
In: J. Math. Phys. Vol. 14, No. 7, July 1973

Local observables in the Dirac theory

DAVID HESTENES

Abstract

By a new method, the Dirac electron theory is completely reexpressed
as a set of conservation laws and constitutive relations for local observ-
ables, describing the local distribution and flow of mechanical quantities.
The coupling of the electromagnetic field to the electron is shown to be
determined by the definitions of the observables rather than by the Dirac
equation. Planck’s constant appears in the equations only in connection
with the electron spin. The equations are most readily interpreted by
assuming that the electron is a structureless point charge, the spin and
magnetic moment arising from the dynamics of electron motion.

INTRODUCTION

Most experimental tests of the Dirac electron theory pertain only to “global ob-
servables” such as average energy, average momentum, and average angular mo-
mentum. The theory actually contains much more detailed implications about
“local observables” which describe a spacial distribution and flow of charge,
mass, energy-momentum, and angular momentum. The local observables of
the Dirac theory have some peculiar properties of which Dirac was undoubt-
edly unaware when the theory was first formulated. These peculiarities deserve
careful study; first, because they can be expected to lead to particularly sensi-
tive tests of the theory if they can be subjected to experimental scrutiny; and
second, because they furnish valuable theoretical clues about the interpretation
and significance of the theory.

A systematic analysis of the properties of local observables happens to be sur-
prisingly difficult by conventional methods. This paper uses an unconventional
mathematical formalism developed in Refs. [1] and [2] to achieve a compact
reformulation of the complete Dirac theory in terms of local observables. The
new method greatly simplifies the derivation of conservation laws and “rela-
tions” among local observables. The results obtained are complete in the sense
that the relations found among the observables determine the theory uniquely.
It is believed that all significant relations among local observables found by pre-
vious authors are derived here, though they usually appear in quite different
form and often as only part of a more general relation. Because of the consid-
erable difference in method and viewpoint, comparison of results is sometimes
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quite tedious, though it can always be carried out by the method explained
in Appendix A. Since the work of Takabaysi [3] is much more extensive than
anything else in the literature on local observables, special effort was made to
compare it with the present work; exact agreement has been found even on
comparing some of the more complicated and esoteric formulas, though the two
approaches have not been compared in every detail.

The difficult problem of subjecting the theory of local observables to ex-
perimental test will not be broached in this paper, though it is hoped that the
present formulation of the theory will facilitate the task. What the theory needs
most is an experimental test of the peculiar noncollinearity of velocity and mo-
mentum predicted by eq. (5.8) below. The problem of devising such a test has
engaged the attention of Costa de Beauregard for many years; he has reviewed
the problem in Ref. [4], including some significant progress that has recently
been made. Reasoning by analogy with the Dirac theory, Costa de Beaure-
gard was lead to suggest tests for asymmetry in the free space electromagnetic
energy-momentum tensor for circularly polarized light. This asymmetry im-
plies that the energy flux in a polarized light beam is not collinear with the
momentum density, the difference being due to the “photon spin.” In a clever
experiment, Imbert [5] showed that this difference manifests itself as a lateral
displacement of a reflected light beam with a magnitude and direction in com-
plete agreement with theoretical predictions. This success makes it all the more
likely that the analogous asymmetry in the Dirac theory can somehow be tested
experimentally.

It should be emphasized that the asymmetry just alluded to does not reveal
itself in the Dirac theory when observables are defined in terms of operators in
the usual manner. The operator definitions refer only to global observables, the
local features being suppressed by averaging (i.e., integrating over all space).
The local theory is more detailed, defining mechanical quantities such as mo-
mentum and angular momentum densities as definite functions of position and
time. One local observable, the probability density determined by the Dirac
wave function, is already widely used to predict the electron charge distribution
in an atom. The local distributions of other mechanical quantities have not as
yet been associated with any experimentally accessible effects.

To achieve a complete theory of local observables it is necessary to go beyond
the original assumptions of Dirac. It is important to realize that the definitions
of observables in Dirac theory have far-reaching consequences quite indepen-
dent of the exact form of the Dirac equation. The specification of observables
in Dirac’s original paper [6] was incomplete in several respects. His crucial
assumption about observables was made by adopting, without comment, the
operator definition of energy already used in Schrodinger’s theory. This was all
he needed to predict the energy levels of stationary atomic states. Dirac’s initial
assumptions were not sufficient to prove local conservation of probability. But
this deficiency was soon rectified [7] by defining a ‘probability current,’ which, in
accordance with the Dirac equation, has vanishing divergence and so describes
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a locally conserved quantity. This definition is actually a new physical assump-
tion, as the current specifies a local flow (or at least, a “probable” or “local
average” flow) of electron charge and mass, and tacitly attributes a constant
ratio of charge to mass density for the “smeared out” electron.

After the local distribution and flow of electron charge was specified by defin-
ing a conserved current, the local distribution and flow of energy-momentum was
specified by Tetrode’s definition [8] of an energy-momentum tensor. It is remark-
able that these definitions above completely determine a local distribution and
flow of angular momentum, since in general continuum theory

Once a complete set of local observables has been defined, the wave func-
tion can be eliminated and the Dirac theory completely reformulated as a set
of equations for local observables. Reformulation proved to be a surprisingly
difficult task. Many authors achieved partial results. But it was not until 1957
that Takabayasi [3] developed a systematic approach and carried the reformu-
lation to completion. Unfortunately, physicists have derived little benefit from
his work, most probably because of its great complexity. However, much of
this complexity is unnecessary, because it arises from redundancy in the admix-
ture of matrix and tensor algebras in the mathematical formalism usually used
to express the Dirac theory. Such redundancy is eliminated in this paper by
employing the “space-time algebra” developed in Refs. [1] and [2].

Because of the much simpler method employed here, it has proved possible
to work out the relations among local observables in considerably more detail
than was done previously, especially in Sec. 6 below. It should be mentioned
that the many relations among local observables derived below are not mutually
independent. No attempt has been made to select one particular complete set
of relations as more fundamental than another, because the desirability of any
particular selection is determined by the use to which it will be put. However, a
careful distinction has been made between those relations which are determined
by the Dirac equation and those which are not.

The particular properties of the energy-momentum tensor which are deter-
mined by the Dirac equation are ascertained in Sec. 2. However, the main aim
of Secs. 1 through 4 is to determine those properties of local observables which
follow from the definitions of the probability current by (1.3) and (1.4) and the
energy-momentum tensor (2.3) as specific functions of the wave function (1.1),
without appeal to the Dirac equation. Since local conservation is essential to the
notion of probability density, the eq. (1.4) which expresses local conservation
of probability is taken as part of the definition of the probability current even
though it can be derived from the Dirac equation (e.g., see Appendix B). Of
course, the mere fact that the Dirac equation implies that the “current” (1.3)
has vanishing divergence does not entail that that particular quantity describes
the local flow of probability. It seems best, then, to say merely that the Dirac
equation is consistent with the identification of (2.26) as probability current.

In Sec. 5 the Dirac equation is completely reformulated in terms of local
observables. It will be noted that the electromagnetic potential does not ap-
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pear in the resulting eq. (5.7). Therefore, the Dirac equation by itself implies
nothing about electromagnetic interactions of the electron. Moreover, the refor-
mulated Dirac equation does not yield equations of motion for local observables.
Rather, it functions as a “constitutive equation,” expressing, as shown by (5.8),
the local momentum as a definite function of the local velocity and spin. The is
equations of motion for the local observables are just the general conservation
laws ascertained in Secs. 1 and 2. But these equations are underdetermined
and cannot be solved without the additional “constitutive relations” provided
by Dirac equation. Since these “constitutive relations” do not involve the elec-
tromagnetic field, it can be concluded that the coupling of the electron to the
electromagnetic field is already completely determined by the identification of
(2.26) as the equation for energy-momentum conservation.

The relation of the spin density to the local circulation of charge in the
Dirac theory is studied in Secs. 6 and 7. Section 8 discusses the bearing of local
observables on the interpretation of quantum mechanics.

1 WAVE FUNCTION

This paper continues the reformulation and analysis of Dirac’s theory begun in
Ref. [1]. For the most part definitions, conventions, and results appearing in
Ref. [1] are adopted here with little or no comment. The relation to the usual
formulation of Dirac theory is discussed in Appendix A.

