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Abstract: Mathematics has been described as the science of patterns. Natural science can be 
characterized as the investigation of patterns in nature. Central to both domains is the notion of 
model as a unit of coherently structured knowledge. Modeling Theory is concerned with models as 
basic structures in cognition as well as scientific knowledge. It maintains a sharp distinction 
between mental models that people think with and conceptual models that are publicly shared. This 
supports a view that cognition in science, math, and everyday life is basically about making and 
using mental models. We review and extend elements of Modeling Theory as a foundation for R&D 
in math and science education. 
 
1. INTRODUCTION 

 Why should a theoretical physicist be concerned about mathematics education? 
My answer will be a long one, but let me begin by introducing you to some of my 
esteemed colleagues in Box 1. These fellows are such good 
physicists that most if not all of them would be worthy candidates 
for a Nobel Prize if they were alive today. You may know that they 
are quite good at mathematics as well! Indeed, mathematics 
textbooks often count them as mathematicians without mentioning 
that they are physicists. I dare say, however, that they would be 
mightily offended to hear that they are not counted as physicists. 
Likewise, I am more than miffed when reviewers of my math-
science education proposals discount my qualifications as a 
mathematician because my doctorate is in physics. Like the fellows 
in the list, I regard my scientific research as equal parts mathematics 
and physics. The fact that the education establishment does not 
recognize that theoretical physicists are uniquely well-qualified to 
address education at the interface between mathematics and science 
is traceable to a serious problem within the mathematics profession 
itself. 
 Of course, the list of physicist/mathematicians in Box 1 is far from complete. 
Many of my favorite colleagues are omitted. But there are at least two good reasons why 
the list ends in the middle of the twentieth century. The distinguished Russian 
mathematician V. I. Arnold put his finger on both in a widely circulated diatribe On 
Teaching Mathematics [1], wherein he asserts 
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 “Mathematics is a part of physics. Physics is an experimental science, a part of 
natural science. Mathematics is the part of physics where experiments are cheap. “ 

 “In the middle of the 20th century it was attempted to divide physics and 
mathematics. The consequences turned out to be catastrophic. Whole generations of 
mathematicians grew up without knowing half of their science and, of course in 
total ignorance of other sciences.” 

Mathematician-cum-historian Morris Kline has thoroughly documented “the disastrous 
divorce” of the mathematics profession from physics, which began in the latter part of 
the nineteenth century [2]. He estimated that, by 1980, eighty percent of active 
mathematicians were ignorant of science and perfectly happy to remain that way.  

The divorce is thus an incontrovertible fact, but how disastrous can it be if only 
a minority of mathematicians like Arnold and Kline are alarmed? Isn’t it a natural 
consequence of necessary specialization in an increasingly complex society? And isn’t 
Arnold’s claim of intimacy between math and physics merely a personal opinion? Surely 
the majority of mathematicians believe that mathematics is a completely autonomous 
discipline. 
 I claim that the answer to all these questions is a resounding NO! Indeed, I 
submit that the single most serious deficiency in U.S. math education is the divorce of 
mathematics from physics  in the education of mathematicians, in the training of math 
teachers, in the structure of the K–12 (–16–20) curriculum. Moreover, this is not a 
simple deficiency in the breadth of education; it is a fundamental problem in conceptual 
learning and cognition. I claim that cognitive processes for understanding math and 
physics are intimately linked and fundamentally the same! Indeed, I claim that Physics is 
cognitively basic to quantitative science in all domains!! 
 Before delving into the deep cognitive issues, let us note some obvious 
academic consequences of the math/physics divorce. Training in mathematics is 
essential for all physicists, amounting to the equivalent of a dual major in mathematics 
for theoretical physicists. But math courses have become increasingly irrelevant to 
physics, so physics departments offer their own courses in “Methods of mathematical 
physics” at both graduate and undergraduate levels, with additional courses in more 
specialized topics like group theory. One consequence is a narrowing of the physicist’s 
appreciation of mathematics. But a far more serious consequence is the reduction in 
opportunity for math majors to learn about vital connections to physics. This continues 
through graduate school, so the typical math PhD is ill-prepared for work in applied 
mathematics. Some math departments have attempted to remedy this deficiency with 
courses in mathematical modeling, but mathematical modeling without science is like 
the Cheshire cat: form without content! This is one of the deep cognitive issues that we 
need to address. 
 Far and away the most serious consequence of the math/physics divide is the 
deficient preparation of K-12 math teachers! The neglect of geometry and excess of 
formalism that Arnold [1] deplores in the university math curriculum has propagated to 
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teacher preparation. There is abundant evidence that most teachers see their job as 
teaching formal rules and algorithms. Few have even a minimal understanding of 
Newtonian physics, so most are inept at applying algebra and calculus even to simple 
problems of motion. Consequently, high school physics courses are forced to revisit the 
prerequisite math knowledge that students are supposed to bring from years of math 
instruction. As the math courses lack the intuitive base necessary for conceptual 
understanding, students are forced to rote learning, which has a short half-life, so their 
recollection of math has decayed to nearly to zero by the time they get to college. 
 I doubt that these crippling deficiencies in math education can be fully resolved 
without a “sea change” in the culture of mathematics. To drive such revolutionary 
change we need a coherent theory of mathematical learning and cognition supported by a 
substantial body of empirical evidence. My purpose here is to report on progress in that 
direction. 
 
2. ORIGINS OF MODELING THEORY 

I have been investigating the epistemology of science and mathematics across 
the full range of academic disciplines for half a century. As that may sound implausible, 
let me describe the unusual initial conditions that got me started. 

My father was an accomplished mathematician who helped organize American 
mathematicians to support the war effort in WWII. Consequently, he got to know 
mathematicians across the country on a first name basis. That served him well when, 
shortly after the war, he was wooed from the University of Chicago to build a first rank 
math department at UCLA. He was also appointed director of the Institute for Numerical 
Analysis (INA), where the National Bureau of Standards installed the first electronic 
computer in western United States. With a solid background in “pure mathematics” 
(Calculus of Variations), he blossomed then into a pioneer in the fledgling fields of 
Control Theory and Numerical Analysis, for which he was posthumously inducted into 
the Hall of Fame for Engineering, Science and Technology (HOFEST). The well-
funded, vigorous research activity at the INA and the rapid emergence of the UCLA 
math department attracted a steady stream of distinguished mathematicians from around 
the world, for which my father was usually the host. He was at the acme of his career 
when I entered graduate school in 1956. 

My undergraduate major in philosophy introduced me to the great conundrums 
of epistemology, and I was inspired by Bertrand Russell to switch to physics in search of 
answers. When I started graduate school, my father found me an office in the INA where 
I was surrounded by a whirlwind of excited activity about the beginnings of Computer 
Science and Artificial Intelligence. That prepared me to follow the evolution of both 
those fields throughout my career, though my main efforts were concentrated on physics 
and mathematics. By my third year I hit upon “Geometric Algebra” as the central theme 
of my scientific research. That induced me to reject Russell’s logicist view of 
mathematics and sharpened my insight and interest in epistemological and cognitive 
foundations. Throughout my graduate years in physics I spent most of my time in the 
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math department where I imbibed the culture of mathematics. This strong association 
with mathematics continued throughout my career in physics, anchored by relations with 
my father. 

My diverse interests in cognitive science and theoretical physics converged in 
the 1980’s when I got embroiled in problems of improving introductory physics 
instruction. Like any confirmed theoretician, I framed the problems in the context of 
developing a theory with testable empirical consequences. Largely from my own 
experience as a scientist I identified scientific models and modeling as the core of 
scientific knowledge and practice, and I proceeded to incorporate it into the design of 
physics instruction with the help of brilliant graduate students Ibrahim Halloun and 
Malcolm Wells. Thus began a program of educational R&D guided by an evolving 
research perspective that I called Modeling Theory in a 1987 paper. That program has 
continued to evolve beyond all my expectations. An up-to-date review of Modeling 
Theory is available in a recent paper [3]. The present paper is a continuation of [3], 
introducing new material with only enough duplication to make it reasonably self-
contained. Therefore, it contains many gaps, some of which can be filled by consulting 
[3], and others that I hope will stimulate original research. For Modeling Theory is an 
enormous enterprise that amounts to a thematic approach to the whole of cognitive 
science. The best we can do here is 
sample the major themes. 
 As schematized in Figure 1, 
research on Modeling Theory has 
developed along two complementary 
strands. The strand on the right 
investigates scientific models and 
modeling practices that are explicit 
and observable. It provides a window 
to structure and process in scientific 
and mathematical thinking that we 
aim to peek through. That involves us 
with the strand on the left, which will 
be our main concern. 

