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Local Observables in Quantum Theory

D. Hestenes and R. Gurtler

Abstract. The Pauli theory of electrons is formulated in the language
of multivector calculus. The advantages of this approach are demon-
strated in an analysis of local observables. Planck’s constant is shown
to enter the theory only through the magnitude of the spin. Further,
it is shown that, when obtained as a limiting case of the Pauli theory,
the Schrödinger theory describes a particle with constant local spin. An
important consequence of this result is the realization that the usual
interpretations of the Dirac and Schrödinger theories are mutually in-
consistent in certain details.

Introduction

Most experimental tests of quantum theory pertain only to “global observables” such as the total energy, total
momentum, and total angular momentum. Nevertheless, a purely local quantity, the position probability
density ρ, plays a central role in the theory. And the very existence of ρ entails the existence of other
“local observables” describing spacial distributions of energy, momentum and spin. The Dirac theory of the
electron and its nonrelativistic limit the Pauli theory make detailed predictions about local observables. A
study of local observables ought to lead to finer tests of quantum mechanics and perhaps provide clues to an
even deeper theory. Yet, surprisingly, theoretical studies of local observables are relatively few and altogether
insufficient to lead to any firm conclusions. So naturally no experimental efforts have been addressed expressly
to the subject.

This paper is concerned with a general theoretical analysis of local observables in the Pauli theory. The
analysis is greatly simplified and clarified by utilizing the multivector calculus as explained in Ref. 1. No
attempt is made here to analyze specific experimental implications of the theory. Rather, the object is to
display the general properties of local observables in a form suitable as a starting point for more specific
studies in the future.

Several other studies2−4 are more or less similar to the one carried out here. Those studies interpret
the Pauli theory in terms of various models such as a fluid of spinning particles or an elastic medium. This
paper invokes no such unconventional interpretations. It is enough to show that the Pauli theory lead to
definite equations for local observables. The same equations are obtained no matter what the interpretation.
However, the definition of local observables are by no means unambiguous, though certain choices seem to
be more natural than others. No final conclusions can be made until further physical information is brought
to bear on the matter.

The work of Takabayasi2 is closest to the present study, but it differs significantly in method, in the
formulation of equations, and in interpretation of results. Takabayasi proceeds by translating expressions in
spinor calculus into equivalent expressions in tensor calculus. The need for such translations is eliminated
by the multivector approach, which is consequently simpler and more direct. The equations obtain by all
methods must, of course, be equivalent, or someone has made a mistake. But the form that the equations
take is greatly influenced by the method, as a comparison of references2−4 readily reveals. Accordingly, it
is by no means a trivial task to cast the equations for local observables in their most perspicuous form.
multivector calculus makes possible an especially compact formulation which helps bring to the fore the
physical and geometrical content of the theory.

The present study brings to light some features of the Pauli theory which may be of far-reaching
importance to quantum theory in general. The text shows that if the local spin is assumed to be constant,
then the Pauli theory reduces exactly to the Schrödinger theory. Therefore it is possible to conclude that spin
is already in the Schrödinger theory; that is, that Schrödinger theory is simply the nonrelativistic theory of
an electron with constant spin. At first sight such a conclusion may seem preposterous, for Schrödinger knew
nothing of spin when he framed his equation. But it is no more preposterous than the incredible fact, that
Schrödinger wrote down his equation and solved the first problems of modern quantum theory without any
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mention of probability; though it now appears that probability was already in the theory, for it was proved
possible to adopt Born’s interpretation of ψ†ψ as a probability density without the slightest modification of
Schrödinger’s work, indeed, Born’s interpretation is now an indispensable part of the theory.

The place where spin resides in the Schrödinger theory can be explicitly pointed out. The limit of the
Pauli theory reveals that the distinctive factor ih̄ in the Schrödinger theory is exactly twice the spin. Crucial
to this conclusion is the realization that the Pauli theory implies that i is a unitary bivector. The usual
matrix formulation of the theory hides this fact very well indeed. It was first uncovered from the Dirac
theory in Ref. 5.

Having identified the factor ih̄ correctly, one can regard the Pauli theory simply as a generalization
of the Schrödinger theory which allows the bivector i to be a function of position and time. The Dirac
theory takes account of relativity, but contrary to a widespread opinion, it says nothing fundamental about
spin that is not already in the Pauli theory. As others have noted, and as can be easily be conclude from
the treatment to follow, when properly formulated, the Pauli theory even predicts the correct gyromagnetic
ratio of the electron. This should help put to rest once and for all the old canard that “spin is a relativistic
phenomena.”

