
LvA = v · DA − v̀ ∧ (D̀ · A) ≡ [ v, A ] , (12.13)

defining a “generalized Lie-bracket” [v, A]. A further generalization of the bracket to arbi-
trary fields is treated in [3]. Equation (12.11) likewise generalizes to

[ v, A ] = D · (v ∧ A) − AD · v + v ∧ (D · A) . (12.14)

For a bivector field A = a ∧ b, we find

[ v, a ∧ b ] = [ v, a ] ∧ b + a ∧ [ v, b ] . (12.15)

This generalizes to the “Leibniz property”

Lv(A ∧ B) = (LvA) ∧ B + A ∧ (LvB) . (12.16)

Therefore the Lie derivative is a derivation with respect to the outer product. This is easily
proved directly from the definition (12.12).

Although the formula (12.13) does not apply to a scalar field, the definition (12.12) does
hold, since outermorphisms do not alter scalars. Thus for a scalar field ϕ = ϕ(x) we find

Lvϕ = v · Dϕ = v · /�ϕ . (12.17)

As noted in Section 5, every transformation of spacetime induces two complementary
kinds of transformations, contravariant and covariant. The vector u = u(x) is said to
be contravariant, to associate it with the contravariant transformation (12.5). Similarly a
covariant vector or covector w = w(x) is associated with the covariant transformation

f τ
−1 : h−1w(x) → f −1

τ h−1(w(x)) ≡ h−1w′(fτ (x)) , (12.18)
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where, the adjoint f τ has been defined by (5.5). Accordingly, the Lie derivative of w is
defined by

Lvw ≡ h
d

dτ
fτh−1w

∣∣∣
τ=0

= hf −1 d

dτ
f h−1w . (12.19)

Evaluating this derivative with the help of (5.5), (7.17) and (7.13), we obtain

Lvw = h[∇̀( h̀v) · (h−1w) + v · /�(h−1w)]

= h[(∇̀v̀ · w) + v · /�w + h[v · ∇̀ h̀−1(w) − ∇̀v · (h h̀−1w)]

= /̀�v · ẁ + v · /�w + v · h[∇̀ ∧ h̀−1(w) ]. (12.20)

Finally, using (9.5) and (9.7), this can be put in the form

Lvw = v · /�w + /̀�v̀ · w + H(w) · v = v · Dw + D̀v̀ · w = w(v) + v(w) , (12.21)

where the adjoint of the codifferential (12.9) is defined by

v(w) ≡ D̀v̀ · w . (12.22)

Recall that the accent is used to distinguish quantities that are differentiated from those
that are not. In the form (12.21), the Lie derivative of a covector is manifestly gauge
covariant. Note that, although the Lie derivatives of vector v and covector w have different
forms, their coderivatives do not. In other words, contravariant and covariant vectors are
distinguished by their Lie derivatives, but not by their coderivatives.

As in the contravariant case, the covariant transformation rule (12.17) and the Lie deriva-
tive definition (12.18) generalize without change from covector field w = w(x) to comulti-
vector field W = W (x) simply by interpreting operators as outermorphisms. Likewise, it is
easily proved from the definition that the Leibniz property (12.16) also holds for comulti-
vectors. By factoring W into covectors and applying the Leibniz rule, (12.20) can be used
to express its Lie derivative in terms of its coderivative:

LvW = v · DW − D̀(v̀ · W ) . (12.23)

Considering the identity

v · (D ∧ W ) = v · DW + D̀ ∧ (v · Ẁ ) , (12.24)

we observe that if D ∧ W = 0, (12.22) can be put in the form

LvW = D ∧ (v · W ) . (12.25)

This is relevant for Lie derivatives of the electromagnetic field.
The Lie derivative of the inner product u · w of a vector with a covector also satisfies the

Leibniz rule. Thus, from (12.10) and (12.21) we find

Lv(u · w) = (Lvu) · w + u · (Lvw) = v · D(u · w) = v · /�(u · w) , (12.26)
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which, for ϕ = u · v, agrees with the formula (12.17) for the Lie derivative of a scalar. In
fact, starting from (12.17) and taking Lvu as given by (12.10), (12.16) could be used instead
of (12.19) to define Lvw, with (12.21) as the result. The Leibniz rule (12.26) generalizes
in the obvious way to the inner product of a multivector with a comultivector. However, it
does not in general apply to the inner product of two vectors or two covectors, as is shown
below.

For fields defined on a 4-dimensional region, the properties of covariant fields can be
derived from contravariant fields by duality. Introduce first

ρ ≡ det f−1h = h det f−1 (12.27)

as an (inverse) measure of flow volume. Then note that the definition (12.12) gives

Lvi = i
1
ρ

dρ

dτ
, (12.28)

while (12.13) yields
Lvi = −iD · v . (12.29)

Therefore
D · v = −1

ρ

dρ

dτ
= v · /� ln ρ−1 = v · D ln ρ−1 (12.30)

can be identified as the volume expansion rate. This implies the familiar “conservation
law”

D · (ρv) = 0 , (12.31)

and supplies it with a geometrico-physical interpretation.
In the preceding paragraph the pseudoscalar i is taken to be contravariant. Accordingly,

any contravariant field A = A(x) can be expressed as the dual of a covariant field W =
W (x); that is,

A = Wi = W · i . (12.32)

Inserting this in formula (12.13) for the Lie derivative of A and extracting the i, we obtain

LvW − W (D · v) = v · DW − v̀ · (D̀ ∧ W ) ,

which is indeed equivalent to the formula (12.23) for the Lie derivative of W . As well
as providing an alternative approach, this result establishes the overall consistency of our
various definitions.