You may ask, “Why should one adopt a model-centered epistemology of 
science?” There are three good reasons: 

1. Theoretical: Models are basic units of coherently structured knowledge, from 
which one can make logical inferences, predictions, explanations, plans and 
designs. One cannot make inferences from isolated facts or theoretical 
principles. A model can serve as inferential tool for the kind of structure it 
embodies. 

2. Empirical: Models can be directly compared with physical things and 
processes. A theoretical hypothesis or general principle cannot be tested 
empirically except through incorporation in a model. Empirical data is 
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meaningless without interpretation supplied by a model. 
3. Cognitive: Model structure is concretely embodied in physical intuition, where 

it serves as an element of physical understanding. 

The third reason is based on the Modeling Theory of cognition set forth in this paper.  
 
3. MODELS AND CONCEPTS  

The term model is usually used informally (hence ambiguously), but to make 
crucial theoretical distinctions we need precise definitions. Although I have discussed 
this issue at length before [3], it is so important that I revisit it with a slightly different 
slant. I favor the following general definition: 

A model is a representation of structure in a given system. 

A system is a set of related objects, which may be real or imaginary, physical or mental, 
simple or composite. The structure of a system is a set of relations among its objects. 
The system itself is called the referent of the model. 

We often identify the model with its representation in a concrete inscription of 
words, symbols or figures (such as graphs, diagrams or sketches). But it must not be 
forgotten that the inscription is supplemented by 
a system of (mostly tacit) rules and conventions 
for encoding model structure. As depicted in 
Figure 2, I use the term symbolic form for the 
triad of elements defining a model. I chose the 
term deliberately to suggest association with the 
great work on symbolic forms by philosopher 
Ernst Cassirer [4]. 

We are especially interested in scientific models, for which I have often used 
the definition: 

A (scientific) model is a representation of structure in a physical system or process. 

This differs from the general definition only in emphasis and scope. Its scope is limited 
by assuming that the objects in a physical system are physical things. Nevertheless, the 
definition applies to all the sciences (including biology and social sciences). Models in 
the various sciences differ in the kinds of structure that they attribute to systems. The 
term process is included in the definition only for emphasis; it refers to a change in the 
structure of a system. Thus a process model is an abstraction of structural change from a 
more complete model including objects in the system. 

In most discussions of scientific models the crucial role of structure is 
overlooked or addressed only incidentally. In Modeling Theory structure is central to 
the concept of model. The structure of a system (hence structure in its model) is defined 
as a set of relations among the objects in the system (hence among parts in the model).  

Fig. 2:   Symbolic form of a model
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Universal structure types: 

From studying a wide variety of examples, I have concluded that five types of structure 
suffice to characterize any scientific model. As this seems to be an important empirical 
fact, a brief description of each type is in order here. 

• Systemic structure: Its representation specifies (a) composition of the system 
(b) links among the parts (individual objects), (c) links to external agents 
(objects in the environment). A diagrammatic representation is usually best 
(with objects represented by nodes and links represented by connecting lines) 
because it provides a wholistic image of the entire structure. Examples: electric 
circuit diagrams, organization charts, family trees. 

• Geometric structure: specifies (a) configuration (geometric relations among 
the parts), (b) location (position with respect to a reference frame) 

• Object structure: intrinsic properties of the parts. For example, mass and 
charge if the objects are material things, or roles if the objects are agents with 
complex behaviors. The objects may themselves be systems (such as atoms 
composed of electrons and nuclei), but their internal structure is not represented 
in the model, though it may be reflected in the attributed properties. 

• Interaction structure: properties of the links (typically causal interactions). 
Usually represented as binary relations on object pairs. Examples of 
interactions: forces (momentum exchange), transport of materials in any form, 
information exchange. 

• Temporal (event) structure: temporal change in the state of the system. 
Change in position (motion) is the most fundamental kind of change, as it 
provides the basic measure of time. Measurement theory specifies how to 
quantify the properties of a system into property variables. The state of a system 
is a set of values for its property variables (at a given time). Temporal change 
can be represented descriptively (as in graphs), or dynamically (by equations of 
motion or conservation laws). 

Optimal precision in definition and analysis of structure is supplied by mathematics, the 
science of structure. This agrees with the usual notion of a mathematical model as a 
representation in terms of mathematical symbols. 

Now, here is a perplexing question that bothered me for decades: If the 
meaning of a scientific model derives from its physical interpretation, from whence 
comes the meaning of a mathematical model? Mathematical models are abstract, which 
means they have no physical referent!  

It dawned on me during the last decade that the emerging field of cognitive 
linguistics provides a revolutionary answer. Cognitive linguistics has revolutionized 
the field of semantics by maintaining that the actual referents of language are mental 
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models in the mind rather than concrete objects in an external world. It follows that, if 
mathematics is “the language of science,” then the referents of mathematical models 
must be mental models. Likewise, the proper referents of scientific models must be 
mental models of physical situations, which are only indirectly related to real physical 
systems through data, observation and experiment.  

This implies a common cognitive foundation for math, science and language: 
Just as science is about making and using objective models of real things and events, so 
cognition (in mathematics and science as well as everyday life) is about making and 
manipulating mental models of imaginary objects and events! 

Let me sum up this revolution in semantics with a modified definition: 

A conceptual model is a representation of structure in a mental model. 

As before, the representation in a conceptual model is a concrete inscription that encodes 
structure in the referent. However, we make no commitment as to what the structure of a 
mental may represent. Henceforth, scientific and mathematical models are to be regarded 
as conceptual models. But the referent of a conceptual model is always a mental model, 
so its structure in the mind is inaccessible to direct observation. How, then, can this be 
an advance in Modeling Theory? 

The answer is: It enables transfer from a Modeling Theory of scientific 
knowledge to a Modeling Theory of cognition in science and mathematics. Much is 
known about the structure of scientific models. We seek to solve the inverse problem of 
inferring the structure of mental models from the objective structure of scientific 
representations. If that seems like an impossible task, note that it is commonplace to 
infer thoughts in other minds from social interaction. Can we not make stronger 
inferences with the full resources of science? Here we have a modeling approach to the 
theory of cognition, so we can draw on the whole corpus of results in cognitive science 
for support and critique. I will not duplicate my previous reference to that enormous 
literature [3]. However, I should emphasize the special relevance of cognitive linguistics 
and point out that two recent introductions to the field [5, 6] provide a comprehensive 
overview that was difficult to put together only a few years ago. 

Let me now propose the First Principle for a Modeling Theory of Cognition:  

I. Cognition is basically about making and manipulating mental models. 

I call this the Primacy (of Models) Principle, noting I have already tacitly invoked a 
variant of it for the Modeling Theory of scientific knowledge. Commitment to this 
principle might seem extreme, for I must admit that it is not to be found in the cognitive 
science literature from which I draw most of the supporting evidence. However, I 
contend that for a guiding research principle the standard is not that it is true but that it is 
productive, by which I mean that it leads to significant predictions that are empirically 
testable. Even if proved wrong, that would be quite an interesting result! In the 
meantime, we shall see that the primacy principle can carry us a long way. 
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For a start, the Primacy Principle helps sharpen the definition of a concept, as it 
implies that concepts must refer to mental models, at least indirectly. As done before [3], 
I define a concept as a {form, meaning} pair represented by a symbol (or assembly of 
symbols). In analogy to Fig. 2, I define the symbolic form of a concept as the triad in 
Fig. 3. Much like a model, the form of a concept is 
its conceptual structure, including relations among 
its parts and its place within a conceptual system. 
The meaning of a concept is its relation to mental 
models. All this is close enough to the usual loose 
definition of “concept” to conform to common 
parlance. It provides then a foundation for a more 
rigorous analysis of important concepts. 