It is significant that in Schrödinger theory i and h̄ always appear together in the product ih̄. The
significance is made manifest in the study of the Pauli theory to follow. There it is shown that Planck’s
constant h̄ enters the theory only as twice the magnitude of the electron’s spin. This strongly suggests that
there is a general connection of spin to the appearance both of Planck’s constant and of “complex numbers”
in quantum theory. It should especially be noted that this idea has arisen only from insistence on the
internal consistency of quantum theory as it exists today; it has not been imposed on the theory by external
considerations.

While only widely accepted features of quantum theory are presumed in the present considerations, the
conclusions are strongly at variance with the usual interpretation of quantum theory. It should be clear,
for example, that if Planck’s constant appears in electron theory only in connection with the spin, then any
discussion of “uncertainty relations” which fails to mention spin must be profoundly deficient. Just the same,
no novel modifications of quantum theory will be ventured here.

1. The Pauli Theory and the Schrödinger Theory

The Pauli theory is here formulated in the language of multivector calculus as set forth in Ref. 1. The
notations and conventions of Ref. 1 are much utilized here, mostly without comment. The relation of this
approach to the more usual matrix is formulation is discussed in Appendix A. The “Pauli wave function”
ψ = ψ(x, t) is a spinor-valued function. Therefore, as explained in Ref. 1, it can be written in the form

ψ = ρ1/2U , (1.1)

where
UU† = U†U = 1 , (1.2)

so
ψψ† = ψ†ψ = ρ . (1.3)

The scalar function ρ = ρ(x, t) is the usual particle position probability density. So it is subject to the
normalization condition ∫

d3xρ = 1 . (1.4)

The Pauli equation for a particle with mass m and charge e (an electron) can be written in the form

∂tψih̄ = (2m)−1[Pop − e

c
A ]2ψ + eφψ . (1.5)

Here the quantity i is the constant bivector

i = iσ3 = σ1σ2 . (1.6)
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As usual, φ and A are, respectively, the electromagnetic scalar and vector potentials. The operator Pop

is defined by the expression
Popψ = −∇ψih̄ . (1.7)

By eliminating Pop from (1.5), the Pauli equation can be expanded into the more explicit form

∂tψih̄ = (2m)−1
[ − h̄2∇2 +

e2

c2
A2

]
ψ + (eh̄/mc)A · ∇ψi (eh̄/2mc)(∇A)ψi + eφψ . (1.8)

The coefficient of the term with (∇A)ψi determines the magnitude of the electron’s magnetic moment, so
it is worth noting how that number is related to the other terms in (1.8) by the form of Eq. (1.5).

By itself, the Pauli equation is hardly a physical theory It must be supplemented by additional phys-
ical assumptions which relate ψ to observable quantities. The first prescription of this kind was made by
Schrödinger in his initial formulation of quantum theory. He identified the total energy E of an electron in
a stationary state with the eigenvalue of an eigenvalue problem. When carried over into the Pauli theory,
his prescription gives the eigenvalue problem

∂tψih̄ = Eψ . (1.9)

Born added the physical interpretation of ρ = ψ†ψ. Finally, Pauli introduced the electron spin into “wave
mechanics.” In the present formulation, this appears in the identification of

ρS = 1
2 h̄ψiψ† = ρ 1

2 h̄Uiσ3U
† . (1.10)

with spin density.
The bivector S is here called the local spin. The spin is more commonly represented by a vector s dual

to S. Thus,
S = is , (1.11)

so, from (1.10),
s = 1

2 h̄Uσ3U
† . (1.12)

Since angular momentum is fundamentally a bivector quantity, S may be considered more fundamental than
s. However, both quantities are used here; the relation (1.11) makes it a nearly trivial task to interchange
them.

Most applications of the Pauli theory hardly go beyond the use of Schrödinger’s prescription to find
energy eigenvalues of the Pauli equation. They only begin to explore the physical content of the theory. But
the Pauli theory as given above is incomplete; general expressions for energy and momentum density are
still needed. A straight-forward generalization of (1.9) leads to the following expression for the total energy
density:

ρE = h̄(∂tψiψ†)S = 1
2 h̄(∂tψiψ† − ψi∂tψ

†) . (1.13)

So the election has a total energy or an average, depending on interpretation, of

〈E 〉 =
∫

d3xρE . (1.14)

Replacement of the time derivatives in (1.13) by space derivatives leads to the corresponding components of
the total (or canonical) momentum density:

ρPk = −h̄(∂kψiψ†)S = −1
2 h̄(∂kψiψ† − ψi∂kψ†) . (1.15)

The consistency of (1.13) with (1.15) is obvious in the Dirac theory where they are seen to be components
of a single stress-energy tensor. The difference in sign is accounted for by the metric of space-time, but it
can also be seen to be correct in the analysis to follow.
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The total momentum density ρP = ρPkσk can be decomposed into a kinetic momentum density ρp
and a potential momentum density ρeA/c, that is

Pkσk = P = p + (e/c)A . (1.16)

This decomposition corresponds exactly to the separation of total energy into kinetic energy plus potential
energy.