In Ref. [1] it was established that the Dirac “wave function” ψ = ψ(x) can
be written in the canonical form

ψ = ρ1/2ei(1/2)βR . (1.1)

The wave function does not have a direct physical significance, and a crucial
part of the Dirac theory is to relate ψ to observable quantities. The canonical
decomposition (1.1) greatly facilitates this task and, in addition, makes the
geometric content of the theory explicit.

The spinor R = R(x) describes a Lorentz rotation at every point x of space-
time which takes an orthonormal frame of constant vectors γα into the frame
eα = eα(x) according to the equation

eα = RγαR̃ , (α = 0, 1, 2, 3) . (1.2)

The vectors e0 and e3 have direct physical interpretations in the Dirac theory.
To emphasize its interpretation the vector v ≡ e0 = v(x) is called the (local)
particle velocity (at x). In agreement with established parlance, the quantity

ψγ0ψ̃ = ρRγ0R̃ = ρe = pv (1.3)

is called the probability current and ρ is called the proper probability density.
Local conservation of probability is expressed by the equation

· (ρv) = 0 . (1.4)
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With the identification of mρ as proper mass density, (1.4) expresses local con-
servation of mass. Equation (1.4) is a consequence of the Dirac equation, but it
must be emphasized that the physical interpretation given to ρv is an indepen-
dent postulate of the Dirac theory.

The vector

s ≡ �

2
e3 = s(x) (1.5)

is called the (local) spin (vector), and the bivector

S ≡ isv =
�

2
ie3e0 =

�

2
e2e1 =

�

2
Rγ2γ1R̃ (1.6)

called the (local) spin (bivector). Either s or S can be used to describe the spin
of the electron; S is preferable because angular momentum is fundamentally a
bivector quantity, but s has the advantage that vectors are sometimes easier to
manipulate than bivectors. At any rate, (1.6) makes it easy to switch from one
to the other. The physical interpretation of S as angular momentum need not
be introduced into the Dirac theory as an independent postulate; it follows from
the definition of the energy-momentum tensor given in the next section.

The eα describe intrinsic properties of the electron and so are independent
of any coordinate system associated with an observer. In contrast, the choice of
the γα in (1.2) is a mere convention, though once that choice is made, the R that
gives the eα is uniquely determined. The choice of the γα is disguised in the usual
matrix formulation of the Dirac theory as a choice of matrix representation. A
change in the matrix representation is equivalent to a change in the choice of
the γα. The γα can always be related to a set of inertial (Cartesian) coordinates
{xα} by the equations γα = ∂αx or γα = xα.

Equations (1.2) can be solved for R (see Sec. 17 of Ref. [2]). One obtains

R = (ÃA)−1/2A , (1.7)

where

A = eαγα . (1.8)

This is one way of exhibiting the dependence of R on the eα, but no further
use of it will be made in this paper. The important point is that once the
convenient arbitrary choice of the γµ has been made, then the Lorentz rotation
R is determined by eight (scalar) parameters. Five of these are determined by
specifying the velocity and the spin directions. This much determines the plane
of e1 and e2; the additional parameter χ, which is needed to fix the directions
of e1 and e2 in the plane, is the phase of the Dirac wave function. the angular
momentum tensor is not determined by the energy-momentum tensor. Thus no
further assumptions are needed to determine a complete set of local observables
for the Dirac theory.
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The Dirac wave function ψ is completely determined by specifying the set
of eight independent quantities:

{ρ, β, v, S or s, χ} (1.9)

Of these, ρ, v, S have straightforward physical interpretations. Comments on
the interpretation of β will be deferred until the role of β in the Dirac theory
has been studied in some detail. The observable significance of χ is indirect,
and it will not be convenient to make explicit use of χ in equations for local
observables. Rather, the energy-momentum vector, to be introduced later, will
contain an implicit dependence on the gradient of χ.

2 ENERGY-MOMENTUM TENSOR

One of the key assumptions in Dirac’s initial paper [6] is that the total energy
E of the electron in a stationary state is to be obtained from the equation

(−1)1/2
�∂tΨ = EΨ , (2.1)

where Ψ is a column spinor. Superficially, (2.1) appears to be identical to an
assumption made by Schrodinger in his first papers on quantum theory. But
something new is present because of the spinor character of Ψ. This becomes
apparent when, by using the spinor Ψ, (2.1) is reexpressed in a form which is
independent of any matrix representation:

∂tψγ2γ1� = Eψ . (2.2)

The equivalence of (2.2) and (2.1) is easily established by the method of Ap-
pendix A. Comparison of (2.1) and (2.2) then reveals that the root of minus
one on the left of (2.1) has a geometrical significance; it may be regarded as a
representation of the spacelike bivector γ1γ2 = iγ3γ0 = iσ3, which itself is a par-
ticular root of minus one since (γ2γ1)2 = −1. Moreover, this root of minus one
has a physical significance, for according to (1.6) it determines the direction of
the electron spin. In fact, it is only through (2.1) or (2.2) and its generalizations
that electron spin finds its way into the Dirac theory.

To complete the formulation of the Dirac theory, (2.1) must be generalized
to give an expression for the energy even when the electron is not in a stationary
state, if only because the wavefunction cannot be an eigenfunction of the energy
in all inertial systems unless it is a plane wave. Besides, (2.1) determines only
the energy density, which is but one component of a complete energy-momentum
tensor.

The most straightforward guess at the required generalization of (2.1) is
given by

Tµν ≡ {
γ0ψ̃γµ(∂νψγ2γ2� − eAνψ)

}
S

= �(γµ∂νψiγ3ψ̃)S − eρvµAν . (2.3)
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The second term on the right has been added to remove the contribution of the
electromagnetic field to the electron’s energy-momentum and so (hopefully) to
produce a tensor that describes only intrinsic properties of the electron. To get
the last line of (2.3), the definition of velocity (1.3) has been used.

That (2.3) is a reasonable generalization of (2.1) can be shown by computing
the average energy in “the inertial system of γ0,” namely

〈E 〉 = 〈E(t) 〉 =
∫

d3x (T00 + eρv0A0) =
∫

d3x (γ0ψ̃γ0∂0ψγ2γ1�)S ,
(2.4)

where the integral is taken over the spacelike hypersurface of points x satisfying
the equation a · γ0 = x0 = t. If (2.1) is satisfied, then

〈E 〉 =
∫

d3E (γ0ψ̃γ0ψ)S = E

∫
d3x ρ0 = E , (2.5)

where

ρ0 ≡ ρ v0 = ρv · γ = (ψγ0ψγ0)S (2.6)

is the particle probability density in the inertial system of γ0. It is very impor-
tant to note the appearance of v in (2.5) and (2.3), for it shows that consistency
of (2.3) with (2.1) requires the conservation law (1.4) and the interpretation
previously given to v.

Appendix A shows that (2.3) is equivalent to Tetrode’s definition of the
electron’s energy-momentum tensor. Though this tensor has been much studied
with matrix methods, something may yet be learned by analyzing its properties
with the methods of space-time algebra.

An energy-momentum tensor is a linear vector function of a vector variable.
To be more specific, let T (n, x) denote a flux of energy-momentum through
a hypersurface with normal n at the space-time point x. Suppressing the x
dependence, one says that T (n) is an energy-momentum tensor. Since T is a
linear function of n = nµγµ,

T (n) = nµT (γµ) = nµTµ . (2.7)

So an energy-momentum tensor is completely characterized by the vectors Tµ =
T (γµ), which specify the flux in four independent directions. The components
of the Tµ are Inversely,

Tµν ≡ Tµ · γν . (2.8a)

Inversely,
Tµ = Tµνγν . (2.8b)

With this, the Tµν for the Tetrode tensor can be determined from (2.3).
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The conservation law (1.4) implies the existence of velocity streamlines, time-
like trajectories with tangents v = v(x) describing the local flow of the “proba-
bility fluid.” The proper energy-momentum density given by

ρp = T (v) = vµTµ (2.9)

describes the flow of energy-momentum along the velocity streamline. The
vector p deserves a special name, because it is one of the most fundamental
quantities of the Dirac theory. The name local energy-momentum or simply
name momentum is appropriate. Now Tµ can be decomposed in the form

Tµ = ρvµp + Nµ . (2.10)

Because of (2.9), N(v) = vµNµ = 0, so the Nµ describe the flow of energy
momentum normal to the velocity streamline.