We are now prepared to propose the Second Principle for a Modeling Theory 
of Cognition:  

II. Mental models possess five basic types of structure: systemic, geometric, 
descriptive, interactive, temporal. 

I call this the Principle of Universal Forms, where the forms are the five types of 
structure. Obviously, this is direct transfer to mental models of the structural types 
identified above for scientific models. Thus, it provides us immediately with a rich 
system of conjectures about mental models to investigate and amend if necessary. 
Moreover, it brings along a rich system of basic concepts involved in characterizing the 
forms. 
 Scholars will note strong similarity of the Universal Forms to Immanuel Kant’s 
“Forms of Intuition” and “Pure Concepts of the Understanding (Categories)” [7]. This 
should not be surprising, since Kant engaged in a similar analysis of cognition with 
special attention to the mathematics and physics of his day. Kant proposes his Categories 
as a complete list of universal forms for logical inference. In Modeling Theory this 
should translate into universal forms for the synthesis (to use Kant’s term) of mental 
models. A brief account of Kant’s “transcendental” knowledge analysis is given below, 
but detailed comparison with Modeling Theory will not be attempted here. Today we 
have so much more factual information about the structure of science and cognition to 
guide and support our conjectures. Even so, the relevance of Kant’s thinking to current 
cognitive science has been examined by Lakoff and Johnson [8]. 

The Universal Forms are also similar to semantic structures identified in 
cognitive linguistics, especially in the work of Leonard Talmy [5]. This is another rich 
area for comparative research that cannot be pursued here, though we shall touch on 
more ideas to throw into the mix.  

Modeling Theory must ultimately account for the origins of structure in mental 
models and its elevation through the creation of symbolic forms into shareable concepts 
and conceptual systems. Let me comment on the second part of this ambitious research 
agenda. Taking for granted the existence of structured mental models in perceptual 

Fig. 3:   Symbolic form of a concept 
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experience, we posit the human ability to make distinctions with respect to similarities 
and differences in model structure as the basic mechanism for creating category 
concepts. 

Cognitive research has established that there are two general types of category 
concepts, which I shall distinguish by the non-standard terms implicit and explicit to 
emphasize an important point. Implicit concepts are determined by their mental 
referents, that is, they derive meaning from a web of associations with one or more 
mental models. For example, the concept dog derives meaning from a stored mental 
image of a prototypical dog. Most category concepts in natural language are of this type 
[5], though my brief comments do not do justice to the subject. Implicit concepts could 
well be called empirical concepts, because their structures are built from experience in 
the mind of each individual. 

In contrast to implicit concepts, which are grounded in private mental images, 
explicit concepts are defined by public representations. For explicit concepts, category 
membership is defined by a set of necessary and sufficient conditions. This is, of course, 
the classical concept of category that we inherited from Aristotle. It was only recently 
realized that ordinary (i.e. implicit) concepts are not of this type. Nevertheless, the 
crucial concepts of science and mathematics must be of the explicit type to qualify as 
objective knowledge. 

4. IMAGINATION AND INTUITION 

 Modeling Theory provides a foundation for precise definitions of important 
concepts in cognitive psychology. Human imagination is one such concept, important 
and familiar to everyone, but elusive in cognitive science. Let us reinvigorate it here 
with a definition that embodies the First Principle of Modeling Theory:  

Imagination is the faculty for making and manipulating mental models. 

This squares well with a well-established line of research on narrative and discourse 
comprehension, which supports the view that the linguistic function of words is to 
activate, elaborate and modify mental models of objects and events in an imaginary 
unfolding scene [9]. We are most interested here in the thesis that the very same 
cognitive process is involved in thinking mathematics and physics. To sustain that thesis 
we must account for the unique features of cognition in the scientific domain. 

Since the latter part of the nineteenth century, mathematicians and philosophers 
have vigorously debated the foundations of mathematics with no sign of consensus [10. 
2]. But all agree on a crucial role for mathematical intuition. Even the supreme formalist, 
David Hilbert, approvingly quoted Kant’s famous aphorism: “All human knowledge 
begins with intuitions, thence passes to concepts and ends with ideas.” Though 
mathematical intuition is never mentioned in formal publications, it often comes up in 
informal discussion among mathematicians, and subtle hints of its presence appear in 
choices of mathematical terms and symbols. Recently, however, Lakoff and Núñez [11] 
have dared to shine the light of cognitive science on the recesses of mathematical 
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thought. My aim is to do the same from the perspective of Modeling Theory. 
 Physical intuition is privately held in the same high regard by physicists that 
mathematicians attribute to mathematical intuition. I submit these two kinds intuition are 
merely two different ways to relate products of imagination to the external world, as 
indicated in Fig. 4. 

Physical intuition matches structure in mental models with structure in 
physical systems. Mathematical intuition matches mental structure with symbolic 
structure. Thus, structure in the imagination is common ground for both physical and 
mathematical intuition. 

I surmise that physical 
intuition is highly developed 
among experimental physicists, 
involving detailed mental 
images of experimental design, 
equipment, measurement 
procedures and data analysis. 
None of that is involved in 
mathematical intuition, but 
theoretical physics requires 
integrating a good deal of both. 
Supporting evidence for this point will emerge as we move on. 
 Identification of intuition as the bridge between imagination and perception is 
a secure starting place for exploring the specifics of mathematical intuition. It would be 
helpful to have the testimony of proficient mathematicians to guide the exploration. 
Much anecdotal testimony is scattered throughout the literature, but it would take a 
major act of scholarship to bring it together. We shall have to be satisfied with a few 
telling examples. 

Mathematician Jacques Hadamard [12] surveyed 100 leading physicists (about 
the year 1900) and gives an introspective account of his own thinking, as well as that of 
others including Poincaré and Einstein. He documents two major facts about 
mathematical thinking: at the conscious level, much of it is imagistic without words; 
and, much of it is done unconsciously, with clear insights or solutions emerging with 
“sudden spontaneousness” into conscious thought. He does not discriminate between the 
thinking of mathematicians and physicists. He quotes from a letter by Einstein: 

“The words or the language, as they are written or spoken, do not seem 
to play any role in my mechanism of thought. . . . The physical entities 
which seem to serve as elements in thought are certain signs and more 
or less clear images which can be voluntarily reproduced and 
combined. . . . The above-mentioned elements are, in my case, visual 
and some of muscular type. Conventional words or other signs have to 
be sought for laboriously only in a secondary state.. . .” 
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It is noteworthy that Einstein is famous for inventing thought experiments that proposed 
new relations between theory and experiment. When this is presented as evidence for his 
singular genius, it remains unremarked that invention of a thought experiment is an 
essential early step in the design of any experiment. 

All this suggests that “free play of the imagination”(as Einstein put it) has a far 
more significant role in math/science thinking (and human reasoning in general) than is 
commonly recognized in educational circles. Most intuitive structure is represented 
subliminally in the cognitive unconscious and is often manifested in pattern recognition 
and conceptual construction skills. Finally, it should be noted that Einstein’s description 
supports our view that intuition is grounded in the sensory-motor system; moreover, that 
ideas may be generated in the imagination before they are elevated to concepts by 
encoding in symbols. 
 Hadamard’s report provides empirical support for general features of 
mathematical imagination and intuition, but it lacks the detail we need to describe its 
structure. To remedy that, we can do no better than turn to Kant’s “transcendental 
analysis” in the Critique of Pure Reason [7]. He was not a professional mathematician, 
but he did teach mathematics and physics for fifteen years before writing the Critique. 
Moreover, his analysis was greatly respected and highly influential among 
mathematicians throughout the nineteenth century and beyond. My attempt to present 
the nub of Kant’s argument is indebted to clarifications by philosopher Quassim Cassam 
[13]. 

Kant conceded to his empiricist predecessors Locke, Hume and Berkeley that 
all knowledge is derived from experience, but he rejected attempts to derive certain 
knowledge from that. Rather, he turned the problem of knowledge on its head and 
accepted Euclid’s geometry and Newton’s physics as objective facts. He then asked the 
trenchant question “How is such knowledge possible?” This posing of a “how-possible 
question” (as Cassam calls it) is the essential first step in Kant’s “transcendental” 
approach to epistemology. He completes his argument with a multi-level answer. 
 Kant applies his transcendental method to a number of epistemological 
problems. But the test case is Euclidean geometry, as that was universally acknowledged 
as knowledge of the most certain kind. Thus, he asked: “How is geometrical knowledge 
possible?” This is just the kind of question we want to answer in detail. Kant begins his 
answer by identifying construction in intuition as a means for acquiring such 
knowledge: 

“Thus we think of a triangle as an object, in that we are conscious of 
the combination of the straight lines according to a rule by which such 
an intuition can always be represented. . . This representation of a 
universal procedure of imagination in providing an image for a 
concept, I entitle the schema of this concept.” 