To complete our catalogue of properties of the Lie derivative, we note that, for any
multivector fields A, B and scalar field ϕ,

Lv(A + B) = LvA + LvB , (12.33)

Lv(ϕA) = (v · /�ϕ)A + ϕLvA . (12.34)

Finally, the Lie derivative of a tensor field T (a, b) is defined by

LvT (a, b) ≡ L̀vT̀ (a, b) = Lv[T (a, b) ] − T (Lva, b) − T (a,Lvb) , (12.35)
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where the part in square brackets is evaluated as the Lie derivative of a single multivector.
This definition preserves tensor type, that is, the rank, grade and degree of a tensor. The
arguments a, b are left unchanged because their derivatives are removed by subtraction, as
in the analogous definition for the codifferential of a tensor.

For a given algebraic form of T (a, b), the definition (12.35) will give different Lie deriva-
tives, according to the Lie transformation rules for its arguments a and b. For example,
for T (u, w) ≡ u · w where u is contravariant and w is covariant, insertion of (12.26) into
(12.35) gives

LvT (u, w) = 0 . (12.36)

In general, any tensor T is said to be an invariant of the flow if

LvT = 0 . (12.37)

As another example, consider a tensor T (w) ≡ u · w constructed from the same two con-
travariant and covariant vectors. From the definition (12.35), and (12.26),

LvT (w) = v · D[u · w ] − u · (Lvw) = (Lvu) · w , (12.38)

so, in this case, LvT is equivalent to Lvu.
Now consider the metric tensor

G(a, b) ≡ a · b , (12.39)

where a and b are both contravariant vectors. This is equivalent to the earlier definition
(7.7b) for the metric tensor, but here the tensor is expressed in terms of position gauge
invariant vectors instead of position gauge dependent ones. For the flow derivative of the
metric tensor, we find

LvG(a, b) = a · [ v + v ](b) = a · (b ·Dv) + b · (a · Dv) . (12.40)

This vanishes only in special circumstances, that is, only for special gauge tensors and
particular vector fields. A vector field k = k(x) for which LkG = 0 is called a Killing
vector. According to (12.40), this can occur only if k satisfies Killing’s equation

a · (b · Dk) + b · (a · Dk) = 0 (12.41a)

or equivalently,
k = −k . (12.41b)

Following Sobczyk [19] and Eisenhart [20], we catalogue properties of Killing vectors in the
language of spacetime calculus.

According to (12.41b), the differential k is a skewsymmetric tensor; therefore it is com-
pletely determined by its protraction, the cocurl of k. Differentiating (12.41) by ∂b and
then by ∂a, we obtain

a · Dk = a · Ω = −D̀a · k̀ , (12.42a)

or equivalently,
k(a) = a · Ω = −k (a) , (12.42b)
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where
Ω = 1

2∂a ∧ k(a) = 1
2D ∧ k . (12.43)

Indeed, we obtain the stronger condition

Dk = ∂a k(a) = 2Ω , (12.44)

since (12.43) implies that
D · k = Tr k = 0 . (12.45)

The result is that the coderivative a · Dk is completely determined by the cocurl D ∧ k.
Later it will be seen that, for timelike flows, the bivector Ω can be identified with vorticity
and that Killing’s equation (12.41) is the condition that the strain rate vanishes; in other
words, the strain is constant along the flow. This interpretation can be generalized to apply
to any flow.

The existence of a Killing vector indicates a symmetry of the spacetime geometry. The
physical significance of Killing vectors comes from their association of a conservation law
with each symmetry. This is established by the following general argument. For the energy
momentum tensor T (a) of an isolated physical system, the “generalized conservation law”

T̀ (D̀) = 0 (12.46)

does not translate to a standard integral conservation law, because the left side is not a
strict divergence. However, if there exists a Killing vector k, then the energy-momentum
flux along the flow of k

P ≡ T (k) (12.47)

satisfies
D · P = 0 . (12.48)

This translates to an integral conservation law for P by Gauss’s theorem (10.31). The proof
of (12.48) rests on the fact that T (a) is a symmetric tensor. Thus,

D · P = D · T (k) = T̀ (D̀) · k + T (D) · k .

While the first term on the right vanishes by (12.46), the last term vanishes by Killing’s
equation.

For a uniform (or constant) gauge on spacetime, the curvature tensor vanishes and every
constant vector is a Killing vector. Then Γ vanishes in Gauss’s theorem (10.35), and (12.46)
integrates directly to the integral energy-momentum conservation law∮

T (n−1) | d3x | = 0 . (12.49)

In this case every constant bivector Ω determines a Killing vector field, since every vector
field a satisfies a = a · Dx = a · ∂x whence (12.42a) integrates to

k(x) = x · Ω + c , (12.50)
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where c is an integration constant depending on the choice of origin. The integral curves
of (12.50) are

x(τ) = fτ (x) = R x0R̃ + cτ , (12.51)

where R = R(τ) is the rotor
R = e

1
2Ωτ . (12.52)

This is a spacetime-filling congruence parametrized by the initial position x0. It is a one-
parameter family of Poincaré transformations parametrized by τ . It can be used to model
certain physical systems having constant angular momentum.