As is shown in subsequent sections, the entire physical content of the Pauli theory can be expressed in
terms of the local energy E, the local kinetic momentum p, and the local spin s. The Schrödinger theory can
be obtained explicitly as a special case of the Pauli theory. First note that

∇A = ∇ · A + ∇∧ A = ∇ · A + iB , (1.17)

where, as usual, B = ∇×A is the external magnetic field. So on the right side of (1.8), one can distinguish
the term

(eh̄/2mc)(∇∧ A)ψi = (eh̄/2mc)Bψσ3 = −(e/mc)Bsψ . (1.18)

Now note that if this term can be neglected, and if i commutes with ψ, then (1.8) is identical to the
Schrödinger equation. Moreover, by (1.10),

S = 1
2 h̄U iU† = 1

2 ih̄ . (1.19)

The work in subsequent sections clearly shows that neglect of the term (1.18) in the Pauli equation is a
sufficient, though not a necessary condition for constancy of the local spin expressed in (1.19). Therefore
in the absence of a magnetic field the Schrödinger theory is identical to the Pauli theory, and the constant
“imaginary factor” ih̄ is exactly twice the spin.

2. Spinning Frames

The unitary spinor field U = U(x, t) determines a frame field of orthonormal vectors ek by the equations

ek = Uσ3U
† (k = 1, 2, 3) . (2.1)

Comparison with (1.12) shows that the vector e3 = ŝ is just the direction of the local spin vector. By
themselves, the vectors e1 and e2 do not have any ordinary physical interpretation. However, their product
is the direction of the local spin bivector

e1e2 = Uσ1σ2U
† = Ŝ = iŝ = ie3 . (2.2)

At any given point x of space, the frame {ek} rotates with an angular velocity Ωt; thus, by (2.1),

∂tek = Ωt · ek (2.3)

where
Ωt = 2(∂tU)U† = −2U(∂tU

†) . (2.4)

In the same way it follows that
∂tS = 1

2 [Ωt, S ] = 1
2 (ΩtS − SΩt) . (2.5)

Now observe from (1.13) that, with the help of (2.4), the local energy can be written in the following
forms

E = h̄(∂tU iU†)S = Ωt · S = 1
2 (ΩtS + SΩt) . (2.6)

By adding (2.5) and (2.6), one finds an expression for Ωt in terms of observables:

Ωt = (E + ∂tS)S−1 = S−1(E − ∂tS) . (2.7)
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The term (∂tS)S−1 = (∂tŜ)Ŝ in (2.7) describes the rate at which the spin plane changes direction. The
other term shows that the magnitude of the angular velocity in the spin plane is precisely E/|S | = 2E/h̄.
In this way the local energy can be given a simple geometric interpretation. No attempt will be made here
to ascribe some physical significance to this feature of the theory. Any such attempt win have to go beyond
the usual interpretation of quantum mechanics.

The local momentum is related to displacements in space in a manner entirely analogous to the relation
of energy to displacements in time just discussed. Thus,

σj · ∇ek = ∂jek = Ωj · ek , (2.8)

Ωj = 2(∂jU)U† = −2U(∂jU
†) , (2.9)

∂jS = 1
2 [Ωj , S ] , (2.10)

Pj = −h̄(∂jU iU†)S = −Ωj · S , (2.11)

Ωj = (∂jS − Pj)S−1 = −S−1(∂jS + Pj) . (2.12)

The Pauli theory allows exceptions to the above relations at nodes of the wave function (i.e., where ρ = 0);
for at a nodal point it is possible for the derivative of ψ in some direction to be finite even though the
derivative of U is singular. However, finite results can be obtained from any expression by multiplying by
all appropriate density factor.

3. Compatibility Conditions

It has been shown that the local dynamic quantities energy, momentum, and spin are all determined by the
unitary spinor U and its derivatives. As Takabayasi2 first pointed out, it follows that the derivatives of these
dynamical quantities are not mutually independent, but are related by certain “compatibility conditions.”
These conditions are derived below.