Kant did not stop there. Like any good scientist he anticipated objections to his 
hypothesis. Specifically, he noted that his intuitive image of a triangle is always a 
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particular triangle. How, he asks, can construction of a concept by means of a single 
figure “express universal validity for all possible intuitions which fall under the same 
concept?” This is the general epistemological problem of universality for the case of 
Kant’s theory of geometrical proof. Kant’s notion of geometrical proof is by 
construction of figures, and he argues that such proofs have universal validity as long as 
the figures are “determined by certain universal conditions of construction.” In other 
words, construction in intuition is a rule-governed activity that makes it possible for 
geometry to discern “the universal in the particular.” 
 Kant wants more. What still needs to be explained is the capacity of pure 
intuition to provide geometrical knowledge. Kant’s argument leads ultimately to the 
conclusion that space itself is an “a priori intuition” that “has its seat in the subject 
only.” He concludes famously that space and time are “a priori forms of intuition,” 
intrinsic features of mind that shape all experience. 
 We need not follow Kant’s argument to conclusions that have since proven to 
be untenable, such as the claim that geometry of the physical world must be Euclidean 
because our minds cannot conceive otherwise. We now know that there are many kinds 
of non-Euclidean geometry, and the geometric structure of space-time is an empirical 
matter to be settled by interplay between theory and experiment. The bottom line is that 
Kant’s hypothesis of spatio-temporal constraints on cognition is still viable today, but it 
must be recognized as an empirical issue to be settled by research in cognitive science.  
 There is much more to be said in favor of Kant’s analysis. First, his 
characterization of geometric intuition has been universally approved (or, at least, never 
challenged) by mathematicians even to present day, as it is easily adapted to any non-
Euclidean geometry by simple changes in the rules. Second, his argument that inference 
from the particular to the universal is governed by subsumption under rules is a 
profound insight that has not attracted the attention it deserves, even, it seems, from 
devoted Kantian scholars. Its import is evident in Modeling Theory, for it determines a 
mapping of structure in mental constructions (models) to structure in drawn figures, 
propositions or equations. That is, rules for parsing and manipulating mental 
constructions correspond directly to rules for constructing and manipulating 
mathematical representations. This is evidently a basic mechanism in mathematical 
intuition as I defined it earlier. Moreover, it is a means for constructing and sharing 
objective knowledge, as the rules are publicly available to everyone, though it is 
nontrivial to learn how to employ them. 
 The power of rules was so evident to Kant that he posited a faculty of judgment 
to administer it: “If understanding as such is explicated as our power of rules, then the 
power of judgment is the ability to subsume under rules, i.e., to distinguish whether 
something does or does not fall under a given rule.” Judgment developed into the central 
theme of Kant’s philosophy, but in the abundance of its applications to morals, religion 
and aesthetics, its fundamental role in mathematical intuition and objective knowledge 
seems to have been lost. 
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 We are now prepared for a more incisive comparison of mathematical and 
physical intuition. To begin with, the intuitive structure of Euclidean geometry is 
common knowledge for mathematicians and physicists. I submit, however, that their 
intuitions of geometry gradually diverge as they employ geometry in different ways. The 
mathematician concentrates on construction and analysis of formal structures. The 
physicist uses geometry for modeling rigid bodies and measurement of length, which is 
the foundation for physical measurements of every kind. Such developments in 
mathematics and physics do not have to go far before their common ground in Euclidean 
geometry is no longer obvious. With respect to the Kantian category of causality, 
intuitions of physicists and mathematicians diverge even more strongly, as we shall see. 
 It may be objected that our how-possible analysis of geometry is too limited for 
general conclusions about mathematical intuition. As a remedy, I recommend a how-
possible analysis of set theory, group theory, algebra and any other mathematical system 
that the reader regards as fundamental. In fact, I submit that it would not be difficult and 
perhaps enlightening to frame the math concept analysis of Lakoff and Núñez [11] in 
how-possible terms. 

5. MATHEMATICAL VERSUS PHYSICAL INTUITION  

Let me reinforce our conclusions about mathematical intuition with testimony 
by Hilbert from an address delivered in 1927: 

“No more than any other science can mathematics be founded on logic alone; rather, 
as a condition for the use of logical inferences and the performance of logical 
operations, something must already be given to us in our faculty of representation, 
certain extralogical concrete objects that are intuitively present as immediate 
experience prior to all thought. If logical inference is to be reliable, it must be 
possible to survey these objects completely in all their parts, and the fact that they 
occur, that they differ from on another, and that they follow each other, or are 
concatenated, is immediately given intuitively, together with the objects, as 
something that can neither be reduced to anything else, nor requires reduction. This 
is the basic philosophical position that I regard as requisite for mathematics and, in 
general, for all scientific thinking, understanding, and communication. And in 
mathematics, in particular, what we consider is the concrete signs themselves, whose 
shape, according to the conception we have adopted, is immediately clear and 
recognizable. This is the very least that must be presupposed, no scientific thinker 
can dispense with it, and therefore everyone must maintain it consciously or not.” 

Note the coupling between concrete signs and intuitions, with logical inference grounded 
on the intuitive side. 
 For comparison, let’s hear testimony about physical intuition from an eminent 
physicist. Heinrich Hertz (1857-1894) discovered the means to generate and detect 
electromagnetic radiation, surely one of the greatest experimental achievements of all 
time. He was equally accomplished as a theoretical physicist, though his tragic early 



Hestenes 

 14 

death deprived the world of his genius. His profound grasp of cognitive processes in 
science is exhibited in the following passage [14]: 

“The most direct, and in a sense the most important problem which our conscious 
knowledge of nature should enable us to solve is the anticipation of future events, 
so that we may arrange our present affairs in accordance with such anticipation. 

.  . “We form for ourselves images or symbols of external objects; and the form 
which we give them is such that the necessary consequents of the images in thought 
are always the necessary consequents in nature of the things pictured 
[Predictability]. In order that this requirement may be satisfied, there must be a 
certain conformity between nature and our thought.  

.  .  . “ The images we form of things are not determined without ambiguity by the 
requirement of [Predictability]. 

[I have inserted the term [Predictability] to compress the link between his last two 
paragraphs.] 

Hertz goes on to explain that images are constrained by certain Conformability 
Conditions, including 

Admissibility:      Images must not contradict the laws of thought. 
Distinctiveness:   Images should maximize essential relations of the thing. 
Simplicity:           Images should mimimize superfluous or empty relations. 
He adds that “Empty relations cannot be altogether avoided.” 

Hertz then explains that scientific representations (of our images) satisfy different 
postulates. 

This passage (condensed for brevity) is studded with brilliant insights. First, note that it 
is consistent with Kant’s account of geometric intuition (with which Hertz was surely 
familiar), but it surpasses Kant in original detail. Next, note how sharply Hertz 
distinguishes between images (mental models) and their scientific representations. He 
emphasizes that to have predictive value the images must satisfy certain rules, which he 
sharply distinguishes from rules governing their public representations. Finally, note the 
implication from Hertz’s first paragraph that the faculty of intuition has evolved to guide 
effective action in the environment. This is currently a major theme in the emerging field 
of evolutionary psychology. 

Differences between mathematical and physical intuitions emerge in meanings 
attributed to mathematical expressions. We often speak of mathematical symbols as 
though they have unique meanings that are the same for everyone. But we know that 
meanings are private constructions in the imagination of each individual, so tuning them 
to agree among individuals is a subtle social process. We have noted that public access 
to geometrical figures provides common ground for geometric intuitions of both 
mathematicians and physicists. Now let us consider an important concept where 
intuitions strongly diverge, namely, the concept of force. 