For any Killing vector k,
v · k = constant (12.53)

along any geodesic generated by a vector field v. The proof is direct:

v · D(v · k) = (v · Dv) · k + v · (v · Dk) = v · (v · Ω) = 0 .

If k itself generates geodesics, then

a · Dk2 = 2k · (a · Dk) = 2k · (a · Ω) = a · (k · Dk) = 0 ,

which implies that
k2 = constant (12.54)

throughout the region, and the flow is called a translation by Eisenhart [15]. This gener-
alization of the flat-space concept of “translation” is justified by the following facts: for
translations k1, k2,

k1 · k2 = constant , (12.55a)

so that the angle between k1 and k2 is constant. Also, for constant α and β, the vector
field

k3 = αk1 + βk2 (12.55b)

is itself a translation, since

Dk2
3 = D(α2k2

1 + αβk1 · k2 + β2k2
2) = 0 .

An argument against identifying every geodesic k with a translation is that the relation

k · Dk = k · Ω = 0

allows a nonzero Ω, which may impart a “vorticity” to the congruence. It might be better,
therefore, to identify translations with geodesic Killing vectors satisfying

Dk = D ∧ k = 0 . (12.56)

It was found in Section 11 that such vector fields have an especially simple relation to the
curvature tensor.
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The existence of a Killing vector k puts restrictions on the curvature tensor. Applying
the “curvature equation” (8.18) to k, we obtain

R(a ∧ b) · k = a · Ω(b) − b · Ω(a) , (12.57)

where
Ω(a) ≡ a · DΩ (12.58)

is the codifferential of Ω. Dotting (12.57) with c and using the symmetry of the curvature
tensor we obtain

(a ∧ b) · R(k ∧ c) = a · Ω(b) · c − b · Ω(a) · c .

Differentiation with 1
2∂b ∧ ∂a yields

R(k ∧ c) = ∂a ∧ [Ω(a) · c ] = −D̀ ∧ (Ὼ · c) = −c · DDΩ ,

where the last equality was obtained by using D ∧Ω = D ∧D ∧ k = 0 in (12.24). Thus we
have

R(a ∧ k) = Ω(a) . (12.59)

Contraction gives the Ricci tensor

R(k) = D · Ω = DΩ = D2k . (12.60)

More generally, from (12.59) we find that

R(k ∧ a) · b = a · D̀(b · Ẁ ) = a · D̀ k̀(b) , (12.61)

which is the second codifferential of k.
Finally, we prove that if k1 and k2 are Killing vectors, then (in an obvious notation)

k3 = [ k1, k2 ] = k1 · Ω2 + k2 · Ω1, (12.62)

where k3 is a Killing vector with

Ω3 = Ω1 × Ω2 + 2R(k1 ∧ k2) . (12.63)

The proof is by straightforward differentiation followed by use of the Jacobi identity and
(12.61). Thus,

a · Dk3 = (a · Ω1) · Ω2 − (a · Ω2) · Ω1 + k1 · Ω1(a) − k2 · Ω2(a)
= a · (Ω1 × Ω2) + k1 · R(a ∧ k2) − k2 · R(a ∧ k1) ,

where the last two terms are both equal to a · R(k1∧k2). The significance of (12.62) is that
the Killing vector fields for a given geometry form a Lie algebra, with the Lie bracket as
product. For flat spacetime the curvature tensor vanishes, and we obtain the Lie algebra
of the Poincaré group. Sobczyk [19] uses geometric algebra to treat the next simplest case,
the conformal group.
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13. Integrability and Coordinates

This section surveys the main integrability theorems relating multivector fields to curves
and surfaces. These theorems are fundamental in the mathematical analysis of fields and
field equations in physics, so it is important to further applications to have them formulated
in the language of geometric calculus.

Continuing the argument at the beginning of the preceding section, let gs be the flow
generated by the vector field u = u(x), while, as before, fτ is the flow generated by v = v(x).
The question is: When are these flows “layered” into surfaces? The answer is given by the
following theorem:

fτ gs = gs fτ iff [ v, u ] = 0 . (13.1)

In other words, the differentials of two flows commute if and only if the Lie bracket of their
generating fields vanishes. This means that the integral curves of u are “preserved” by fτ ,
while the integral curves of v are preserved by gs. More specifically, (13.1) implies that the
two parameter function

x(s, τ) ≡ fτ ◦ gs(x0) = gs ◦ fτ (x0) (13.2)

describes a 2-dimensional surface passing through a given point x0. The integral curves
of x(s, τ) sweep out a surface parametrized by “coordinates” s and τ . At each point the
tangent vectors to the coordinate curves are given by

∂sx(s, τ) = hu(x(s, τ)), ∂τx(s, τ) = hv(x(s, τ)) . (13.3)

Using this in (12.8) we find that

[ v, u ] = h−1[ (∂τx) ·∇(∂sx) − (∂sx) ·∇(∂τx) ] = h−1[ (∂τ∂s − ∂s∂τ )x(s, τ) ] = 0 . (13.4)

The vanishing of the Lie bracket is therefore a necessary and sufficient condition for the
commutivity of partial derivatives in a (local) parametrization of surfaces swept out by
integral curves of u and v.