Write (2.9) in the form
∂jU = 1

2ΩjU . (3.1)

Differentiate, to get
∂k∂jU = 1

2 (∂kΩj + 1
2ΩjΩk)U . (3.2)

But
∂k∂jU = ∂j∂kU ; (3.3)

so
∂jΩk − ∂kΩj = 1

2 [Ωj ,Ωk ] . (3.4)

Thus, the derivatives of the angular velocities are not mutually independent. These “compatibility condi-
tions” can be expressed in terms of observables by using (2.12). Thus,

∂jΩk = (∂j∂kS − ∂jPk)S−1 + (∂kS − Pk)(∂jS)S−2 ; (3.5)

so
∂jΩk − ∂kΩk = (∂kPj − ∂jPk)S−1 +

{
[∂kS, ∂jS ] + Pj∂kS − Pk∂jS

}
S−2 ; (3.6)

Also
ΩjΩk = (PjPk − ∂jS∂kS + Pj∂kS − Pk∂jS)S−2 ; (3.7)

so
1
2 [Ωj ,Ωk ] =

{
1
2 [∂kS, ∂jS ] + Pj∂kS − Pk∂jS

}
S−2 . (3.8)

Substitution of (3.6) and (3.8) into (3.4) yields

(∂kPj − ∂jPk) = 1
2 [∂jS, ∂kS ]S−1 = (S−1∂jS∂kS)S , (3.9)
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or
(∂kPj − ∂jPk)S = 1

2 [∂jS, ∂kS ] . (3.10)

Equation (3.9) shows that the curl of the local canonical momentum is determined entirely by the local
spin. This important result can be re-expressed in coordinate-free form as follows:

σkσj(∂kPj − ∂jPk)S = 2(∇∧ P)S
= 1

2σkσj [∂jS, ∂kS ]
= σkσj∂ks ∧ ∂js

= σk ∧ σj∂ks∂js

= (σk ∧ σj ∧ ∂ks + ∂ksjσk − ∂kskσj)∂js

= −(∇∧ s) ∧∇s + [∇(s · ∇) ]s − (∇ · s)∇s .

Employing the identities

(∇s · ∇)s − (∇∧ s)∇ · s = −(∇∧ s) ∧∇s − s · (∇2s) + (∇∧ s)2

and
s · (∇2s) + (∇ · s)2 = −∇ · [s · ∇s = −(∇ · s)s ] + (∇∧ s)2

one obtains
= −2(∇∧ s) ∧∇s − s · (∇2s) − (∇ · s)2 + (∇∧ s)2

= −2i(∇× s) · ∇s + ∇ · [s · ∇s − (∇ · s)s ]
= 2(∇ · s) · ∇S −∇ · (S ∧∇S − S∇∧ S) .

So
(∇∧ P)S = (∇ · S) · ∇S − 1

2∇ · (S ∧∇S − S∇∧ S) , (3.11)

or

(∇× P)s = (∇∧ S) ∧∇s + 1
2s · (∇2s) + 1

2 (∇ · s)2 − 1
2 (∇∧ s)2

= (∇× S) · ∇is − 1
2∇ · (s · ∇s − s∇ · s) . (3.12)

In addition to (3.4), there are the following compatibility conditions involving time derivatives:

∂tΩk − ∂kΩt = 1
2 [Ωt,Ωk ] . (3.13)

Using (2.7) and (2.12) to express this in terms of observables, one gets

∂tPk + ∂kE = 1
2 [∂kS, ∂tS ]S−1 = (S−1∂kS∂tS)S

= [(∂tS)S−1 ] · ∂kS = Ωt · ∂kS . (3.14)

4. Physical Content of the Pauli Equation

It has been shown that certain relations among observables are already implied by their definitions in terms
of a spinor. Further relations are implied by the Pauli equation. The exact nature of these relations can be
determined by reexpressing the Pauli equation in terms of local observables. To accomplish this, multiply
(1.8) on the right by ψ−1 and consider the various terms separately.

First, use (1.1) and (1.2)

∂tψih̄ψ−1 = (∂tψ)U†U iU†ρ−1/2h̄ = 2(∂tψ)ψ−1S

= [∂t ln ρ + 2(∂tU)U† ]S .
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So, by (2.4)
∂tψih̄ψ−1 = 2(∂tψ)ψ−1S = (∂t ln ρ + Ωt)S . (4.1)

Second, use (2.9) and (2.12) to show
−∂kψih̄ = (Pk − Wk)ψ , (4.2)

with the new quantity Wk defined by
Wk = ρ−1∂k(ρS) . (4.3)

Differentiate (4.2) once again to get

−h̄2(∂j∂kψ)ψ−1 = −2(∂jPk − ∂jWk)S + PkPj − (PkWj + WkPj) + WkWj .