Modeling Theory 

 15 

 The general concept of interaction has been identified as one of the universal 
forms of knowledge in Modeling Theory. It corresponds closely to Kant’s causality 
category. Though that category is construed broadly enough to include human volition, 
there is no doubt that the Newtonian concept of force was centermost in Kant’s thinking. 
Force dynamics also appears as a major category in cognitive linguistics, especially in 
the work of Talmy and Langacker [5]. However, as I have explained before [3], 
linguistic research on the force concept has yet to be reconciled with physics education 
research (PER). 
 Divergence of student intuitions about force from the Newtonian (i.e. scientific) 
force concept are reliably measured by the Force Concept Inventory (FCI). FCI 
assessment on large populations of students from middle school to graduate school 
shows conclusively that before physics instruction student concepts diverge from 
Newtonian concepts in almost every dimension [3]. Moreover, most students are far 
from Newtonian even after a year of university physics. I surmise from this that 
mathematics professors who have neglected physics in their education will likewise 
retain naïve concepts of force. To check that out, it would be interesting to test a 
representative sample of such subjects with the FCI. But who dares bell the cat? 
 Naïve concepts of force have often been dismissed as misconceptions to be 
replaced by the scientific Newtonian concept. But that is a serious mistake stemming 
from a naïve view of cognition and learning. It should be recognized instead that student 
intuitions are essential cognitive resources developed through years of real world 
experience. We understand the world by mapping events into the mental spaces of our 
imagination. The chief problem in learning physics is not to replace intuitions but to 
tune the mapping to produce a veridical image of the world in the imagination. 
 To thoroughly understand what learning the Newtonian force concept entails, 
we need an inventory of intuitive resources that students bring to the experience. Andrea 
diSessa has pioneered identification and classification of basic intuitions of physical 
mechanism that he calls phenomenological primitives, or p-prims [15].  
 Without going into detail that is readily accessible in the literature, I wish to 
explain how diSessa’s theory of p-prims (or, at least, something very much like it) fits 
naturally into Modeling Theory. It will be sufficient to comment on the p-prims listed in 
Fig. 5. 

Much like the image schemas 
in cognitive linguistics [5], p-prims 
are stable units of mental structure 
employed in the construction of 
mental models. Though diSessa 
identified the p-prims largely from 
interviews of scientifically naïve 
students, I agree with Bruce Sherin 
[16, 17] that the same p-prims are 
involved in structuring the physical 

Fig. 5: Force p-prims (from Sherin 2006)  



Hestenes 

 16 

intuition of mature physicists. I regard this conclusion as a major milestone in cognitive 
science, so I will return to it after discussing the intuitive foundations. 

diSessa found that, for naïve students, each p-prim is a simple, separate and 
distinct knowledge piece called forth for explanatory purposes by situational cues. 
Collectively, the p-prims compose a loose conceptual system that diSessa described as 
“knowledge in pieces.” In contrast, Newtonian force is a complex, multidimensional 
concept [3]. Let’s consider how the p-prims can be integrated into an intuitive base for 
the Newtonian concept. 

Many p-prims in Fig. 5 have familiar names. This should not be surprising, 
because they derive from common human experiences. However, diSessa has given the 
peculiar name Ohm’s p-prim to the most important one in the lot. That does suggest a 
historical role in the creation of Ohm’s law for electrical resistance. But its most basic 
role is in the intuition of force. Ohm’s p-prim is schematized as an agent working 
against a resistance to produce a result. No doubt it originates in personal experience of 
pushing material objects, and it is projected metaphorically to other situations [3]. 
diSessa notes that it serves as general intuitive schema for qualitative proportional 
reasoning (hence its applicability to Ohm’s law by metaphorical projection). diSessa also 
suggests that it provides intuitive structure for the physicist’s understanding of F = ma, 
where the result of applying a force is acceleration (but not velocity, as is common in 
naïve conceptions). Note the considerable adjustment in intuition required for a veridical 
match of mental model with physical events (in accordance with Hertz’s conformability 
conditions). Indeed, ability to discriminate between velocity and acceleration 
(qualitatively as well as quantitatively) is already a major advance over naïve thinking. 
The upshot for a physicist is: the equation F = ma serves as a symbolic form for 
reasoning about force and acceleration. 

The force as mover p-prim holds that the response to an applied force is motion 
in the direction of the force, but after the vectorial concept of acceleration has been 
mastered, intuition can be adjusted to associate that direction with acceleration instead of 
velocity. It then becomes integrated into the intuition of F = ma for the physicist. 
 There is an implicit principle in the Newtonian conceptual system that could be 
called Universality of Force. This principle, which holds that motion is influenced by 
forces only, is never mentioned in physics textbooks, so it is not surprising that many 
students who have completed a standard physics course have failed to reconcile all their 
p-prims (Fig. 5) with the Newtonian force concept. Initially, naïve students do not 
recognize the familiar motion effects of resistance and dying away as due to forces. 
Likewise, they do not associate effects known as blocking, supporting and guiding with 
forces. The physicist’s intuition retains the p-prims for all these effects while integrating 
them into a universal force concept that associates forces with all these effects. 
 Reasonable as this account of the relation between p-prims and physics 
intuition may seem (to me, at least), we need more detail and stronger evidence to 
support it. Happily, Bruce Sherin has produced an impressive corpus of supporting 
evidence in a landmark study [17, 16] on the role of intuitive knowledge in quantitative 
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problems with physics equations. Sherin’s study is noteworthy not only for its originality 
and results, but for the quality of his data and data analysis. It provides an exemplar for a 
productive line of further research. Sherin’s data come from videotaping pairs of 
moderately advanced students collaboratively solving physics problems of moderate 
difficulty. Consequently, it documents some behaviors characteristic of expertise along 
with revealing examples of ongoing learning. Readers are referred to the original articles 
for details. I will comment on Sherin’s findings with a twist to fit them into Modeling 
Theory. 

Sherin’s first finding was supporting evidence for diSessa’s conjecture that p-
prims come to serve as heuristic cues for formal knowledge as expertise develops. Of 
course, we must distinguish situational (or verbal) cues for p-prims from their intuitive 
structure. The observable cues may be retained with little change, while the p-prim 
structure must be adapted to the expert’s intuition. Modeling Theory enables a stronger 
inference, namely, that p-prim structure must be integrated consistently into the structure 
of the expert’s mental model for a given physical situation. Actually, the p-prim may 
first cue construction of a mental model, which is in turn coordinated with construction 
of a formal representation for the model.  
 Sherin also found evidence that p-prims can drive problem solving in a fairly 
direct means. He looked for tuning of p-prims (refining the sense-of-mechanism) during 
equation construction and use. He suggests that happens when competing p-prims are 
cued to activation during analysis of a physical situation. Compromise then occurs when 
both p-prims are seen to have validity. In modeling terms this can be described as tuning 
the p-prims to fit a coherent mental model. 

Sherin’s most important finding came from observing students construct 
equations from ideas of what they want the equations to express. They were appealing to 
common sense, not just following formal rules. For example, in problems involving 
equilibrium of forces Sherin noted activation of balancing p-prims (Fig. 5) and strong 
linking of these p-prims to equations. This promoted qualitative reasoning from terms in 
an equation without actually solving the equation. Sherin concluded that the students 
were using the terms to represent p-prims; they were using equations to represent and 
coordinate common sense knowledge. He crystallized this brilliant insight by inventing 
the notion of a symbolic form, which he defined as a symbol template associated with a 
conceptual schema that specifies a few entities and relationships among them. Each 
template belongs to a symbolic system for representing the conceptual schema in an 
arrangement of symbols. His coding scheme for a catalog of symbolic forms is shown in 
Fig. 6. 

I was astounded when I first heard Sherin talk about his symbolic forms 
recently, for his term symbolic form is not only identical to the one I introduced to clarify 
the definition of concept, but its meaning and purpose strikes me as essentially the same 
as mine in the present context. The equivalence of terms is evidently a coincidence, but 
the equivalence of concepts bespeaks a convergence of independent lines of research. 
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Consequently, it is a simple matter to merge Sherin’s results into Modeling Theory, 
though I have not asked his permission. 