The bivector K ′ = K ′(x(s, τ)) ≡ (∂τx) ∧ (∂sx) is everywhere tangent to the surface. It
determines a directed area element

d2x = K ′dτds = (dτ ∂τx) ∧ (ds∂sx) . (13.5)

This can be used to express a directed integral over the surface as an iterated integral with
respect to the scalar parameters. The gauge-covariant area element for the surface is

h−1(d2x) = Kdτds = (vdτ) ∧ (uds), (13.6)

where the bivector
K = h−1(K ′) = v ∧ u . (13.7)

is a “gauge-covariant tangent” to the surface. We rely on context to distinguish between
the two kinds of tangent K ′ and K. The surface parametrized by (13.2) is said to be an
integral surface of K or of K ′.

The bivector field K = K(x) is well-defined throughout the region of interest. Through
each point there passes a unique integral surface of K, while the entire region is “filled”
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with such surfaces. Each surface is called a leaf or folium of K, and the region is said to
be foliated by the leaves of K. The foliation of a region by the leaves of a bivector field
obviously generalizes the foliation (filling) of a region by a congruence of integral curves
(leaves) generated by a vector field.

We aim to generalize the concept of an integral curve to a k-dimensional integral surface
generated by a k-vector field. To be tangent to a surface a k-vector K = K(x) must be
simple or decomposable. This means that there must exist vector fields vi = vi(x) such
that

K = v1 ∧ v2 ∧ . . . ∧ vk . (13.8)

This decomposition is only local, however. It may not be possible to find a set of such
vector fields covering the whole surface. For example, a 2-sphere has a non-vanishing
tangent bivector, but for any two vector fields tangent to it, their outer product v1 ∧ v2

must vanish at some point. This expresses the fact that a 2-sphere cannot be completely
covered by a single coordinate system.

Unlike a vector field, which always has integral curves, a k-vector field may not have an
integral surface. If it does, it is said to be integrable. The general criterion for integrability
of a simple k-vector field is called the Frobenius Integrability Theorem. We shall present
it in several forms, each of which offers its own insight. To facilitate comparison with
standard treatments [19], it is helpful to adapt some of the nomenclature from the language
of differential forms.

A k-vector field W is said to be closed if D∧W = 0 and exact if there is a field A such that
W = D∧A. According to the Poincaré Lemma, if k is differentiable in a simply-connected
region, then it is closed if and only if it is exact. More generally, subject to the same
conditions, every multivector field M = M(x) has (nonunique) “multivector potentials” A
and B such that

M = D ∧ A + D · B . (13.9)

This generalizes the well known Helmholtz Theorem of vector analysis [3].
A scalar field λ = λ(x) is said to be an integrating factor for a field W = W (x) if

D ∧ (λW ) = 0 . (13.10)

A field which has an integrating factor is also said to be integrable; however, as we shall
see, this notion of integrability is dual to the one adopted above. Introducing adjectives to
distinguish the two complementary kinds of integrability when necessary, we may say that
K in (13.8) is directly integrable, while W in (13.10) is normally integrable. The reason
for saying “normally” appears below.

Now we are ready to state and discuss the Frobenius theorem:

A simple k-vector field K = K(x) is integrable if and only if any of the following four
conditions is satisfied:

(1) For every vector field v = v(x) satisfying v ∧ K = 0,

LvK = [ v, K ] = 0 . (13.11a)

(2) If u = u(x) is also a vector field satisfying u ∧ K = 0, then

[ v, u ] ∧ K = 0 . (13.11b)
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(3) The dual of K has an integrating factor so that

D ∧ (λKi) = 0 . (13.12a)

(4) If w = w(x) is a vector field satisfying w · K = 0, then

K · (D ∧ w) = 0 . (13.12b)

The first two of these integrability critera are “direct versions” of the usual Frobenius
theorem, while the last two are “dual versions.” Accordingly, we discuss them in pairs.

The direct integrability conditions (13.11a) and (13.11b) are essentially the same. The
equation v∧K = 0 can be interpreted as “v is contained in K.” Then (13.11b) can be given
the reading: “if u and v are contained in K, then so is their Lie bracket.” Alternatively, it
might be better to interpret v∧K = 0 as “v is tangent to K,” because if K is integrable, v
is indeed tangent to its integral surfaces. Then (13.11b) can be interpreted as the statement
“The tangent vector fields on an integral surface are closed under composition by the Lie
bracket.” This assertion can be elaborated by noting that the vectors vi in (13.8) form a
complete set of vectors “contained in K,” and therefore the Lie bracket closure condition
(13.11b) implies that

[ vi, vj ] = αm
ij vm , (13.13)

where the αm
ij are scalar-valued functions with i, j, m = 1, 2, . . . , k (and summation on the

repeated index is understood). Equation (13.13) is a “classical form” for the integrability
condition. Its equivalence to (13.11a) is easily proved by inserting (13.8) into (13.11a) and
using properties of the Lie derivative.

To prove that (13.13) or (13.11b) are sufficient conditions for integrability, one can use
them to construct an integral surface through any point x0, using flows through x0 to con-
struct a set of coordinate curves for the surface according to the argument at the beginning
of this section. To summarize the main idea: the various forms of the integrability condi-
tion ensure that Lie transport of “vector fields in K” along “integral curves in K” remain
tangent to integral surfaces of K.