Hence
−h̄2(∇2ψ)ψ−1 = −2(∇ · P + ∂kWk)S + P2 − 2PkWk +

∑
k

W 2
k . (4.4)

Now we used (4.2) to get
(A · ∇ψih̄)ψ−1 = −A · P + AkWk . (4.5)

So, with the help of (4.4), (4.5), and (1.16),

[(−h̄2∇2 + (e2/c2)A2ψ + 2(eh̄/c)A · ∇ψi + (eh̄/c)(∇ · A)ψi ]ψ−1

= 2
{ −∇ · [P − (e/c)A ] + ∂kWk

}
+ [P − (e/c)A ]2 − 2[Pk − (e/c)Ak ]Wk +

∑
k

W 2
k

= 2(−∇ · p + ∂kWk)S + p2 − 2pkWk +
∑

k

W 2
k (4.6)

Finally, use (4.1), (4.5), and (4.6) to write the Pauli equation (1.8) in the form

(∂t ln ρ + Ωt)S = (e/mc)iBS + eφ + (2m)−1[2(−∇ · p + ∂kWk)S + p2 − 2pkWk +
∑

k

W 2
k ] , (4.7)

or after multiplying by S−1 and rearranging,

∂t ln ρ + Ωt = −∇ · (p/m) − (p/m) · ∇ ln ρ

+
{ − (p/m) · ∇S + (p2/2m) + (2m)−1[2(∂kWk)S +

∑
k

W 2
k ] + eφ

} × S−1 + (e/mc)iB . (4.8)

The scalar part of (4.8) is just the local conservation law for ρ:

∂tρ + ∇ · (ρp/m) = 0 . (4.9)

The bivector part of (4.8) is

Ωt =
{ − (p/m) · ∇S + (p2/2m) + (2m)−1[2(∂kWk)S +

∑
k

W 2
k ] + eφ

} × S−1 + (e/mc)iB . (4.10)

Since Ωt = (E + ∂tS)S−1, (4.10) gives

E = (p2/2m) + (2m)−1[2(∂kWk) · S +
∑

k

W 2
k ] + eφ + (e/mc)(iB) · S

= (p2/2m) + (2m)−1
{
S2[2(∇2 ln ρ + (∇ ln ρ)2 ] + S · (∇2S)

}
+ eφ + (e/mc)(iB) · S (4.11)

and
[∂t + (p/m) · ∇ ]S = 1

2 [m−1∂kWk + (e/mc)iB, S ] . (4.12)

When re-expressed in terms of the local spin vector, (4.12) becomes

[∂t + (p/m) · ∇ ]s = [m−1∂kWk + (e/mc)iB ] · s = (e/mc)s × B + m−1s × [∇2s + (∇ ln ρ) · ∇s ] . (4.13)
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The above derivation shows that Eqs. (4.9), (4.11), and (4.12) express the full physical content of the
Pauli equation in terms of local observables. This physical content consist of the local conservation law (4.9)
required to uphold the interpretation of ρ together with the “constitutive equation” (4.10) which express Ωt

as a specific function of observables. It is worth reiterating that Planck’s constant appears in these equations
only in the magnitude of the spin. Even in the “Schrödinger limit,” when the local spin is constant and
the magnetic interaction is negligible, (4.11) shows that the spin appears in the energy through the factor
S2 = −s2 = −h̄2/4.

5. Local Conservation Laws

Since E and (∂tS)S−1 are known from the Pauli equation gives the momentum conservation law immediately.
The problem is only to write the equation in its most perspicuous form. First write (3.14) as a vector equation:

∂kP + ∇E = σkΩt · ∂kS . (5.1)

From (4.10), remembering S · ∂kS = 0,

σkΩt · ∂kS = σk[ (−(p/m) · ∇S)S−1 + m−1∂jWj + (e/mc)iB ] · ∂kS . (5.2)

By utilizing (3.9), the first term on the right of (5.2) can be written

σk(p/m)(S−1∂jS∂kS) = σk(pj/m)(∂kpj − ∂jpk)
= −(p/m) · (∇∧ P)
= −(p/m) · [∇∧ p + (e/c)∇∧ A ]
= −(p/m) · ∇p + ∇(p2/2m) + (e/mc)p × B . (5.3)