The Balancing Form in Fig. 6 expresses equivalent effects of two competing 
influences, which is the essential structure of the balancing p-prim. The Form is the 
same whether the influences are forces or torques or whatever intuition suggests. The 
notion of balancing an equation probably originated from this p-prim. Though some 
mathematicians may dismiss that notion as a mathematically irrelevant metaphor, others 
hold that it is an indispensable intuitive foundation for understanding mathematical 
equality. This is an elementary instance of the tension between formalism and intuition 
in mathematical understanding.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The Proportionality Forms in Fig. 6 are especially important, as proportional 
reasoning is a critical skill in quantitative science, but it has remained distressingly 
difficult to teach. Sherin proposes separate forms prop+ and prop for direct and inverse 
proportionality, and he hypothesizes that they are strongly connected with intuitions of 
effort and resistance through Ohm’s p-prim. This is quite interesting for many reasons. 
Math educators and psychologists have explored a number of ways to develop intuitive 
understanding of proportional relations. Historically, the first robust understanding was 
grounded in geometric intuition of similar triangles. Archimedes was probably the first 

Fig 6: Symbolic forms by cluster (from Sherin 2001)
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to understand the proportionality of torques in balancing. Gradually the analogy “a is to 
b as c is to d” was transmuted into the proportionality symbolic form a/b = c/d. All of 
these facts are well known and influential in math education. I mention these facts 
because Ohm’s p-prim is not included, so it is not among the most likely influences on 
prior understanding of proportional reasoning by the students that Sherin observed. 
Thus, Sherin has introduced new insight into cognition of proportional relations. 
 To reconcile the diverse intuitions of proportional relations, I suggest that 
Sherin’s Proportionality Forms have other referents (intuitive meaning) besides Ohm’s 
p-prim, including those in the historical list I mentioned. Multiple meanings for words 
are common in natural language; that is known as polysemy in cognitive linguistics, 
which has elevated it to fundamental status in linguistic theory [5]. Accordingly, I 
submit that a physicist has a repertoire of many meanings that can be assigned to a 
mathematical form, depending on activation by situational cues. Representation of 
structure in diverse situations by a single mathematical form is no doubt a primary 
source of the great power in mathematical modeling, so instruction should be designed 
to cultivate it. 

Most proposals for teaching proportional reasoning emphasize laying the 
intuitive foundation first, but Daniel Schwartz and colleagues [18, 19] argue for the 
reverse: using mathematical representation to refine intuition. Of course, it is 
fundamental in Modeling Theory that the mapping of structure between mental models 
and their mathematical representations goes both ways. Undoubtedly, mathematics plays 
a role in tuning intuition. 
 As a final point, Sherin suggests that “washing out of physical meaning is a 
fundamental feature of the move from intuitive physics to more expert knowledge.” He 
notes what he calls a “fundamental tension” “between the homogenizing influence of 
algebra and the nuance inherent in intuitive physics.” Though I don’t subscribe to his 
“washing-out” metaphor, I submit that Sherin has observed a significant effect, namely, 
a special case of the fundamental tension between abstract (mathematical) form and 
physical intuition (or physical interpretation, if you will)! Let’s call it the Form-
Content Tension for future reference. I submit that this tension is basically about 
matching structure in mathematical models to observable structure in the world. It can be 
construed as tension between mathematical and physical intuition, as defined in 
connection with Fig. 4. 

In understanding a physical equation, the physicist is always concerned with 
correlating the mathematical structure in the equation with intuitive structure in a mental 
model. This is known as interpreting the equation. The correspondence is a two-way 
mapping. In constructing an equation the physicist incorporates structure from a mental 
model of a physical situation (as Sherin observed students doing). Conversely, 
presuming that a given equation applies to a given physical situation, the physicist uses 
structure in the equation to structure a mental model of the situation. Let’s call this 
reading the equation. 
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 Sherin asserts that qualitative reasoning with equations is the hallmark of 
physics expertise! Perhaps so, but, as physicist Robert Romer [20] emphasizes, reading 
physics equations for understanding is a prerequisite. If mathematics is the language of 
physics, then reading the equations of physics must be much like comprehending a 
narrative, namely, constructing meaning in a mental model. I submit that all qualitative 
reasoning is based on mental models, with terms in equations serving as cues for 
structure in the models. Reasoning from a mental model is necessarily qualitative. No 
model, no reasoning! 

To be sure, equations also serve a quantitative role unlike statements in natural 
language. Semi-quantitative estimation and dimensional analysis are essential skills for 
matching models with data, much valued by physicists! However, overemphasis on the 
quantitative encourages students to look at equations purely algorithmically. 
Consequently, students often come to a first course in physics with something like a 
vending machine model of algebraic equations, wherein the variables are slots for 
inserting numbers and the equal sign spits out the answer. For them, equations have no 
more meaning than the nonsense phrase “Twas brilig and the slithy toves.” For them, 
reading an equation is no more than reciting words. How can we engage students in 
making sense of equations? 

6. MODELING INSTRUCTION 

Let me quote myself on the objectives of science instruction: 

The great game of science is modeling the real world, and each scientific theory 
lays down a system of rules for playing the game. The object of the game is to 
construct valid models of real objects and processes. Such models comprise the 
content core of scientific knowledge. To understand science is to know how 
scientific models are constructed and validated. The main objective of science 
instruction should therefore be to teach the modeling game. [21] 

Modeling Theory has been developed with that purpose expressly in mind. Its 
implications for the design of curriculum and instruction have been thoroughly discussed 
in the literature reviewed in [3]. Some of the highlights are reviewed here to make 
connection with the present paper, which has addressed only structural aspects of 
scientific knowledge. Modeling Theory is equally concerned with procedural aspects of 
scientific knowledge, which it characterizes in terms of making and using scientific 
models. 

Implications for Curriculum Design: 
• The curriculum should be organized around models, not topics! because models 

are basic units of coherently structured knowledge, from which one can make 
direct inferences about physical systems and comparisons with experimental data. 

• Students should become familiar with a small set of basic model as the content 
core for each branch of science, along with selected extensions to more complex 
models. 
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• Theory should be introduced as a system of general principles for constructing 
models with a specified domain of validity. 

Implications for Instructional Design: 
Students should learn a modeling approach to scientific inquiry, including 
• proficiency with conceptual modeling tools 
• qualitative reasoning with model representations 
• procedures for quantitative measurement  
• comparing models to data. 

Implementation and Evaluation of Modeling Instruction: 
The above modeling principles for curriculum and instruction design have been 

fully implemented in a High School physics course, and intensive (3-week) summer 
workshops have been developed to train in-service teachers in the innovative techniques 
of Modeling Instruction. A series of such Modeling Workshops was continuously 
supported by the National Science Foundation for fifteen years, with unprecedented 
success on many measures, including student gains on the FCI, external evaluations, 
teacher satisfaction and buy-in. Although the Workshops are very demanding, their 
popularity is so great that more than 2,000 teachers have attended at least one; this is 
nearly 10% of all physics teachers in the U.S. Full details about the program and its 
evaluation are available in documents at the Modeling Instruction website [3]. 
 A few more words about Modeling Instruction are needed to appreciate the 
unique features most responsible for its success. The Modeling Method of instruction is 
a student-centered inquiry approach guided by the teacher, as recommended by the 
National Science Education Standards. The big difference is that all stages of inquiry are 
structured by modeling principles. Typical inquiry activities (or investigations) are 
organized into modeling cycles about two weeks long. 

Each investigation focuses on understanding a concrete physical 
system/process; for example, an oscillating block suspended by a spring. After class 
discussion to set the stage for the investigation, students are divided into research teams 
of three or four to design and carry out experiments, analyze results and prepare a report. 
The teacher subtly guides the entire inquiry process with questions, suggestions and 
challenges, introducing equipment, standard terms, conventions, and representational 
tools as needed. The students soon learn that the objective of the investigation is to 
formulate and evaluate a well-defined scientific model of the system in question. By the 
third time through a modeling cycle, the students have assimilated the procedural 
knowledge in modeling inquiry, and they proceed systematically in further investigations 
without help from the teacher. This leaves the teacher free to concentrate on guiding the 
students to a clear understanding of the conceptual structure in the models they develop. 
The primary guidance mechanism is modeling discourse: which means that the teacher 
promotes framing all classroom discourse in terms of models and modeling. The aim is 
to sensitize students to the structure of scientific knowledge, in both declarative and 
procedural aspects. Of course, the skill and understanding of the teacher are the main 
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factors in success of the Modeling Method. Consequently, the Modeling Workshops are 
designed to promote and curriculum materials have been developed to support it. 
 Design of the modeling cycle needs to be described in more detail to see how 
modeling structure is incorporated. For instructional purposes, modeling inquiry can be 
decomposed into four major phases: model construction, analysis, validation, and 
deployment. Each phase deserves separate commentary. But it should be understood that 
emphasis on various phases in the cycle may vary greatly, depending on objectives of 
the inquiry. Moreover, the phases are not necessarily implemented in a linear order; for 
example, questions raised in the analysis or validation phase may lead to modifications 
in the construction phase. 