Certain special properties of the Tetrode tensor are determined by the Dirac
equation. These properties are most easily ascertained by studying the “trans-
posed” tensor defined from (2.3) by

Tµ = γνTµν = γν{�γν · (∂µψiγ3ψ̃)V − eρvνAµ}
= �(∂µψiγ3ψ̃)V − eρ vνAµ . (2.11)

First observe that

�(∂µψiγ3ψ̃)V =
�

2
(∂µψiγ3ψ̃ − ψiγ3∂µψ̃) , (2.12)

Also, note that the definition of the spin vector (1.5) implies 1
2�ψγ3ψ̃ = ρs, so

∂µ(iρs) =
�

2
(∂µψiγ3ψ̃ + ψiγ3∂µψ̃) . (2.13)

Hence

�( ψ)iγ3ψ̃ = �γµ(∂µψiγ3ψ̃)V + (iρs) . (2.14)

Next, recall the form of Dirac equation given in Ref. [5]. With a convenient
change in sign convention and explicit introduction of Planck’s constant, it can
be written

� ψiγ3γ0 = mψγ0 + eAψ . (2.15)

Multiply this on the right by γ0ψ̃ and use ψψ̃ = ρeiβ as well as (1.3) to get

� ψiγ3ψ̃ = mρeiβ + eAρv . (2.16)

Finally, combine (2.9), (2.11), (2.14), and (2.16) to obtain

γµTµ = Tµγνmρeiβ + i ρs . (2.17)
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The pseudoscalar part of (2.17) yields

· (ρs) = −mρ sin β . (2.18)

This says nothing, at least directly, about the Tetrode tensor. But the scalar
part of (2.17) gives the trace of the Tetrode tensor:

Tµ
µ = Tµ · γµ = mρ cos β . (2.19)

and the bivector part of (2.17) is

γµ ∧ Tµ = Tµ ∧ γν = i( ∧ ρs) = − · (iρs) . (2.20)

tensor, as can be seen by expressing it in component form:
This specifies the antisymmetric part of the Tetrode

(γµ ∧ γν) · (Tβ ∧ γβ) = (γµ ∧ γν) · (γα ∧ γβ)Tβα = Tµν − Tνµ

= iγµ ∧ γν ∧ ∧ (ρs) = −εµναβ∂α(ρsβ) . (2.21)

where εµναβ = −iγµ ∧ γν ∧ γα ∧ γβ .
By definition, the divergence of the correct energy-momentum tensor must

equal the density of force acting on the electron. The divergence of the Tetrode
tensor is determined by the Dirac equation. To evaluate it, first note that

∂µTµ = ∂µTµ , (2.22)

because the divergence of the antisymmetric part of the Tetrode tensor vanishes,
as follows immediately from (2.16) or (2.18). With the help of (2.12), the
divergence of (2.11) can be written

∂µTµ = �( 2ψiγ3ψ̃)V − e∂(ρvAµ) . (2.23)

To express the first term on the right on (2.23) in terms of observables, take the
gradient of the Dirac equation (2.15) and multiply on the right by γ0ψ̃ to get

�( 2ψ)iγ3ψ̃ = m( ψ)ψ̃ + e( Aψ)γ0ψ̃ .

Again using the Dirac equation, rewrite the right side of this expression to
get

�
2ψiγ3ψ̃ = �

−1(e2A2 − m2)iρs + e( A)ρv + 2e(A · ψ)γ0ψ̃ .
(2.24)

The vector part of this equation is

(� 2ψiγ3ψ̃)V =
�

2
( 2ψiγ3ψ̃ − ψiγ3

2ψ̃)

= ρe( ∧ A) · v + eρv ·A + eA · (ρv)
= ρeF · v + e∂µ(ρvAµ) , (2.25)
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where F = ∧ A. Substitution into (2.23) and use of (2.10) yields

∂µTµ = ρṗ + ∂µNµ = ρeF · v = ρf , (2.26)

where a dot has been used to represent the “proper time” derivative along the
streamline by writing v · p = ṗ . The local force f = eF · v is just the familiar
Lorentz force. This further confirms the compatibility of interpretations given
to Tµ and v. The striking fact is that (2.26) has exactly the form that classical
electrodynamics gives for the effect of an electromagnetic field F acting on a
charged current. Note that there are no multipole force terms, such as would
arise if the electron had some complicated local structure. Thus, according
to (2.26) the effect of external electromagnetic forces acting on the electron is
exactly what one would expect from classical electrodynamics. The peculiar
features of the Dirac theory reside in the specific nature of the Tµ.

The results above already suffice to show that the Dirac electron possesses
an angular momentum which does not appear to be induced by external forces.
Observe that, since ∂µx = γµ, (2.26) implies

∂µ(Tµ ∧ x) = Tµ ∧ γµ + ρf ∧ x . (2.27)

And note that, by virtue of (2.20),

Tµ ∧ γµ = −∂µSµ , (2.28)

where

Sµ = ρis ∧ γµ = ρ(is) · γµ = ρ(s ∧ v) · γµ

= ρvµS + ρS · γµv . (2.29)

So, with the definition

Jµ ≡ Tµ ∧ x + Sµ , (2.30)

(2.27) can be written

∂µJµ = ρf ∧ x . (2.31)

The right side of this equation can be identified as the local torque, so Jµ can
be interpreted as the flux of angular momentum through a hypersurface with
normal γµ. Moreover, Jµ consists of an orbital part Jµ ∧ x and an “intrinsic
part” Sµ. The angular momentum flow along the velocity streamline is described
by the proper angular momentum density,

J(v) = vµJµ = ρ(p ∧ x + S) , (2.32)

where S = ρ−1vµSµ = is∧ v is seen to be precisely the local spin, as advertised
in Sec. 1.
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The right side of (2.29) is a decomposition of the spin angular momentum
density Sµ into a part ρvµS which describes angular momentum flow along the
streamline and a part

Mµ ≡ ρS · γµv = ρ 1
2 [S, γµv ] , (2.33)

which describes angular momentum flow normal to the streamline. Using this,
and the corresponding decomposition (2.10) for Tµ, (2.28) can be written in the
form

ρS + ρp ∧ v = γµ ∧ Nµ − ∂µMµ , (2.34)

where, of course, Ṡ = v · S.
Equations (1.4), (2.26), and (2.34) are local conservation laws for mass,

energy-momentum and “intrinsic angular momentum,” respectively. But they
constitute a determinate set of equations only when “constitutive equations”
have been specified which relate the basic local observables ρ, v, S and p and
expresses the fluxes Nµ, and Mµ in terms of them. In the general form given
above with a more general form for the local force than is given in (2.26), the
local conservation laws hold for any classical relativistic theory of continuous
media as well as for the Dirac theory. The peculiar features of the Dirac theory
are found not in the conservation laws, but in the form it gives to the constitutive
relations and boundary conditions.

3 LOCAL MOMENTUM AND ANGULAR
VELOCITY

From (1.2) it follows that

γµ · eα = ∂µeα = 1
2 [ Ωµ, eα ] = Ωµ · eα (3.1)

where

Ωµ ≡ 2(∂µR)R̃ . (3.2)

Equation (3.1) says that on displacement in the γµ direction, the frame {eµ}
rotates with “angular velocity” Ωµ. To see what physical significance such a
rotation might have, the angular velocity must be expressed as a function of
local observables. To this end, introduce quantities Pµ, and qµ by the equation

Pµ + iqµ =
�

2
(∂µRγ2γ1R̃ − Rγ2γ1∂µR̃) . (3.3)

Also, use (1.6) to obtain

∂µS =
�

2
(∂µRγ2γ1R̃ + Rγ2γ1∂µR̃) (3.4)
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and

�∂µRγ2γ1∂µR̃ = (∂µRR̃)(�Rγ2γ1R̃) = ΩµS . (3.5)

The sum of (3.3) and (3.4) yields

Pµ + iqµ + ∂µS = ΩµS = �∂µRγ2γ1R̃ . (3.6)

The scalar part of (3.6) is

Pµ = Ωµ · S = �(∂µRγ2γ1R̃)S , (3.7)

which shows that Pµ, measures the component of the angular velocity in the
local spin plane.

The pseudoscalar part of (3.6) yields

qµ = −i(Ωµ ∧ S) = −Ωµ · (iS) = �(∂µRγ0γ3R̃)S , (3.8)

which shows that qµ measures the component of the angular velocity in the
plane orthogonal to the spin plane. Finally, the bivector part of (3.6) is

∂µS = 1
2 (ΩµS − SΩµ) ≡ 1

2 [ Ωµ, S ] , (3.9)

which measures the rate at which the spin plane changes direction on displace-
ment along γµ.