By using (5.2), (5.3), (4.11), and recalling E = −∇φ− c−1∂tA, after a simple regrouping of terms (5.1) can
be written in the form

[∂t + (p/m) · ∇ ]p = e [E + (p/m) × B ] − (e/m)σkS · (∂kiB)

− m−1[σk(∂k∂jWj) · S + 1
2∇

∑
j

W 2
j ] . (5.4)

The last term in (5.4) can be simplified by noting the identity

ρ−1∂j(ρS · ∂kWj) = S · (∂k∂jWj) + 1
2∂k

∑
j

W 2
j . (5.5)

Now introduce the notation

Tkj = −m−1ρS · ∂jWk = m−1ρs · ∂j [ρ−1∂k(ρs) ]
= −m−1ρS · (∂j∂kS + S∂j∂k ln ρ) = Tjk . (5.6)

Also write
Tk = σjTkj (5.7)

and
f = e [E + (p/m) × B ] − (e/mc)σkS · (∂kiB) . (5.8)

So, at ]ast, (5.4) can be written

ρDtp ≡ ρ [∂t + (p/m) · ∇ ]p = ρf + ∂kTk . (5.9)

The physical significance of the various terms in (5.9) are readily identified. The left side of (5.9)
describes the time rate of change of momentum in a volume Vp moving along a “momentum streamline”
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determined by the continuity equation (4.9). If n = nkσk is the unit outward normal to the boundary
∂Vp of Vp, then T = Tkσk is the momentum flux through that boundary. The Tjk are components of the
corresponding stress tensor. The term ρf is the external (body) force on the volume element. The last term
on the right of (5.8) is the so-called Stern-Gerlach force. It can alternatively, be written

−(e/mc)σkS · (∂kiB) = σkµ · (∂kB)
= µ · ∇B − µ · (∇∧ B)
= µ · ∇B + c−1µ × ∂tE , (5.10)

where the magnetic moment µ is defined by

µ = (e/mc)s . (5.11)

The density of total angular momentum is ρ(x ∧ p + S). But since, as (5.6) shows, the stress tensor is
symmetric, the orbital angular momentum and the spin are separately conserved. In fact, the conservation
equation for the spin has already been written down in (4.12). However, (4.12) is more readily interpreted
if it is written in the form

ρDts ≡ ρ [∂t + (p/m) · ∇ ]S = (eρ/2mc)[iB, S ] + ∂kMk , (5.12)

where

Mk = (2m)−1[Wk, ρS ] = (ρ/m)(∂kS)S
= (ρ/m)s ∧ ∂ks = i(ρ/m)s × ∂ks = iMk . (5.13)

The left side of (5.12) gives the time rate of change of the spin angular momentum in Vp. The first term on
the right of (5.12) gives the torque. And Mn ≡ nkAk is clearly the spin flux through ∂Vp. The vector form
of (5.12) is

ρDts = ρµ × B + ∂kMk . (5.14)

The momentum flux Tk and the spin flux Mk should be classed with local variables along with the
momentum density and the spin density. The expressions (5.6) and (5.13) may be regarded as “constitutive
equations” which relate Tk and Mk to other observables. Note that these equations vanish with vanishing
spin.

6. Charge Current

Aside from any question of experimental test, the theory of local observables just developed may appear
to be fairly complete and satisfactory state. For a closed set of local conservation laws for probability,
momentum, and angular momentum have been formulated, and an explicit expression has been found for
the total energy in terms of other observables. However, the proper identification of local observables is
not so straight-forward a matter as the preceding analysis might make it seem. For instance, because of
the continuity Eq. (4.9), one might suppose that p/m is the local flow velocity of probability or charge.
Indeed, this supposition is universally made in the Schrödinger theory and usually made in the Pauli theory.
However, it is inconsistent with the usual interpretation of the Dirac theory. The nonrelativistic limit of the
Dirac theory yields the expression for local observables already given above, but for the local flow velocity
v of probability or charge it gives the expression

ρ [mv − (e/c)A ] = − [ (∇ψ)ih̄ψ† ]V . (6.1)

Now v can be expressed as a function of other observables. By (4.2)

−∇ψih̄ = [P − ρ−1∇(ρS) ]ψ . (6.2)
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So,
mρv = ρp −∇ · (ρS) = ρp + ∇× ρs . (6.3)

It is not necessary to appeal to the Dirac theory to introduce v into the Pauli theory. This velocity
enters the Dirac theory by way of an independent physical assumption. It is no less tenable to introduce v
directly into the Pauli theory by (6.3) or (6.1). The problem then is to see if the quantity makes sense on
physical grounds. The following observations should bring the issue into sharper focus:

Note that the divergence of (6.3) gives

∇ · (ρmv) = ∇ · (ρp) . (6.4)

Hence, by (4.9),
∂tρ + ∇ · ρv = 0 . (6.5)

So the suggested interpreted for v is consistent with conservation of probability. To substantiate the distinc-
tion between v and p/m physical considerations must be introduced which go beyond anything mentioned
i this paper.