It should be remembered that we are dealing with position gauge-invariant tangents K
and vi. As explained before, the ordinary position gauge-dependent tangents h−1(K) and
h−1(vi) are contravariant under gauge transformations and Lie transport.

Turn now to the dual versions of the Frobenius theorem (13.12a,b). The condition
w · K = 0 on the vector w in (13.12b) means that w is normal to the integral surfaces
of K. The (n − k)-vector

K̂ ≡ Ki (13.14)

is properly regarded as the normal to the integral surfaces, because the condition w · K = 0
implies that any normal vector w is “contained in K̂.” (Of course n = 4 for spacetime,
but it costs nothing to keep the dimension unspecified for the sake of generality.) Again
it should be recognized that K̂ is the position gauge-invariant normal. The correspond-
ing position gauge-dependent normal is h−1(K̂), and it is covariant under position gauge
transformations and Lie transport.

When k = n−1, so that K is a pseudovector, then the integral surfaces are hypersurfaces
and K̂ is a vector, so that every other normal vector w is proportional to it. The condition
(13.12b) can then be written (iw) · (D ∧ w) = 0 or, equivalently,

w ∧ D ∧ w = 0 . (13.15)
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We can write w = K̂, so that (13.12a) becomes

D ∧ (λw) = D(λ) ∧ w + λD ∧ w = 0 , (13.16)

which is equivalent to (13.15). It is now clear that (13.10) and (13.12a) are called “normal
integrability conditions” because they are conditions on the normals of integral surfaces.
The normal integrability condition (13.15) was first formulated for vector fields on Euclidean
3-space by Kelvin in 1851, possibly the first published example of an integrability condition.

In the general case, K̂ is simple because K is simple, so locally K̂ can be decomposed
into r = n − k vector fields wi = wi(x):

K̂ = w1 ∧ w2 ∧ . . . ∧ wr . (13.17)

Such a set of linearly independent vector fields is called a Pfaff system of rank r. A set of
vector fields becomes a Pfaff system by requiring normal integrability rather than direct
integrability. In terms of the Pfaff system, the integrability condition (13.12b) can be
written

w1 ∧ w2 ∧ . . . ∧ wr ∧ D ∧ wi = 0 (13.18)

for i = 1, 2, . . . , r. This is an obvious generalization of (13.15).
By virtue of the Poincaré Lemma, the integrability condition (13.12a) implies that K̂ is

locally exact, so that
λK̂ = D ∧ A , (13.19)

where A is an (r − 1)-vector field. If K̂ = w is a vector, this becomes

λw = Dϕ = /�ϕ , (13.20)

where ϕ = ϕ(x) is a scalar field. The equation

ϕ(x) = µ (13.21)

describes a 1-parameter family of hypersurfaces, the leaves of the pseudovector field K =
K(x).

In the general case, we say that a scalar field ϕ is a first integral of K if

K · Dϕ = K · /�ϕ = 0 , (13.22)

in other words, if Dϕ = /�ϕ is normal to K. A set of r = n − k first integrals ϕi = ϕi(x)
is said to be maximal if their gradients are linearly independent. Then

(Dϕ1) ∧ (Dϕ2) ∧ . . . ∧ (Dϕr) = λK̂ (13.23)

satisfies the integrability condition (13.12a), and a specific A for (13.19) can easily be written
down in r different ways. A maximal set of first integrals characterizes each integral surface
of K as the intersection of r hypersurfaces. The foliation of K is an r-parameter family of
(k = n − r)-dimensional surfaces.

Next we turn to a general treatment of frames and coordinates, both as a practical means
to implement integrability conditions, and to clarify points of potential confusion. A set of
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vector fields {eµ = eµ(x); µ = 0, 1, 2, 3} is said to be a frame for a spacetime region if the
pseudoscalar field e = e(x), defined by

e ≡ e0 ∧ e1 ∧ e2 ∧ e3, (13.24)

does not vanish at any point of the region. A frame {eµ} reciprocal to the frame {eµ} is
determined by the set of equations

eµ · eν = δµ
ν , (13.25)

where µ, ν = 0, 1, 2, 3. These equations can be explicitly solved for the reciprocal vectors
eµ, with the result

eµ = (−1)µ(e0 ∧ . . . ∧ ∨
eµ ∧ . . . ∧ e3)e−1 , (13.26)

where
∨
eµ indicates that eµ is omitted from the product. Moreover,

e−1 =
e

e2
= e0 ∧ e1 ∧ e2 ∧ e3 . (13.27)

To interrelate derivatives of the frames {eµ} and {eµ}, we consider

(eµ ∧ eν) · (D ∧ eα) = eµ · (eµ · Deα) − eν · (eµ · Deα) = [ eµ, eν ] · eα , (13.28)

where the last step involves differentiating (13.25). Solving for the Lie bracket, we obtain

[ eµ, eν ] = eα(eµ ∧ eν) · (D ∧ eα) (13.29)

This is the integrability condition (13.13), and it gives an explicit expression for the scalar
coefficients on the right side of (13.13). Alternatively, (13.28) can be solved for

D ∧ eα = 1
2eµ ∧ eν [ eµ, eν ] · eα . (13.30)

Since the frames {eµ} and {eµ} are dually related, the cocurls of the first should be related
to codivergences of the second. To derive the relation, note that e = ±| e |i, where the plus
sign means that e has the same orientation as the unit pseudoscalar i. Since i is constant,
the duality relation (1.12a) gives

| e |D · (| e |−1eµ) = [D ∧ (eµe−1) ]e . (13.31)

On the other hand, using (13.27) we obtain

D ∧ (eµe−1) = (D ∧ eν) ∧ (eν ∧ eµe−1) = (D ∧ eν) · (eν ∧ eµ)e−1 .