To find an expression for Ωµ in terms of observables solve (3.6).

Ωµ = (∂µS + Pµ + iqµ)S−1

= s(∂µv)vs−1 + (∂µs)s−1 + qµvs−1 + PµS−1 , (3.10)

where S−1 = |S |−2S̃ = is−1v and s−1 = −| s |−2s. The quantity qµ can be
expressed in terms of the spin and velocity by relating (3.10) to the derivative
of the velocity.

∂µv = Ωµ · v = s−1(v · ∂µs) + ∂µv − qµs−1 .

Hence

qµ = v · ∂µs = −s · ∂µv (3.11)

or

q = γµqµ = −v · ( ∧ s) + v · s = −s · v + s · ( ∧ v) .
(3.12)

An expression similar to (3.11) can be found for Pµ from

∂µe1 = Ωµe1 = (e1 · ∂µv)v + (e1 · ∂µs)s−1 + Pµ
2
�
e2 .
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Thus,

Pµ = −�

2
e2 · ∂µe1 =

�

2
e1 · ∂µe2 . (3.13)

Equation (3.11) says that qµ measures the rate of rotation in the (vs) plane,
while (3.13) says that Pµ measures the rate of rotation in the spin plane though
no physical significance has been attributed to e1 and e2 separately. Since Pµ

itself is an observable, (3.10) along with (3.11) gives the complete relation of Ωµ

to observables.
A change of “phase” of the wave function by an amount �

−1Λ, i.e., the spinor
transformation

R → Re−γ2γ1Λ/�

induces, by (3.2), the change of angular velocity

Ωµ → Ωµ + ∂µΛS−1 ,

and by (3.2), the transformation

Pµ → Pµ + ∂µΛ . (3.14)

This shows that Pµ depends on the phase only through its gradient.
The physical significance of Pµ can be ascertained by relating it to the

energy-momentum tensor. Use (1.1) and (3.2) to write

∂µψ = 1
2{∂µ ln (ρeiβ) + Ωµ}ψ . (3.15)

Multiply this on the left by �iγ3ψ̃ and use 1
2�ψiγ3ψ̃ = ρSv together with (3.6)

to obtain

�∂µψiγ3ψ̃ = {∂µ ln (ρeiβ) + Ωµ}(ρSv)
= {Pµ + iqµ + ∂µS + S∂µ ln (ρeiβ) + Ωµ}ρv

= {Pµ + iqµ + ∂µS + Wµ}ρv , (3.16)

where the bivector Wµ is defined by

Wµ ≡ (ρeiβ)−1∂µ(ρeiβS) = ∂µS + S(∂µ ln ρ + i∂µβ) . (3.17)

The vector part of (3.16) is

�(∂µψiγ3ψ̃)V = ρ(vPµ − v ·Wµ) . (3.18)

Hence,

�γν · (∂µψiγ3ψ̃)V = ρ(vνPµ + (vΛγν) ·Wµ) . (3.19)
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Write

Pµ = pµ + eAµ (3.20)

and compare (3.19) with (2.3) and (2.10) to get

Tµν = ρvµ pν + Nµν , (3.21)

where, with the help of (3.17),

Nµν = Nµ · γν = ρ(v ∧ γµ) ·Wν

= ρ(v ∧ γµ) · ∂νS − ρsµ∂νβ . (3.22)

This shows that the pµ introduced in (3.20) are exactly the components of local
momentum introduced by (2.9). Equations (3.7) and (3.20) thus show how the
local momentum is related to rotations in the local spin plane. In addition,
(3.22) expresses the components Nµν of the momentum flux tensor in terms of
local observables.

4 INTEGRABILITY CONDITIONS

The fundamental local observables v, S, and p are all determined by the single
spinor field R and its derivatives. Since R itself is completely parametrized by
v, S and phase χ, p must be completely determined by these quantities and
their derivatives. Since p depends on the phase only through its gradient, the
curl of p must be a function only of the spin, the velocity, and their derivatives.
This function can be found in the following systematic way.

Write (3.2) in the form

∂µR = 1
2ΩµR . (4.1)

Differentiate, to get

∂ν∂µR = 1
2 (∂νΩµ + 1

2ΩµΩν)R . (4.2)

But

∂µ∂νR = ∂ν∂µR . (4.3)

So

∂νΩµ − ∂µΩν = 1
2 [ Ων ,Ωµ ] . (4.4)

Thus the derivatives of the angular velocities are not mutually independent.
These “integrability conditions” can be expressed as relations among observables
by using (3.6). One obtains

∂µPν − ∂νPµ + i(∂νqν − ∂µqν) = 1
2 [ ∂νS, ∂µS ]S−1 . (4.5)
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The bivector part of (4.5) gives nothing new since it is just a consequence of the
fact that S2 is a constant. The pseudoscalar part of (4.5) gives an expression
for the curl of qµ, but that is of little interest since the relation of qµ to the spin
and velocity is already completely exhibited by (3.11). However, the scalar part
of 4.5) gives the following valuable relations, first derived in a different form by
Takabayasi [3]:

∂µPν − ∂νPµ = 1
2 [ ∂νS, ∂µS ] · S−1

= (S−1∂νS∂µS)S = S · (∂νv ∧ ∂µv + ∂νs ∧ ∂µs−1)
= i s ∧ v ∧ [ ∂νv ∧ ∂µv + ∂νs ∧ ∂µs−1 ] . (4.6)

Since Pµ = pµ + eAµ,

∂νPµ − ∂µPν + eFµν = (∂νS∂µS) · S−1 . (4.7)

where

Fµν = (γµ ∧ γν) · F = (γµ ∧ γν) · ( ∧ A) = ∂µAν − ∂νAµ

are the components of the electromagnetic field.
It is worth emphasizing that (4.7) or (4.6) depends on the definitions of the

local observables only and not at all on the Dirac equation. Since it relates
different observables, (4.7) can be regarded as a kind of constitutive relation. A
constitutive relation that gives the full dependence of p on v and S is obtained
from the Dirac equation in the next section.

5 PHYSICAL CONTENT OF THE DIRAC
EQUATION

The conclusions of Sec. 2 are worth repeating. Equations (1.4), (2.26), and (2.34)
are precisely the conservation laws of mass, energy-momentum, and angular
momentum which are expected to hold for all physical theories. The use of
the Dirac equation to obtain these laws merely serves to show that the Dirac
theory is consistent with general principles. It can now be shown that the real
physical content of the Dirac equation is to be found in the fact that it provides
constitutive relations among the local density, velocity, momentum, and spin.

When these relations are put along side those relations which follow from
the definitions of the local observables in terms of the Dirac wave function, then
the conservation laws become determinate differential equations describing the
time evolution of the local observables.

To express the Dirac equation (2.15) as a relation among local observables,
first multiply it on the right by ψ̃ to obtain

�( ψ)γ2γ1ψ̃ = mρv + eAρeiβ . (5.1)
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Next use (3.15) and (3.6) to obtain

�(∂µψ)γ2γ1ψ̃ = {∂ν(ρeiβ) + Ωµρeiβ} �

2
Rγ2γ1R̃

= ∂ν(ρeiβ)S + (Pν + iqµ + ∂µS)ρeiβ

= (Pν + iqµ)ρeiβ + ∂µ(ρeiβS) . (5.2)

This implies

�( ψ)γ2γ1ψ̃ = (P + qi)ρeiβ + (ρeiβS) . (5.3)

Finally, equate (5.1) to (5.3) and use p = P − eA to get

ρe−iβ(p − iq) = ρmv − (ρeiβS) . (5.4)

The pseudovector part of (5.4) yields

ρ(p sin β + q cos β) = · (ρeiβiS) . (5.5)

The vector part of (5.4) is

ρ(p cos β − q sin β) = ρmv − · (ρeiβS) . (5.6)

This quantity, multiplied by e/m, is commonly known as the Gorden current.
The last term in (5.6), then, is the divergence of a magnetic moment density.
This is consistent with the identification of the magnetic moment in (6.28) below.

Equation (5.4) displays the physical content of the Dirac equation as a rela-
tion among local observables. The Dirac equation can be recovered from (5.4)
by writing the local observables as functions of the Dirac wave function and
its derivatives, but it should be remembered that these expressions are physical
assumptions quite independent of the Dirac equation.