Model construction (or development) incorporates into the design of a 
conceptual model some or all the universal forms delineated in Section 2. Students and 
even teachers are not informed of this fact. Rather, they are introduced to 
representational tools and engaged in using the tools to model structure in concrete 
systems. Of course, that is not unique to Modeling Instruction. Using the tools of 
analytic geometry to model geometric structure and differential equations to model 
temporal structure is commonplace and often indispensable. However, Modeling Theory 
coordinates application of all the various tools toward construction of a complete and 
coherent scientific model of any real situation. This has led to significant improvements 
in the conceptual process of model construction. For example, recognition that 
specification of systemic structure is an essential first step in constructing any model. 
That step consists of first identifying the composition and interactions of the system to 
be modeled, and second creating a diagram (which I call a system schema) to represent 
that information. The second part of that step is often overlooked, with the consequence 
that the model is representationally ill-defined. The value of system schemas such as 
circuit diagrams and organization charts is well-known, but system schemas are virtually 
unknown in such venerable domains as classical mechanics. The heuristic value of 
system schemas in any domain is immediately obvious to any teacher who instructs 
students to begin modeling or problem-solving by constructing a system schema. That is 
a universal solution to the common quandry of how to get started. 

Model analysis is concerned with extracting information from a model, such as 
a physical explanation or an experimental prediction, or merely the answer to a question 
about the objects that are modeled. For simple linear models this phase can be relatively 
trivial, but beyond that it may involve solving differential equations or algebraic systems 
of many variables. In scientific research, model analysis may be a full time job for a 
theoretical physicist. 

Model validation is concerned with assessing the adequacy of the model for 
characterizing the system/process under investigation. That may involve designing and 
conducting an experiment to test some prediction from the model. Or it may involve 
assessing consistency of the model with theoretical results or experimental facts from 
elsewhere in the scientific community. Students learn that the outcome of this phase 
must include clear answers to two questions: What is their model, and how well does it 
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work? They learn gradually what constitutes good scientific answers, including 
theoretical limitations, sources and estimates of experimental error. 

Model deployment consists in adapting a model developed in one context to 
characterize systems or processes in a totally different context. This serves to sensitize 
students to the fact that models embody universal structures that can be adapted to 
modeling in an essentially unlimited number of situations.  
 The culmination of student modeling activities is reporting and discussing 
outcomes in a whiteboard session. I believe this is where the deepest student learning 
takes place, because it stimulates assessing and consolidating the whole experience in 
recent modeling activities. Whiteboard sessions have become a signature feature of the 
Modeling Method, because they are so flexible and easy to implement, and so effective 
in supporting rich classroom interactions. Each student team summarizes its model and 
evidence on a small (2ft × 2.5ft) whiteboard that is easily displayed to the entire class. 
This serves as a focus for the team’s report and ensuing discussion. Comparison of 
whiteboards from different teams is often productively provocative. The main point is 
that class discussion is centered on visible symbolic inscriptions that serve as an anchor 
for shared understanding.  
 Of course, the pedagogical effectiveness of a whiteboard session depends on the 
skill and knowledge of the teacher. For implementing the Modeling Method, this is skill 
in facilitating modeling discourse, which has two major objectives: The first, as we have 
already noted, is framing discourse around models and modeling to promote structured 
understanding of science. The second, more subtle objective is to engage student 
physical intuition for tuning to consistency with scientific concepts. In preparation for 
that, the modeling workshops sensitize teachers to student intuitions (aka 
misconceptions) about force, as revealed by the FCI. They learn to amplify opportunities 
for students to articulate their intuitions for public comparison with scientific concepts 
and evidence. Whiteboard sessions have proved to be an exceptional arena for that. The 
teachers know that reconciling student intuition with scientific knowledge is a creative 
act that only students can do for themselves. The best the teacher can do is create the 
opportunity. From the perspective of Modeling Theory, this is instruction to promote the 
tuning of p-prims to be consistent with external evidence. This is where the principle of 
Form-Content Tension comes into play. Its implementation is a pedagogical art guided 
by a little bit of science. As Sherin says [16], “Instruction must nurture and refine 
intuitive physics, not confront and replace it, or simply build up a new set of 
frameworks.” Physics education researchers David Hammer and Andy Elby [22] 
emphasize that all students possess powerful cognitive resources that can be tapped by a 
skillful instructor. Their detailed accounts of how to do that have much in common with 
best practices in Modeling Instruction. 

Primacy of modeling over problem solving. According to Modeling Theory, 
problem solving should be addressed as a special case of modeling and model-based 
reasoning. The modeling cycle applies equally well to solving artificial textbook 
problems and significant real world problems of great complexity. Thus, the first step in 
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solving a problem is constructing an explicit model of the situation implicit in conditions 
of the problem. The next step consists in extracting from the model an answer to the 
question posed in the problem. This is a special case of model analysis, and an example 
of model-based reasoning. The final step of “checking the answer” is a special case of 
model validation. 

The modeling method, with its emphasis on coherence and self-consistency of 
the model, is especially well-suited to detection and correction of ill-posed problems, 
where the given information is either defective or insufficient. Moreover, students are 
thrilled when they realize that a single model generates solutions to an unlimited number 
of problems. Indeed, the Modeling Workshops teach that six basic models suffice to 
solve almost any mechanics problem in high school physics. 

Implications of Modeling Theory for Math Education 
The main problem with math education is that the link to physical intuition (the 

empirical source of mathematical ideas) is seriously degraded, if not broken altogether. 
The problem is not with abstraction in mathematics and mathematical modeling! 
Formalization of mathematics in terms of axioms, rules and algorithms is one of the 
greatest achievements of mankind, making computer modeling, simulation and data 
analysis possible, and facilitating construction of objective scientific knowledge 

But thinking cannot be reduced to computation, and computers do not 
understand!!  (at least not yet). Mathematical understanding requires development of 
both physical and mathematical intuition, which supply the essential repertoire of 
mental structures for constructing robust mathematical meaning. Physical intuition is 
cognitively basic, because it supplies the structural links to bodily experience from 
which all meaning ultimately derives. 
 I believe that the best way to address the divorce between math and science at 
the K-12 level is by integrating math and science instruction, especially in middle 
school. As pioneered by the Modeling Instruction program, workshops and instructional 
materials must be developed to enable teachers to enact the necessary reform. School 
district buy-in will be essential to permit reform. Of course, none of this can happen 
without substantial commitments and funding. 

7. CONCLUSIONS 

We have identified and analyzed three fundamental principles of Modeling Theory:  

I. Primacy of Models. II. Universal Forms. III. Form-Content Tension. 

We have noted their non-trivial implications for the design of curriculum and instruction, 
with very robust implementation in Modeling Instruction. This is far from exhausting the 
content and implications of Modeling Theory, so let us dwell briefly on what has been 
omitted. Many gaps are filled in the literature already cited. 
 There is much more to be said about levels of structure in mental models. At the 
basic level we have models of objects, for cognition is fundamentally object-oriented, to 
use an expression from computer science that probably originates from reflection on 
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intuition. No doubt the central role of objects in cognition derives from perception, for 
perception organizes sensory input into objects situated in an environment. Though 
objects are cognitively basic, they are not cognitively primitive; they have substructure. 
The catalog of cognitive primitives evidently includes p-prims and image schemas. 
These primitives also have structure; they are best described as structured wholes, or 
Gestalts, to use a term that suggests their origin in Gestalt perception. Turning from 
model substructure to superstructure, we note that mental objects are invariably situated 
in some mental context or frame, sometimes called a script or a scenario when action or 
change is modeled. The structure of frames and scripts that is evident in language use 
provides important clues to the structure of memory. Finally, at the grandest level we 
note the organization of concepts into conceptual systems. 
 There is no doubt more to mental models than we have considered so far. We 
have been concerned mainly with structure that can be represented by rules, as that is the 
kind of structure in mathematics and objective science. Let’s call it rational structure, as 
it may be regarded as the foundation for rational thinking. As mathematician Saunders 
MacLane [23] asserts, “Mathematics is not concerned with reality but with rule.” Mental 
models also have subjective qualities, such as feeling or emotion, that express 
significance to the thinker. Emotion is known to play a crucial role in learning and 
memory. Its relation to rational thinking is yet to be nailed down. 
 To my mind, the bottom line of Modeling Theory is its implications for 
teaching and learning. We have seen substantial implications already, and directions for 
further research are clear. The most important research issues are perhaps in elucidating 
the mechanisms for creating, changing and maintaining mental structures. Ultimately, 
this reduces to research in cognitive neuroscience. But to identify brain mechanisms in 
cognition, it is necessary first to understand at a phenomenological level what cognition 
consists of. 
 Finally, before committing to an opinion on Modeling Theory, the reader may 
wish to ask: Do mental models really exist? Or are they merely figments of a 
theoretician’s imagination? Certainly no one claims that they are directly observable, not 
even by introspection. The explanation that mental models are not observable because 
they are located (mostly, at least) in the cognitive unconscious does not answer the 
question of existence. Cognitive neuroscience even suggests that mental models are 
epiphenomena at best, for only distributed neural activation patterns occur in the brain. 
 To forge a scientific answer, comparison of cognitive science with elementary 
particle theory may be helpful. Physicists are quite confident about the existence of 
quarks, although quarks are not directly observable even in principle. The reason for the 
confidence is the explanatory power of quark theory. Likewise, I submit, the existence of 
mental models hinges on the explanatory power of Modeling Theory. Like quarks, 
mental models are theoretical constructs, and both exist in the sense that they provide 
coherence to diverse observations. In other words, both are invariant objects, invariant 
over a range of observations. Is that enough? Could there be more?  
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8. EPILOGUE: A NEW GENERATION OF MATHEMATICAL TOOLS 