Inserting this in (13.31), we obtain the desired “duality relations”

| e |D · (| e |−1eµ) = (D ∧ eν) · (eν ∧ eµ) . (13.32)

Using (13.28) to express the right side of this expression in terms of Lie brackets, we find
that

eν · [ eν , eµ ] = D · eµ − eν · (eµ · Deν) , (13.33)
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whence
eµ · D ln | e | = eν · (eµ · Deν) = −eν · (eµ · Deν) . (13.34)

This completes our collection of “differential identities” for arbitrary frames.
A frame {eµ} is said to be holonomic if

[ eν , eµ ] = 0 (13.35)

for all its vectors. By virtue of (13.29) or (13.40), this is equivalent to the condition

D ∧ eµ = 0 . (13.36)

In standard approaches to differential geometry on curved manifolds, coordinate frames are
holonomic. It is therefore important to understand why this is not the case here.

As introduced in (7.8), a coordinate frame is defined by

eµ = ∂µx = hgµ , (13.37)

and its reciprocal frame is given by
eµ = ∂xµ , (13.38)

where the xµ = xµ(x) are scalar-valued coordinate functions. Besides being not holonomic,
a coordinate frame is not gauge covariant. Nevertheless, it possesses all general properties
of frames derived above. Also, it is associated with a gauge covariant frame {gµ}. The
reciprocal of that frame is given by

gµ = heµ = h(∇xµ) = /�xµ = Dxµ , (13.39)

from which it follows immediately that

D ∧ gµ = 0 ⇐⇒ [ gν , gµ ] = 0 . (13.40)

Thus, the gauge-covariant frame is holonomic.
Why not use gauge-covariant frames exclusively? One answer is that coordinate frames

can simplify calculations by choosing a gauge that takes advantages of symmetries in a
given problem. This is demonstrated conclusively in [2], where the coordinate frame is
chosen to exploit spherical symmetry. The best practice is to coordinate the use of both
types of frame.

The treatment of coordinate frames is a good place to compare curved-space with flat-
space formulations of Riemannian geometry, because coordinates are used in both. The
main difference is that the frames {eµ} and {gν} are not distinguished in the curved-space
approach, in which

∂µx = gµ . (13.41)

This is perfectly explicit in [5]. Thus, it is {gν} in (13.37) that corresponds to a coordinate
frame in curved space. It appears, therefore, that the operator h in (13.37) describes the
effect of projecting a curved-space frame {gν} into a flat-space frame {eµ}, and that gauge
invariance ensures that the result is independent of how the projection is made. It seems
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likely that a proof of the equivalence of curved-space to flat-space formulations can be made
along these lines.

14. Flow Dynamics and Deformations

This section extends the treatment of flows in the preceding sections towards physical
applications. The aim is to show how flows can be used to describe the motions and
deformations of material bodies and fields. The general equation of motion for physical
flows includes both gravitational and non-gravitational effects. This is extended to a general
equation for deformation dynamics.

The location of a material filament at a given instant is described by a spacelike curve
x(λ) = gλ(x0). As the filament flows through spacetime, it generates a timelike surface

x = x(τ, λ) = fτ ◦ gλ(x0) . (14.1)

The particles of the filament are parametrized by λ, and at any proper time τ , the tangent
to the filament is

∂λx = h(n) , (14.2)

where the gauge-covariant tangent n = n(x) satisfies n2 < 0. The velocity field of particles
in the filament is given by

∂τx = h(v) , (14.3)

where the gauge-covariant velocity v = v(x) is normalized to v2 = 1. As explained in the
preceding section the vector fields v(x) and n(x) generate the flow (14.1) if and only if

Lv(n) = [ v, n ] = v · Dn − n · Dv = 0 . (14.4)

Consequently, the coderivative (8.27) of n is given by

δn

δτ
= v · Dn = n · Dv = v(n) . (14.5)

This describes the rate of change in n along the flow, including (as explained below) the
deformation rate of the filament.

To get an equation of motion for n, consider the second coderivative

δ2n

δτ2
= (v · D)2n = v · D(n · Dv) = n · D(v · Dv) + [ v · D, n · D ]v . (14.6)

According to (8.18),
[ v · D, n · D ]v = R(v ∧ n) · v , (14.7)

where R(v ∧ n) is the curvature tensor. For a material point on the filament subject to a
net non-gravitational force F , the equation of motion is

δv

δτ
= v · Dv = F , (14.8)
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and the differential of the force along the filament is

F(n) ≡ n · DF = n · D(v · Dv) . (14.9)

Consequently, (14.6) gives us the equation of motion

δ2n

δτ2
= (v · D)2n = R(v ∧ n) · v + F(n) . (14.10)

This equation measures the relative acceleration of neighboring points in a filament. For a
geodesic flow F vanishes, and (14.10) reduces to the equation for geodesic deviation. The
term R(v ∧n) · v is a gravitational tidal force, while F(n) is a non-gravitational tidal force.