The “Dirac relations” among local observables are better expressed by mul-
tiplying (5.4) on the right to get

ρ(p − iq) = ρmeiβv − (ρS) + i( β)ρS . (5.7)

The vector part of (5.7) gives the momentum density as a function of velocity
and spin.

ρp = ρmv cos β − · (ρS) + ρ(iS) · β . (5.8)

This is the simplest way to express the general noncollinearity of velocity and
momentum in the Dirac theory. Note that a valid physical interpretation of β
must account for the strange factor cos β, which reduces the contribution of the
“mass density” to the energy-momentum density. The last term (iS) · β =
(v ∧ s) · β = vs · β − sv · β shows a dependence of momentum on the rate
of change of β in the v ∧ s plane.
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The trivector part of (5.7) yields

−ρq = ρm sin βv + · (ρsv) + ( β) · (ρS) . (5.9)

This can be reduced to simpler terms by using (2.18) and (3.12) to get

S · β = s · ( ∧ v) − v · s + s · v − v · ( ∧ s) . (5.10)

Since S · β = (is∧ v) · β = is∧ v∧ β = −s · (iv∧ β), the first equation
(5.10) can be written

v · = · · · = s · ( ∧ v) + s · (iv ∧ β) . (5.11)

This is an equation for the rate of change of spin along a velocity streamline,
and so exhibits explicitly the physical content of the trivector part of (5.7).

A number of important auxiliary formulas are easily obtained from (5.8) by
utilizing algebraic properties of the velocity and spin:

p · v = m cos β − (v ∧ ) · s − (iS) · (v ∧ β)
= m cos β − S · ( ∧ v + iv ∧ β) , (5.12)

v · β = β̇ = p · s−1 + S · ( ∧ s−1) = p · s−1 + is−1 ∧ v ∧ s ,
(5.13)

p · S = ρ−1S · ( · ρS) = −S · (S · ln ρ) + S · ( · S) ,
(5.14)

v ∧ p = ρ−1[ · (ρS) ] ∧ v − iSβ̇

= ρ−1 · (ρis) − Ṡ + (S · ) ∧ v − iSβ̇ . (5.15)

Equation (5.12) is an expression for the local energy p · v that flows along a
streamline. In the first term the rest mass is reduced by the factor cos β. The
remaining terms involve the “normal gradient” v ∧ which shows that their
contribution to the local energy is determined by the flow of S and β onto the
streamline.

By comparing (5.15) with (2.10) and (2.20) one finds

ρ−1γµ ∧ Nµ = Ṡ − (S · ) ∧ v + iSβ̇ . (5.16)

The same result can be obtained with more effort by direct evaluation from
(3.22).
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6 PROPER FLOWS

The reformulation of the Dirac theory as a set of conservation laws and consti-
tutive equations for local observables has already been completed. But further
insight into the theory can be obtained by casting some of the equations into
different forms. It is particularly interesting to study the flow of local observ-
ables along a streamline. This can be approached systematically by studying
the proper angular velocity Ω, i.e., the angular velocity along a streamline:

Ω ≡ 2ṘR̃ = 2(v · R)R̃ = vµΩµ . (6.1)

Here the Ωµ are just the angular velocities defined by (3.2).
An expression for Ω in terms of observables can be obtained directly from

the Dirac equation by utilizing the identity

Ω ≡ 2ṘR̃ = {( R)R̃ , v} − v . (6.2)

The curly brackets denote anticommutator. The identity can be established by
noting that

( R)R̃vR = Rγ0 = (vR) = ( v)R − v R + 2v · R .

Now write the Dirac equation (3.15) in the form

�( ψ)iγ3γ0ψ̃ = 2( ψ)ψ̃S = mρv + eAρeiβ . (6.3)

Also note that

2( ψ)ψ̃ = [ ln ρ + ( β)i + 2( R)R̃ ]ρeiβ . (6.4)

Hence, from (6.3) and (6.4)

2( R)R̃ = − ln ρ + i β + (meiβv + eA)S−1 . (6.5)

So

1
2{2( R)R̃ , v} = {2( R)R̃} · v

= −v · ln ρ + v · (i β) + v · (mv cos β + eA)S−1 .(6.6)

Finally, substitute (6.6) into (6.2) to get

Ω = − ∧ v + v · (i β) + v · (mv cos β + eA)S−1. (6.7)

By (6.7), the proper time derivatives of the velocity and the spin are

v̇ = Ω · v = v · ( ∧ v) , (6.8)
ṡ = Ω · s = s · ( ∧ v) + s · [ v · ( βi) ] , (6.9)
Ṡ = 1

2 [ Q, S ] = 1
2 [S, ∧ v ] + 1

2 [S, v · ( βi) ] . (6.10)
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Equation (6.8) is a mere identity, which depends only on the fact that v2 is
constant. Equation (6.9) is identical with (5.11), and, of course, (6.10) follows
from (6.8) and (6.9), though it is handier to get it from (6.7). Clearly, these
equations are not of much help unless a useful expression for ∧ v can be
found.

Before proceeding further, it is worthwhile to examine the “classical limit,”
i.e., the limit in which the magnitude of the spin | s | = 1

2� regarded a negligibly
small quantity. In that limit, the compatibility conditions (4.6) can be written

∧ P = 0 . (6.11)

This implies that

P = χ . (6.12)

lt is easy to see that the scalar χ is the phase of the Dirac wave function, so
the classical limit amounts to a kind of “eikonal approximation” to the Dirac
equation.

In the classical limit, Eq. (2.18) becomes sin β = 0, which implies cos β =
±1. In the same limit, the Dirac equation in the form (5.7) reduces to

p = ±mv = χ − eA . (6.13)

Clearly, the two signs correspond to limits describing particles with opposite
charge.

The square of (6.13) is just the Hamilton-Jacobi equation for a classical “test
charge”:

( χ − eA)2 = m2 . (6.14)

Given the external potential A, one solves (6.14) to get χ. But equation (6.13)
is still needed to get the velocity field from χ.

The curl of (6.13) is

±m ∧ v = −e ∧ A = −eF . (6.15)

So, from (6.7) the proper angular velocity is just

Ω = − ∧ v = ± e

2m
F . (6.16)

When this is substituted into (6.8), one obtains the Lorentz force.
But, more generally, (6.16) gives a spinor form for the Lorentz force

Ṙ = ± e

2m
FR . (6.17)

The solution of this equation is a one parameter family of Lorentz transfor-
mations R = R(τ) describing the rotation of the eµ, as they “move” along a
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streamline. In particular, this describes the rotation of the spin. So the spin
does not simply disappear in the “classical limits” to the Dirac theory; only
the effect of the spin on the motion of the particle disappears; an effect of the
motion on the spin remains.

Now, to see what can be said about ∧v without any approximation, write
(5.7) in the form

(P + qi) − eA = mve−iβ − γνWν , (6.18)

where Wµ is defined by (3.17). The gradient of (6.18) is

( P + qi) − e A = m[ v − i( β)v ]e−iβ + γµγν∂µWν .
(6.19)

The bivector part of (6.19) is

m[ ∧ v + iv ∧ β ] = −eF + ∂µWµ (6.20)
+ 1

2 [ ∂µS, ∂νS ] + ( ∧ P + ∧ qi) .

The dependence on momentum in the last term can be eliminated by using the
integrability conditions (4.5) in the form

∧ P + ∧ qi = 1
4γµγν [ ∂νS, ∂µS ]S−1 . (6.21)

Also, a little calculation shows that

∂µWν − ∂νWµ + 1
2 [ ∂νS, ∂µS ]S−1 = z[Wµ, Wν ]S−1 , (6.22)

so the last two terms of (6.20) can be combined. When this has been done,
(6.20) can be written

∧ v + iv ∧ β = − e

m
Feiβ + C , (6.23)

where

mC = eiβ
(
∂µWµ + 1

4 [ γµγν , [Wµ, Wν ]S−1 ]
)
. (6.24)

Equation (6.23) is very important because it completely describes the interac-
tion of the external electromagnetic field F with the “Dirac observables” in
a manifestly gauge invariant form. Section 5 shows that the electromagnetic
field is absent from the basic relations among observables implied by the Dirac
equation. The electromagnetic field is related to the momentum solely by the
integrability conditions (4.8). Equation (6.22) expresses the implications of the
integrability conditions in a form independent of p. And note that C in (6.24) is
manifestly independent of velocity. The appropriate use of (6.23) is to eliminate

∧v from equations to reveal explicitly the influence of the external field F on
relations among observables.
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The dependence of Ω on F is revealed by substituting (6.23) into (6.7) to
get

Ω =
e

m
Feiβ − C + v · (mv cos β + eA)S−1 . (6.25)

This gives immediately equations for the velocity and spin which show the de-
pendence on F explicitly:

v̇ =
e

m
(Feiβ) · v + v ·C , (6.26)

Ṡ = 1
2 [ F,

e

m
Seiβ ] + 1

2 [S, C ] . (6.27)

In (6.27) the commutivity of eiβ with bivectors was used to obtain a form that
suggests that

µ =
| e |
m

Seiβ (6.28)

be interpreted as the local magnetic moment. And, in fact,

|µ | =
| e |
m

|S | =
| e | �
2m

(6.29)

is the famous magnitude of the electron’s magnetic moment, which was the first
striking consequence of Dirac’s theory. But the interpretation of the magnetic
moment is not so simple a matter as (6.27) and (6.28) suggest, for (6.25) and
(6.26) indicate that the factor eiβ belongs with the F and not with the S.