It should be observed that the distinction between v and p/m persists even in the Schrödinger theory,
for when the local spin is constant, (6.3) becomes

mv = p + S · ∇ ln ρ = p − s ×∇ ln ρ . (6.6)

This shows that the usual interpretations of observables in the Schrödinger theory are inconsistent with those
in the Dirac theory, for the probability current is taken to be ρp/m in the one theory and ρv in the other.
An analysis of the physical significance of this difference will be carried out at another time.
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Appendix A: Matrix Form of the Pauli Theory

To show that the multivector formulation of the Pauli theory is equivalent to the usual matrix formulation,
multivectors may be replace by their matrix represnetations according to the prescription given in Sec. 2 of
Ref. 1. Then the column spinor ψ is obtained directly from (1.1) by operating on the eigenvector u of the
“Pauli matrix” σ3; thus,

Ψ = ψu . (A.1)

where

σ3u = u , u =
(

1
0

)
. (A.2)

Also, since i ∼ iσ3 and i commutes with all elements of the algebra,

∂tψih̄u = ih̄∂tψσ3u = ih̄∂tΨ . (A.3)

Note how σ3, which this paper has shown to be so important to the interpretation of the theory, is “swallowed
up” by u; it remains in the theory, however, hidden in the choice of matrix representation. By multiplying
(1.8) on the right by u and utilizing (1.18) together with the usual (bad) notation σ · B for B = Biσi, one
obtains

ih̄∂tΨ =
1

2mc

(
− h̄2∇2 +

2eh̄

c
A · ∇ +

eh̄

c
∇ · A +

e2

c2
A2

)
Ψ + eφΨ − eh̄

2mc
σ · BΨ . (A.4)

This is precisely the usual matrix form of the Pauli equation.
Correspondence between observables in the formulations is most easily established by introducing the

“density matrix”:

ΨΨ† = ψ

(
1 0
0 0

)
ψ† = 1

2ψ(I + σ3)ψ† , (A.5)
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where

I =
(

1 0
0 1

)
, σ3 =

(
1 0
0 −1

)
. (A.6)

The trace of the density matrix gives the probability density,

Ψ†Ψ = 1
2Tr ΨΨ† = 1

2Tr [ψ†ψ(I + σ3) ] = ρ (A.7)

since in the matrix theory
ψ†ψ = ψ†ψ = ρI , (A.8)

instead of (1.3). Also observe

Ψ†σkΨ = 1
2Tr (σkΨΨ†) = 1

2Tr (σkψσ3ψ
†) = ρsk . (A.9)

Here the sk = (σks)S = σk · s are just the components of the local spin vector. In a similar manner it can
be shown that the expression (1.15) for the canonical momentum density, is equivalent to the “real part” of
Ψ†ih̄∂kΨ.

It can be shown quite generally that the operation 1
2Tr in the matrix theory corresponds to the taking

of scalar plus pseudoscalar parts in the multivector theory (see Appendix D of Ref. 6).

Appendix B: Relation to Classical Theory

Schrödinger was led to his “wave equation” by completing an analogy between optics and mechanics in which
the Hamilton-Jacobi equation was taken as the mechanical analog of the eikonal equation. Schrödinger’s
reasoning is equally valid if it is rephrased in the language of hydrodynamics. In fact, the hydrodynamic
description may well be more apt than the optical analogy because, if the Born interpretation of ρ = ψ†ψ
is strictly adhered to, in the limit of vanishing spin the Pauli theory goes directly into the classical theory
with no change interpretation. But before this can be demonstrated, the relation of Hamilton-Jacobi theory
to hydrodynamics must be understood. The Hamilton-Jacobi equation for a point charge (electron) can be
written

−∂tW = (2m)−1[∇W − (e/c)A ]2 + eφ . (B.1)

By itself, this equation is insufficient to describe the motion of the charge. It must be supplemented by an
equation relating the “action” function W to mechanical quantities. The appropriate equation is

∇W = mv + (e/c)A . (B.2)

With this ∇W be eliminated from (B.1) to yield

−∂tW = 1
2mv2 + eφ . (B.3)

Equations (B.2) and (B.3) are more fundamental than (B.1), being expressions for the total energy and
momentum of the particle. But problems are solved by using (B.1) to find W .