The right side of (14.10) is a linear function of n, so it is convenient to introduce the
operator notation

Rv(n) ≡ R(v ∧ n) · v , (14.11)

allowing (14.10) to be written in the more compact form

δ2n

δτ2
= (Rv + F)n . (14.12)

The linear operators on the right sides of (14.5) and (14.12) suggest the following general-
ization.

Introduce a tensor field U defined on the congruence of particle histories such that

v = U(γ0), (14.13a)

n = U(γ⊥) (14.13b)

where γ0 and γ⊥ are constant reference vectors. The tensor U is determined by specifying
its equations of motion:

U̇ ≡ δU

δτ
= vU , (14.14)

..
U = (Rv + F)U . (14.15)

The tensor U has been defined so that the coderivatives in (14.5) and (14.12) are replaced
by ordinary derivatives. These equations can obviously be applied to any material medium,
not just the filament that we started out with.

We can adopt (14.14) and (14.15) subject to (14.13a) as defining a deformation tensor
U for any material medium. Then (14.14) describes the kinematics of deformation, while
(14.15) describes the kinetics of deformation. Kinetics is concerned with the interactions
producing the deformation while kinematics is not. Together they describe the dynamics
of deformation.

Equation (14.14) conforms to the interpretation of v as the deformation rate tensor. To
derive an equation of motion for the deformation rate, first differentiate (14.14) to get the
kinematic equation

..
U = ( v̇ + v2)U . (14.16)
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Then eliminate
..
UU−1 from (14.16) and (14.15) to get the desired kinetic equation

v̇ + v2 = Rv + F . (14.17)

This equation is analyzed shortly.
To solve the kinematic equation (14.14), we must specify the initial conditions

U0 = U
∣∣∣
τ=0

. (14.18)

We could take U0 = 1, but generally it is better to take γ0 and γ⊥ as generic reference
directions characterizing an undistorted reference configuration for the medium or body,
with

γ2
0 = 1, γ2

⊥ = −1 , γ0 · γ⊥ = 0 . (14.19)

Then
n0 = U0γ⊥, v0 = U0γ0 . (14.20)

In some applications it may be convenient to interpret the tensor U0 as describing a “pre-
stressed” medium. As in section 12, we can write

U = UτU0 , (14.21)

where Uτ=0 = 1, so Uτ has the properties of a transformation pseudogroup.
The deformation tensor U is closely related to the Lie transport defined by (12.5). It

describes the combined effects of gravitational and “mechanical” stresses, but without sep-
arating contributions from the gauge h and the integrable transformation differential f .

Now suppose that the deformation tensor admits to the “polar decomposition”

U = RS = S ′R, (14.22)

where R is a Lorentz rotation and S = S is a symmetric tensor. Anticipating its physical
interpretation, let us call S the stretch tensor. Then S − 1 can be identified as the strain
tensor, measuring deviation from an “undeformed” reference shape. On physical grounds
it seems reasonable to suppose that

Sγ0 = γ0 ⇐⇒ S ′v = v , (14.23)

but this may not be possible in general. Nevertheless, (14.23) implies that

Uγ0 = Rγ0 = v . (14.24)

Moreover, according to (3.34), R can be decomposed into

R = V Q = Q′, (14.25)

where V is the boost of γ0 to v and Q is a spatial rotation satisfying

Qγ0 = γ0 ⇐⇒ Q′v = v . (14.26)
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The operator Q̇Q ≡ W can be interpreted physically as a vorticity tensor (see below for
a somewhat different approach). Accordingly, it might be better to identify QS as the
deformation rather than its boosted version

U = V QS . (14.27)

The time evolution of QS can be interpreted directly as describing a deforming body
fixed in one place, or, as viewed by a “comoving observer” flowing with the body. On
the other hand, the equations of motion (14.14) and (14.15) are very much simpler than
corresponding equations for QS . For that reason it may be better to work with U and
introduce the decomposition (14.27) only at the end to interpret results.

Before analysis of the deformation tensor U, an analysis of the deformation rate v is
called for. In any case, v is often of greater physical interest than U. The analysis of v
begins with the decomposition

v = v‖ + v⊥ , (14.28a)

v‖(n) ≡ v(v)v · n , (14.28b)

v⊥ ≡ vIv , (14.28c)

where Iv is a projection operator defined by

Iv(n) = v(v ∧ n) = n − vv · n . (14.29)

The tensor v‖ is called the acceleration tensor because v(v) = v · Dv is the gauge-covariant
acceleration. The tensor v⊥ has, perhaps, a better claim to the name “deformation tensor”
than the whole tensor v. It submits to the further invariant decomposition (13.13). Thus,

v⊥ = θ + W = σ + 1
3θIv + W , (14.30)

where
θ ≡ 1

2 (v + v)Iv = θ (14.31)

is the (symmetric) strain rate tensor, and

W ≡ 1
2 (v − v)Iv = −W (14.32)

is the (skewsymmetric) vorticity tensor. The trace of θ is the volume expansion rate

θ ≡ Tr θ = Tr v = D · v . (14.33)

The traceless part of θ is the shear rate tensor

σ ≡ θ − 1
3θIv . (14.34)

The interpretation of θ in (14.33) has already been justified by (12.30).
Note that the flow velocity v is a Killing vector if and only if the strain rate tensor θ

vanishes everywhere along the flow. This follows immediately from (12.41b) and (14.31).
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The flow velocity cocurl D ∧ v determines the flow vorticity completely, but it implies
nothing about the strain rate. To see this, introduce the vorticity bivector

W ≡ Iv(D ∧ v) = v(v ∧ D ∧ v) = iwv = v · (iw) (14.35)

and the vorticity vector

w ≡ −i(v ∧ D ∧ v) = Wvi = (W ∧ v)i . (14.36)

These satisfy the obvious orthogonality conditions v · W = 0 and v · w = 0. From (14.35),

n · W = Iv[ (Ivn) · Dv − D̀v̀ · (Ivn) ] = v(Ivn) − v(Ivn) .