 The power of mathematics is derived in large part from the design of 
mathematical tools  tools to think with. Like the tools of science and industry, 
mathematical tools are cultural creations. Many mathematicians would dispute this 
claim, and they may seem to be supported by standard textbooks, which give a clear 
impression that mathematics is a complete and permanent edifice that could hardly be 
improved. As evidence to the contrary, I offer a brief introduction to geometric algebra, 
introducing basic new tools with implications for the whole of mathematics. Though few 
mathematicians are aware of it, geometric algebra is already a fully developed unified 
mathematical language for all of physics [24]. Though it has many advanced 
applications, I concentrate here on implications for mathematics education at the 
introductory level. First let’s consider why that is important. 

From the perspective of a practicing scientist, the mathematics taught in high 
school and college is fragmented, out of date and inefficient! The central problem is 
found in high school geometry. Many schools are dropping the course as irrelevant, and 
are thus oblivious to the following facts: 

• Geometry is the starting place for physical science, the foundation for 
mathematical modeling in physics and engineering, including the science of 
measurement in the real world. 

• Synthetic methods employed in the standard geometry course are centuries out of 
date; they are computationally and conceptually inferior to modern methods of 
analytic geometry, so they are only of marginal interest in real world applications.  

• A reformulation of Euclidean geometry with modern vector methods centered on 
kinematics of particle and rigid body motions will simplify theorems and proofs, 
and vastly increase applicability to physics and engineering. 

We see below how geometric algebra can save the day by unifying high school 
geometry with algebra and trigonometry and thereby simplifying and facilitating 
applications to physics and engineering. 

The whole problem boils down to encoding the geometric notion of vector as a 
directed magnitude in suitable algebraic form. The standard concepts of vector addition 
and scalar multiplication constitute a partial encoding. What is missing in standard 
mathematics is a geometrically grounded rule for multiplying vectors. Here is how to fill 
that gap. 

We presume the standard concept of a real vector space and define the 
geometric product ab of vectors by the axioms: 

 (ab)c = a(bc) associative, 
 a(b + c) = ab + ac left distributive, 
 (b + c)a = ba + ca  right distributive, 
 a

2
= a

2  contraction, 
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where a = a  is a positive scalar  called the magnitude of a, and a = 0 implies that 
a = 0 .  

These axioms are almost identical to the axioms for ordinary scalar algebra. 
The main difference is that we need two distributive rules because multiplication is not 
assumed to be commutative. It is the unassuming contraction rule that sets geometric 
algebra apart from other associative algebras. Among its many consequences, it implies 
that the zero scalar and the zero vector are one and the same:   
 Our main task is to elucidate the geometric meaning of the product ab, because 
that is what gives the algebra its unique power. Historically, the axioms were designed to 
encode geometric relations [24], so they are by no means arbitrary. We do the reverse 
here to take advantage of the reader’s prior knowledge. 
 To move quickly to something familiar, we use the geometric product to define 
the familiar inner product: 

a !b "
1

2
ab + ba( ) = b !a . 

To prove that this is identical to the usual Euclidian inner product, we use the axioms to 
derive the usual law a of cosines, thus 
 a + b( )

2

= a
2
+ b

2
+ ab + ba( ) = a2 + b2 + 2a !b . 

It follows that we can write  
a !b = ab cos" ,  

where, of course, !  is the angle between the vectors. This is, in fact, a convenient 
algebraic definition for the cosine. 
 Now, to see quickly that we have something genuinely new here, suppose that 
the vectors are orthogonal, which is to say that the inner product vanishes, whence  
 ab = !ba . 
Thus, orthogonality is encoded as anticommutivity in geometric algebra. It is easy to 
prove also that collinearity is encoded as commutativity.  
 But what is this new entity ab? It is neither scalar nor vector. To interpret it, let 
us first assume that a and b are orthogonal unit vectors and denote it by a suggestive 
symbol: i = ab . Then we can use anticommutivity to prove 
 i

2
= (ab)

2
= (!ba)(ab) = !a

2
b
2
= !1 . 

Thus, i  is a truly geometric !1 . It is not a scalar, but it can be factored into a product 
of orthogonal unit vectors, and it can be proved that any such pair of vectors determine 
the same i . In other words i  is a unique property of a Euclidean plain. To understand 
this better, we turn to the general case. 
 It is convenient to define an antisymmetric outer product by  
 a ! b "

1

2
ab # ba( ) = #b ! a  

We can assign a magnitude a ! b  to this quantity by  
 a ! b

2
= " a ! b( ) 2 = a2b2 " (a #b)2 . 

The quantity a ! b is called a bivector, and it can be interpreted geometrically as an 
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oriented plane segment, as shown in Fig. 7. It differs from the conventional vector cross 
product a ! b in being intrinsic to the plane. Note that the dimension of the vector space 
has been left unspecified, so all our considerations are quite general. 
 
 
 
 
 
 
 
 
 
 
To make connection with trigonometry we can write 
 a ! b = ab sin"       and     a ! b = i a ! b = ab i sin" , 
where i  has been introduced as a unit oriented area for the plane containing a and b. 
Note that this can be regarded as defining sin! . 
 Now we return to the geometric product note that it has the unique 
decomposition into symmetric and antisymmetric parts: 
 ab = a !b + a " b  
We have noted the geometric meanings of the parts, but what is the meaning of the 
whole? To relate it to something familiar, we give it a symbol and a trigonometric 
expression: 
 z ! ab = "U       where      U = âb̂ = cos! + i sin! = e

i!  
with ! = ab . This is the familiar form for a complex number, with inner and outer 
products corresponding to real and imaginary parts. It has all the familiar properties of 
complex numbers fully integrated with additional properties relating to vectors. In 
particular, multiplication on any vector c in the plane of i  
rotates the vector by angle θ and rescales it by λ, as 
expressed by  
 z c ! abc = "e

i#
c = d . 

Thus, the product of two vectors is a complex number, 
which represents a rotation-dilation in a plane. As shown 
in Fig. 8, it can be depicted geometrically as a directed arc 
(curved arrow), just as a vector is depicted as a straight 
arrow. See [24] for more details about this interpretation of 
complex numbers. 
 We have skipped over some mathematical fine points, but the above account 
suffices to demonstrate that geometric algebra smoothly integrates the algebra of 
complex numbers with vectors. Thereby, the powerful tool of complex numbers for 
reasoning about rotations and plane trigonometry becomes available to students from the 

 
Fig. 7. Bivectors a ! b  and a ! b  represent plane segments 
of opposite orientation as specified by a “parallelogram rule” 
for drawing the segments. 

 
Fig. 8. A complex  
number depicted 
as a directed arc. 
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beginning. Thereby the artificial distinction between real and complex planes is 
obliterated, and coordinate-free mathematical modeling is enabled.  
 Geometric algebra extends all this to three dimensions and beyond. For 
example, it has been applied to reformulate the entire subject of Newtonian mechanics in 
coordinate-free form [25]. This includes computation of rotations and rotational 
dynamics without matrices. Moreover, all this has been generalized to computations in 
linear algebra without matrices and applications to many other domains of mathematics. 
 I will not speculate here on the prospects for incorporating geometric algebra 
into the mathematics curriculum. 
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