Now it is possible to interpret the energy-momentum equations (B.2) and (B.3) as governing the motion
of an ideal fluid. By “ideal,” it is meant here that the particles (or elements) of the fluid do not interact.
Solution of the equations yields a family of trajectories, the streamlines of the fluid. Each streamline is the
trajectory of a single particle, identical, as shown below, to a trajectory more commonly obtained from the
Lorentz force.

To the energy-momentum equations, fluid dynamics adds the equation of continuity,

∂tρ + ∇ · (ρv) = 0 . (B.4)

If ρ is the relative particle density, then at all times
∫

d3xρ = 1 , (B.5)
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and the total mass of the fluid is m. The total charge of the fluid is e, for Eqs. (B.2) and (B.3) entail that
the fluid density has constant charge-to-mass ratio e/m. Equations (B.4) and (B.5) can also be applied to
the fluid dynamics opf a single point particle, if rho is interpreted as position probability density.

The energy-momentum equations (B.2) and (B.3) differ from the usual equations of fluid dynamics
in not depending on the density of the fluid. Therefore they can be solved for particle trajectories without
reference to the equation of continuity. This difference is, of course, due to the fact that for a real fluid density
dependence of the energy arises from interparticle interactions. The ideal fluid envisaged here describes, not
the motion of a system of interacting particles, but a family of possible trajectories for a single particle.

Electromagnetic field are usually defined by the accelerations they induce on idealized “test charges” (the
electromagnetic field produced by a test charge being assumed negligible). Alternatively, an electromagnetic
field can be described by its effect on an “ideal test fluid.” The instantaneous motion of a single charge is
sufficient only to determine the electric field at a point. To determine also the magnetic field at a point, the
independent motions of at least three charges must be given. To determine the fields throughout a region,
the motions of an infinite number of test charges must be known. This idealized circumstance is most simply
described with a “test fluid.” By taking a curl of (B.2), one finds that the vorticity of the fluid is a direct
measure of the magnetic field. Thus,

∇× v = (e/mc)B , (B.6)

where, of course, B = ∇× A.
The fluid viewpoint subsumes the particle viewpoint. This may be seen by taking the time in the

form derivative of (B.2) and the gradient of (B.3), then eliminating derivatives of the “energy-momentum
potential,” W , to obtain

m(dv/dt) = m(∂t + v · ∇)v = e(E + c−1v × B) . (B.7)

Here, as usual, E = −c−1∂tA−∇φ. Thus, Euler’s equation (B.7) for the streamlines of the fluid is the same
as the equation for the trajectory of a point charge subject to the Lorentz force.

Though not needed in this paper, it is interesting to note in passing that the fluid viewpoint pro-
vides a direct physical interpretation of the vector potential A if equation (B.2) is interpreted as a gauge
transformation. Thus, any particular solution of the wave equation

2A = c−1j (B.8)

determines a field −(e/mc)A which may be regarded, at each point, as the velocity of a test particle with
charge e and mass m under the influence of the source j. So the vector potential can be interpreted quite
directly as the velocity field of a homogeneous fluid of test charges with unit charge and mass. The velocity
field thus obtained is not unique, because the fluid of test charges can be introduced with a variety of initial
conditions. But from any particular solution, any other solution can be obtained by the gauge transformation
(B.2).

Now write the unitary spinor U defined in Sec. 1 in the form

U = U0 exp (iW/h̄) . (B.9)

If U0 is slowly varying this gives a kind of “eikonal approximation” to the Pauli theory. If U0 is supposed
constant, then the local spin is

Ŝ = U iU† = U0iU
†
0 . (B.10)

Furthermore, (2.8) gives
E = h̄(∂tU iU†)S = −∂tW (B.11)

and (2.11) gives
Pj = −h̄(∂jU iU†)S = −∂jW . (B.12)

This, of course, is just the “Schrödinger approximation” to the Pauli theory.
If now the magnitude of the spin is sufficiently small (i.e., in the limit h̄ → 0), then p/m = v and, by

virtue of (B.11) and (B.12), Eq. (4.11) is equivalent to (B.3), (1.16) is equivalent to (B.2), (5.4) is equivalent
to (B.7), and, of course, (4.9) agrees with (B.4) both in form and interpretation. In this way the classical
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theory of a “test charge” is obtained as a limiting case of the Pauli theory. There are important questions
of interpretation in connection with this procedure, but they will not be broached here.
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