Other important relations can be derived from (6.25) by using (3.6) to get

v · (p + eA) + iv · q + Ṡ = ΩS

=
e

m
FeiβS − CS + m cos β + ev ·A . (6.30)

The bivector part of (6.30) just gives equation (6.27). But, with the help of
(3.11), the pseudoscalar part of (6.30) gives

v · q = −v · · · · = s · v̇ = i
[
C ∧ S − e

m
(Feiβ) ∧ S

]
=

e

m
(Feiβ) · (s ∧ v) + S · (v ∧ s) . (6.31)

The scalar of (6.30) is

p · v = m cos β +
( e

m
Seiβ

)
· F − C · S . (6.32)

The same result can be obtained by substituting (6.23) into (5.12). Equation
(6.32) explicitly shows the effect of an external field F on the local energy.
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Equation (2.26) describes the rate of change of momentum along a stream-
line, but it does not reveal the full effect of the electromagnetic field F on the
momentum flow, because it does not show how the momentum flux Nµ is af-
fected by F . The influence of F on the flux can be found by beginning with the
expression (3.22) for Nµν and evaluating ∂µNµ with the help of (2.18) and the
integrability conditions in the form (6.23). Thus,

∂µNµν = ρS · ( ∧ ∂νv) − (∂νv ∧ ) · (ρS) − ρs · ∂νβ − (∂νβ) · ρs

= −ρS · ∂ν

( e

m
Feiβ − C

)
+ ρ(∂νv ∧ β) · (iS) − (∂νv ∧ ) · (ρS)

−m∂ν cos β

= −ρ
(
S · ∂ν

e

m
(Feiβ − C) + (∂νv ∧ γµ) ·Wµ + m∂ν cos β

)
. (6.33)

Substitution of this expression into (2.26) yields

ṗ =
e

m
F · v +

e

m
(Feiβ) · S/ − C · S/

+ (v ∧ γµ) ·W/ µ + m cos β . (6.34)

Here a slash mark has been used to denote quantities which are not differentiated
by the gradient operating from the left.

The second term on the right of (6.34) is a force of the Stern-Gerlach type.
But note that the β is differentiated whereas the S is not, so it is not quite the
usual form for the force due to a magnetic moment given by (6.28), Moreover,
this force is not a body force; rather, as the derivation shows, it expresses only
the effect of the external field on the local momentum flux.

It is also important to realize that the influence of F on the spin is entirely
due to its effect on the spin flux. This can be shown by beginning with (2.34)
and evaluating ∂µMµ with the help of (6.23). Thus,

∂µMµ = ρ 1
2 [S, ∧ v ] + 1

2 [ v ∧ , ρS ] (6.35)

= ρ 1
2

[
F,

e

m
Seiβ

]
+ ρ 1

2 [S, C ] + 1
2 [ v ∧ γµ, Wµ ] .

Substitution of this into (2.34) and comparison with (6.27) shows

pv ∧ p + γµ ∧ Nµ = γµ ∧ Tµ = 1
2 [ v ∧ γµ, Wµ ] . (6.36)

It is not difficult to establish that this relation follows from the Dirac equation
without appeal to the integrability conditions.

The above facts about the influence of external fields on the local observables
have important bearing on the interpretation of the Dirac theory.

7 WEYSSENHOFF MOTION

The velocity streamlines of the Dirac theory compose a congruence of timelike
curves in space-time, and Eqs. (2.26) and (2.34) describe the flow of momentum
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and angular momentum along these curves. The flow along one streamline
is coupled to that along its neighbors by the flux of spin through the walls
of a comoving volume element. To get some conception of the streamlines in
the Dirac theory, suppose that along a particular stream line the net flux of
momentum and angular momentum through the walls of a comoving volume
element vanishes. This supposition can be stated mathematically by

∂µNµ = 0 , (7.1)
γµ ∧ Nµ = ∂µMµ . (7.2)

The equations of motion for a streamline satisfying these conditions are decou-
pled from those of its neighbors. However, the extent to which such a decoupling
can be justified either rigorously or as some approximation to the Dirac theory
is a difficult and unsolved problem.

Along the “decoupled” streamline just described, Eqs. (2.26) and (2.34) take
the simple form

ṗ = f , (7.3)

Ṡ = v ∧ p . (7.4)

The relation between velocity can be found by multiplying (7.4) by v and solving
to get

p = v(p · v + Ṡ) = (p · v)v + v · Ṡ . (7.5)

Of course these equations must be supplemented by the conditions that v and
S are orthogonal and have constant magnitude.

Equations (7.3), (7.4), and (7.5) were obtained from a model of a fluid “with
spin” by Wessenhoff [9]; they have been studied by many authors as a “classical
approximation” to the Dirac theory; details can be found in books by Corben
[10] and Halbwachs [11]. Of course there is nothing surprising in the fact that
these equations can be obtained from a classical model; they require for their
validity only general conservation laws and the assumptions that decouple the
streamlines. The classical models become unphysical when they assume that a
continuous system can be shrunk to a point particle obeying (7.3) and (7.4).
For insight into the Dirac theory it is sufficient to suppose that the equations
describe only a single streamline.

The interesting point is that the equations for the decoupled streamline can
be solved. In the absence of external forces the streamline is a generalized
helix. This helical motion persists in the presence of a constant magnetic field
and, as Corben [10] has repeatedly emphasized, gives the correct gyromagnetic
ratio for the electron, the simple number for which the Dirac theory is most
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famous. Thus, however dubious the decoupling assumptions, the decoupled
equations retain some of the main features of the Dirac theory. And their
solutions suggest that the magnetic moment of the electron is not due to any
structure of the electron; it appears to be a dynamical effect, arising from the
general tendency to execute helical motion because of the noncollinearity of
velocity and momentum.

8 INTERPRETATION OF THE DIRAC
THEORY

The set of local observables adopted in this paper is complete and thoroughly
satisfactory in the sense that the entire mathematical content of the Dirac the-
ory can be expressed as a system of determinate equations for these quantities.
On the other hand, the physical content of the Dirac theory depends on the
physical interpretation accorded to the local observables, that is, on the cor-
respondence of the mathematical quantities called observables with quantities
measured experimentally. Unfortunately, this correspondence is not so well es-
tablished as to eliminate the possibility that the local observables have been
incorrectly identified or that the Dirac theory is incorrect in some of its more
detailed implications.

There does not seem to be any reason to doubt that the local velocity (1.3)
has been correctly identified. The identification adopted here leads to a rea-
sonable interpretation of the energy levels in hydrogen, which seems to be the
reason it was originally accepted by the Dirac. To say that it has been uni-
versally adopted by practitioners of the Dirac theory would not be much of an
exaggeration.

The correctness of identifying the Tetrode tensor (2.3) with the energy-
momentum tensor can be questioned. It is easy to write down different tensors
which yield identical values for global observables such as the energy levels of
stationary atomic states. Each such tensor defines a different physical theory
distinguished by the particular local distribution and flow of energy-momentum
it predicts. No such distinction has as yet been tested experimentally. Never-
theless, there are good reasons to favor the Tetrode tensor.