Therefore, the vorticity tensor is related to the vorticity bivector by

W (n) = n · W = i(n ∧ v ∧ v(v)) . (14.37)

Inversely,
W = 1

2∂a ∧ W (a) . (14.38)

Noting that D ∧ v = v[v · (D ∧ v) + v ∧D ∧ v) ], recalling (10.29), and inserting (14.35), we
obtain

D ∧ v = vv(v) + W = v(v(v) + iw) . (14.39)

This is the desired relation between velocity cocurl and vorticity.
From the general kinetic equation (14.17) for v, coupled equations of motion for W , θ, σ

and θ can be derived. Hawking and Ellis [21] took this approach, but they did not emphasise
its general significance. The present formulation in terms of spacetime calculus makes it
more attractive and perhaps even of practical value. We use the operator Iv to project out
the tensor components orthogonal to v from (14.17). First, using (14.28c) and (14.30), we
obtain

v2 = v2
⊥ = (θ + W )2 = θ2 + θW + W θ + W 2 . (14.40)

Also,
Iv v̇Iv = Iv(θ̇ + Ẇ )Iv . (14.41)

Therefore (14.17) projects to

Iv{θ̇ + Ẇ + (θ + W )2}Iv = Iv{Rv + F}Iv . (14.42)

It will be convenient to omit explicit mention of the projection operators in the rest of the
argument. Accordingly, (14.42) can be decomposed into a symmetric part

θ̇ = Rv + F+ − θ2 − W 2 (14.43)

and a skewsymmetric part
Ẇ + θW + W θ = F− , (14.44)

where the obvious decomposition F = F+ + F− has been introduced.
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The first thing to notice about (14.44) is that curvature affects the vorticity only indirectly
through its effect on θ in (14.43). More insight is obtained by taking the trace of (14.43),
noting that

Tr Rv = ∂a · R(v ∧ a) · v = −v · R(v) (14.45)

Tr W 2 = W · (∂a ∧ (a · W )) = 2W = −2|W |2 ≥ 0 , (14.46)

Tr θ2 = Tr (σ − 1
3θIv)2 = Tr σ2 − 1

3θ2 . (14.47)

Hence the trace of (14.43) becomes

θ̇ = −v · R(v) + 2|W |2 − Trσ2 − 1
3θ2 + TrF . (14.48)

This is known as the Raychaudhuri equation [11,16]. Hawking and Ellis use it to prove
singularity theorems in General Relativity. They note that, for a perfect fluid with mass
density µ and pressure p,

v · R(v) = 4π(µ + 3p) > 0 , (14.49)

so the first term on the right side of (14.48) induces contraction, as do the third and fourth
terms. The second term induces expansion, like a centrifugal force.

The equation (14.44) for vorticity evolution can be simplified by introducing, as an “in-
tegrating factor,” a symmetric tensor S = S satisfying

Ṡ = θS = Sθ . (14.50)

Accordingly, multiplication of (14.44) on the left and right by S yields the simplified equa-
tion

d

dτ
(SW S) = SF− S . (14.51)

Of course, the S here is the stretch tensor introduced in (14.22).
Alternatively, we can derive an equation of motion for the vorticity bivector by taking

the protraction of (14.44). With (14.38), the first term on the left gives Ẇ = 1
2∂a ∧ Ẇ (a),

while the right side becomes
F− = 1

2∂a ∧ F−(a). (14.52)

To evaluate the protraction of the other two terms, note that W is a simple bivector, so it
can be written as the product of vectors: W = w1 ∧w2. Using this and introducing Ṡ with
(14.50), we obtain

1
2∂a ∧ [ θW (a) + W θ(a) ] = (θw1) ∧ w2 + w1 ∧ (θw2) = (W · ∂a) ∧ θ(a)

= S−1[S(w1) ∧ Ṡ(w2) + Ṡ(w1) ∧ S(w2) ] = S−1Ṡ(W ) . (14.53)

This is recognized as the derivative of the outermorphism S(W ). Assembling the various
terms, we obtain the vorticity equation

Ẇ + S−1Ṡ(W ) = F− . (14.54)

Equivalently,
d

dτ
[SW ] = S(F−) . (14.55)
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Of course, this is equivalent to (14.51), but is simpler.
As noted by Hawking and Ellis, for a perfect fluid we have

F− = − 1
µ + p

dp

dτ
W. (14.56)

In this case (14.55) integrates to vorticity conservation:

λS(W ) = constant , (14.57)

where
lnλ =

∫
dp

µ + p
. (14.58)

When p �= 0 there is a relativistic effect: compression does work on the fluid, thereby
increasing mass and inertia, so vorticity increases less under compression than otherwise.

Throughout this section the flow velocity v has been taken as timelike. However, the
whole treatment is readily adapted to lightlike flows [21].
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