Tetrode’s definition of the energy-momentum tensor is adopted in this paper
on the theoretical ground that it is the most straightforward generalization of
the operator definitions of energy and momentum taken over by Dirac from
Schrodinger theory. Perhaps a better reason for adopting the Tetrode tensor
is the fact that it leads to the classical Lorentz force (2.26); this seems to
have been Tetrode’s original reason. Also, on close inspection it becomes clear
that no alternative to the local momentum (2.9) determined by the Tetrode
tensor could lead to simpler equations for local observables. Finally, it should
be mentioned that the successful prediction of the Imbert effect ([4],[5]) was
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made from a nonsymmetric electromagnetic energy-momentum tensor obtained
by analogy from the Tetrode tensor. Thus the Tetrode tensor is supported by
indirect experimental evidence. The challenge is to test it directly.

In the absence of any experimental or theoretical reason to doubt that the
identification of local observables has been correctly made, it is necessary to
develop a coherent interpretation of the Dirac theory which is consistent with
the present identifications of local observables. Any satisfactory interpretation
of the Dirac theory must explain the prominent role played by spin. In Dirac’s
original paper [6] the appearance of spin is rather mysterious, since no mention
of spin was made in his basic assumptions. It is still widely believed that spin
emerged as a consequence of relativity, though this has been refuted by many
authors (e.g., Ref. [12]). With a complete theory of local observables in hand,
it is not difficult to ascertain the key assumption by which Dirac (implicitly)
introduced spin into his theory. The derivation of the local conservation laws in
Sec. 2 leads to the identification of the local spin in Eq. (2.23). Following the
argument backwards, one discovers that spin was introduced by the definition
of energy (2.1), in particular by the factor (−1)1/2

� in that definition. The
usual matrix formulation of the Dirac theory hides the relation of (−1)1/2

� to
spin very well indeed. But the relation was uncovered in Ref. [1] when matrices
were dispensed with. The relation can be explained succinctly as follows: In the
Dirac theory the spin is a skew symmetric tensor, or, equivalently, the bivector
defined by (1.6); the usual matrix representation of this bivector has eigenvalue
1
2 (−1)1/2

�, as is shown by Eq. (A.1). Thus, the factor (−1)1/2
� which appears

in the matrix formulation of the Dirac theory is a representation of the spin
tensor by its eigenvalue; its true identity is revealed by reformulating the theory
in terms of observables.

It is important to note that (−1)1/2 and � always occur together as a factor
(−1)1/2

� in the original basic equations of Dirac, specifically, in the definition
of the energy operator (2.1) and in the Dirac equation (A.5) of Appendix A.
It follows that Planck’s constant is inseparably related to the spin in the Dirac
theory. So it should be no surprise that examination of Secs. 1 to 5 reveals that
Planck’s constant appears in the equations for local observables only as twice
the magnitude of the local spin.

The ubiquitous connection between spin and Planck’s constant obviously
must persist in any nonrelativistic approximation to the Dirac theory, including
the Schrodinger theory. Indeed, as shown explicitly in Ref. [13], the Schrodinger
equation is identical to the Pauli equation in the absence of magnetic fields, and
spin appears in the Schrodinger theory as the innocent factor (−1)1/2

�. It
follows that every appearance of Planck’s constant in the Schrodinger theory
is directly related to the existence of spin. This fact is difficult to reconcile
with the usual interpretation of uncertainty relations derived from Schrodinger’s
equation. Though Planck’s constant has a prominent place in the uncertainty
relations, none of the usual interpretations seem capable of accounting for its
connection with spin. It is strange that uncertainty relations for position and
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momentum, which are presumed to be to the interpretation of quantum theory,
are not derivable from the Dirac theory without suppressing spin.

The Dirac theory poses another difficulty for the usual interpretation of the
uncertainty relations. The noncollinearity of local momentum and velocity sug-
gests that uncertainty relations for momentum and position are not, as is usually
assumed, equivalent to uncertainty relations for velocity and position. Indeed,
when the nonrelativistic limit is correctly carried out it can be shown that the
inequivalence of velocity and momentum persists even in the Schrodinger theory.
Details will be given elsewhere.

Because of these problems with the interpretation of the uncertainty princi-
ple, it is difficult to reconcile the details of the Dirac theory with the socalled
Copenhagen interpretation of quantum theory in general. But there is an alter-
native interpretation which appears to be more congenial to the Dirac theory.
It is called the statistical interpretation of quantum mechanics in a review by
Ballentine [13]. According to the statistical interpretation, an electron is always
to be regarded as a particle, and the Dirac theory describes an ensemble average
of its motion. The probability density in the Dirac theory specifies the relative
probability that the electron is located at a given place at a given time.

The simplest model of an electron compatible with the statistical interpreta-
tion is a structureless point charge. Of course it is impossible to derive any such
model from the mathematical formulation of the Dirac theory. But it is easy
to see that the model is consistent with many properties of local observables
implied by the mathematical structure of the theory. First, if the charge and
mass of the electron are actually localized at a single point, then the “smearing
out” of the electron by any kind of averaging process must produce a distribu-
tion with constant charge to mass ratio, in agreement with the Dirac theory.
Second, if the charge of the electron were not localized at a point, then terms
describing the coulomb interaction between different elements of charge would
appear in the local conservation laws and constitutive equations derived in Sec.
2 and 5; no such terms exist; but this is to be expected if the density in the Dirac
theory describes only the probable location of a single point charge. Third, the
fact that the local electromagnetic interaction is described in the Dirac theory
by the Lorentz force is just what would be expected for a point charge. Finally,
if the electron is assumed to be a structureless point charge, then the electron
spin and magnetic moments must arise from some peculiar dynamical property
of the average electron motion. These last two points deserve elaboration.

The coupling of a Dirac electron to the electromagnetic field is completely
described by Eq. (2.26). But (2.26) is exactly the “classical” expression for
the electromagnetic force on a local distribution of charge, the socalled Lorentz
force; moreover, the angular momentum conservation law (2.31) shows that the
Dirac electron has no local intrinsic magnetic moment such as would appear
in higher multipole moments of the local charge distribution if the spin of the
electron were associated with some local structure of the electron. Thus, the
electromagnetic interaction in the Dirac theory differs in no way from that given
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by the “classical” theory of a local charge distribution.
It follows that the magnetic moment of the electron arises from the circula-

tion of the local charge distribution. But what about the well-known theorem
that the “classical” circulation of a fluid with constant charge to mass ratio and
with angular momentum equal to the known spin of the electron cannot give
rise to the known magnetic moment of the electron? That theorem does not
apply! Because it implicitly assumes that the local momentum flow is collinear
with the local flow of charge. This assumption certainly does not hold in the
Dirac theory, nor, in fact, is it required even in classical theories.

Exactly how in the Dirac theory the local spin is related to a local circula-
tion of charge giving rise to the observed magnetic moment of the electron is
difficult to ascertain. But the problem is attacked in Sec. 6 where a general ex-
pression for the curl of the local velocity is obtained Eq. (6.23)]. Unfortunately,
the physical significance of the complicated term (6.24) is difficult to fathom,
injecting some uncertainty in the conclusions that can be drawn. Nevertheless,
it seems that the contribution of the electromagnetic field to the circulation of
charge is completely and explicitly revealed by Eq. (6.24). Indeed, the equation
is shown to lead to the well-known value for the electron magnetic moment in
Eqs. (6.26), (6.27), and (6.32). However, the relations among local observables
in these equations are given in more detail than in corresponding equations in
the literature, and it appears to be no simple matter to interpret them fully.

Valuable insight into the relation of charge circulation to magnetic moment
is given by approximation to the Dirac theory briefly discussed in Sec. 7. The
resulting “Weyssenhoff motion” explicitly shows the correct gyromagnetic ratio
for the electron as arising from a generalized “helical motion” which is a conse-
quence of the noncollinearity of velocity and momentum. It seems reasonable,
therefore, to suppose that the electron magnetic moment is but one consequence
of the general noncollinearity of local velocity and momentum. But a great deal
more study will be necessary before firm conclusions can be drawn.

There seems to be no alternative to the point charge model of an electron
which is capable of interpreting the details of the Dirac theory just mentioned.
Therefore, the hypothesis that the Dirac theory describes some sort of average
motion of a structureless point charge ought to be examined very carefully.
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A APPENDIX A: MATRIX FORM OF THE
DIRAC THEORY

There are a number of ways to establish the equivalence of the formalism used
in this paper to the matrix formalism usually used to express the Dirac theory.
Though this equivalence has already been established in Refs. [1] and [2], a
brief discussion of how to translate expressions from one formalism to the other
should be helpful. The simplest method is to replace the vectors γµ, directly by
their representations as 4 × 4 matrices.

One can represent the vector γ0 by a hermitian matrix and the vectors
γi (i = 1, 2, 3) by antihermitian matrices. Some writing is saved by using the
same symbols γµ for both the vectors and their matrix representations. But,
when this is done, the symbol i = γ0γ1γ2γ3 for the unit pseudoscalar should
be replaced by the symbol γ5 = γ0γ1γ2γ3 usually used for the antihermitian
matrix which represents it, so as to avoid confusion with the uninterpreted unit
imaginary usually symbolized by i =

√−1 in matrix theory.
To express the Dirac wavefunction as a column spinor, introduce a unit

column spinor u which is simultaneously an “eigenvector” of the matrices γ0

and γ5γ3γ0 = γ2γ1 with eigenvalues 1 and i respectively; i.e., write

γ0u = u and γ2γ1u = iu . (A.1)

This can be done, for example, with the matrices

u =




1
0
0
0


 , γ0 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 γ2γ1 =




i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i



(A.2)

Now, considering the spinor ψ or Eq. (1.1) as a matrix operator, one obtains a
corresponding column spinor by operating on u:

Ψ = ψu . (A.3)

The above specifications suffice to relate expressions in the “space-time algebra”
to expressions in the matrix algebra. For example, in the space-time algebra
the Dirac equation can be written

� ψγ2γ1 − eA = mψγ0 . (A.4)

Considering this as a matrix equation, multiplying by u on the right and using
(A.1) and (A.3), one obtains the usual matrix form of the Dirac equation:

(i� − eA)Ψ = γµ(i�∂µ − eAµ)Ψ = mΨ . (A.5)
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Equation (A.5) may look simpler than (A.4), but actually it is not, because
some of its properties depend implicitly on the choice of matrix representation.
Equation (A.4) is independent of any matrix representation.

Translation of expressions for observables from one language to the other
requires an understanding of the role of hermitian conjugation in the theory.
Observe that hermitian conjugation of γµ can be expressed as a multiplicative
operation:

γ†
µ = γ0γµγ0 . (A.6)

Let M be a linear combination of the γµ and their products with real coefficients.
It follows from (A.7) that the hermitian conjugate of M is

M† = γ0M̃γ0 , (A.7)

where the tilde means reverse order of multiplication of all products of the γµ.
Thus, from (1.1), one obtains

ψ̃ = R̃e
1
2 βγ5ρ

1
2 = ρ

1
2 e

1
2 βγ5R̃ , (A.8)

ψ† = γ0ψ̃γ0 = ρ
1
2 e−

1
2 βγ5R† . (A.9)

The operation (A.7) is essentially different and must be distinguished from the
complex conjugation of a scalar in matrix algebra. The latter has no physical
significance if it cannot be reduced to the former, as is shown by the fact that it
has been completely eliminated from the geometric language used in this paper.

From (A.2) it is easily ascertained that

uu† = 1
4 (1 + γ0)(1 − iγ2γ1) . (A.10)

So

ΨΨ̃γ0 = ψuu†ψ†γ0 = ψuu†ψ̃
= 1

4{ψψ̃ + ψγ0ψ̃ − iψγ2γ1ψ̃ − iψγ5γ3ψ̃}
= 1

4ρ{eβγ5 + v + ieβγ5 Ŝ − iγ5ŝ} . (A.11)

To get this last line, the canonical form (1.1) for ψ and the definitions of Sec. 1
have been taken over into the matrix algebra; also, S = Rγ1γ2R̃ , Rγ0γ2γ1R̃ =
Rγ5γ3R̃ = γ5Rγ3R̃ = γ5ŝ. From (A.11), it follows that for any matrix M

Ψ†γ0MΨ = Tr {Ψ†γ0MΨ} = Tr {MΨΨ†γ0}
= 1

4{M [ψψ̃ + ψγ0ψ̃ − iψγ2γ1ψ̃ − iψγ0γ2γ1ψ̃ ]} (A.12)

= (Mψψ̃)S + (Mψγ0ψ̃)S − i(Mψγ2γ1ψ̃)S − i(Mψγ0γ2γ1ψ̃)S .

The trace of a matrix in the Dirac matrix algebra is equal to four times the
scalar part of the corresponding multivector in the space-time algebra, so with
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this understood, the last line of (A.12) has the same form and value in both
languages. This greatly facilitates translation from one language to the other.
Thus, from (A.12) and the last time of (A.11), one easily obtains the following
variety of equivalent expressions:

Ψ†γ0γµΨ = Tr {γµΨΨ†γ0} = 1
4Tr {γµψγ0ψ̃} (A.13)

= (ψ̃γ0γµψ)S = (γµψγ0ψ̃)S = ρ(γµv)S = ργµ · v = ρvµ ,

iΨ†γ0γµγ5Ψ = iTr {γµγ5ΨΨ†γ0} =
i2

4
Tr {γµγ5ψγ5γ3ψ̃}

= 1
4Tr {γµψγ3ψ̃} = ρ(γµŝ)S = ργµ · ŝ = ρŝµ . (A.14)

This establishes the equivalence of the usual expressions for velocity and spin
in the matrix language with those adopted in this paper. In going from the left
to the right sides of (A.13) and (A.14), use has been made of the fact that the
trace of an odd product of the matrices γµ, vanishes, which is equivalent to the
fact that an odd product of the vectors γµ has no scalar part. Note that the
sole function of the i on the left side of (A.14) is to cancel the i which (A.11)
shows to be hidden in the matrix representation.

In matrix language the components of the Tetrode tensor are

Tµν =
i�

2
{Ψ†γ0γµ∂νΨ − ∂νΨ†γ0γµΨ} − eAΨ†γ0γµΨ .

(A.15)

Using (A.10) as before, one obtains

iΨ†γ0γµ∂νΨ = iTr {γµ(∂νΨ)Ψ†γ0}
=

i

4
Tr {γµ∂νψ[ 1 + γ0 − iγ2γ1 − iγ5γ3 ]ψ̃}

= i(γµ∂νψγ0ψ̃)S + (γµ∂νψγ5γ3ψ̃)S . (A.16)

Two terms vanished in proceeding to the last line of (A.7) because they are odd,
which follows from the fact that both ψ and ∂νψ are even. Similarly,

i∂νΨ†γ0∂µΨ = i(γµψγ0∂νψ̃)S + (γµψγ5γ3∂νψ̃)S

= i(γµ∂νψγ0ψ̃)S − (γµ∂νψγ5γ3ψ̃)S . (A.17)

The last line of (A.17) follows by using the fact that the scalar part of a product
is unchanged by reversing the order of multiplication. Subtracting (A.17) from
(A.16) and using (A.13) one finds that (A.15) can be written

Tµν = �(γµ∂νψγ5γ3ψ̃)S − eρvµAν , (A.18)

which is the form used in the test above.
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B APPENDIX B: DIVERGENCE OF THE Jµ

Equation (5.17) of Ref. [1] contains an error and should be amended to read

· Jµ = −2m sin β e3 · Jµ + 2ei(e3 ∧ e0 ∧ Jµ ∧ A) . (B.1)

The two sentences following that equation should be corrected accordingly.
In the interest of completeness, it may be worthwhile to give the simple

derivation of (B.1) directly from the Dirac equation. So multiply the Dirac
equation (2.15) on the right by iγ0γ3γµψ̃ to get

�( ψ)γµψ̃ = −imψγ3γµψ̃ − eiAψγ0γ3γµψ̃

= −imρeiβRγ3γµR̃ − eρiARγ0γ3γµR̃

= −imρeiβe3eµ − eρiAψe0e3eµ .

Write J = ψγµψ̃ and take the scalar part of this expression

· Jµ = ( Jµ)S = 2[ ( ψ)γµψ̃ ]S

= −2
�

[ imρeiβe3Jµ + eAie3e0Jµ ]S ,

· Jµ =
2m

�
sin β e3 · Jµ − 2e

�
(ie3e0JµA)S . (B.2)

The last term on the right can be written in several different ways:

(ie3e0JµA)S = i(e3 ∧ e0 ∧ Jµ ∧ A) = (e2 e1JµA)S = (e2e1) · (Jµ ∧ A) .

Equation (B.2) with � = 1 is seen to agree with (B.1) except for a sign which
comes from using a different sign convention in the Dirac equation.

The divergences of the probability and spin currents given by Eqs. (1.4) and
(2.18) are seen to agree with (B.2) when µ = 0 and 3, respectively.
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