In: J. Math. Phys., 34 (8) August 1993 pp. 3642-3669.
Lie groups as spin groups

C. Doran
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cam-
bridge CB3 9EW, United Kingdom

D. Hestenes
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona
85287

F. Sommen® and N. Van Acker
Department of Mathematical Analysis, University of Gent, Galgaan 2, 9000 Gent,
Belgium

Abstract. It is shown that every Lie algebra can be represented as a bivector alge-
bra; hence every Lie group can be represented as a spin group. Thus, the computa-
tional power of geometric algebra is available to simplify the analysis and applications
of Lie groups and Lie algebras. The spin version of the general linear group is thor-
oughly analyzed, and an invariant method for constructing real spin representations
of other classical groups is developed. Moreover, it is demonstrated that every linear
transformation can be represented as a monomial of vectors in geometric algebra.

1. INTRODUCTION

The fermion algebra (generated by fermion creation and annihilation operators) has been
widely applied to group theory' and many other mathematical problems with no essential
relation to fermions. Yet few physicists and mathematicians realize that this mathematical
system can be regarded as a universal geometric algebra applicable to every mathematical
domain with geometric structure. As part of a broad program to make this claim to univer-
sality an accomplished fact,? > we show here that this geometric algebra is a viable, if not
superior, alternative to matrix algebra for characterizing Lie groups and Lie algebras. As
a by-product with even wider ramifications, we show that it is a powerful means for char-
acterizing and manipulating linear transformations in general. We see it as consolidating
various insights of many scientists into a coherent mathematical system.

One of the barriers to establishing a universal geometric algebra® has been a lack of
general agreement among mathematicians on the relative status of Grassmann algebra
(GA) and Clifford algebra (CA). The disputants can be divided into two camps: call
them the “Grassmannians” and the “Cliffordians.” Grassmannian argue that GA is more
fundamental than CA, because it makes no assumptions about a metric on the vector space
that generates it. On the contrary, Cliffordians argue that CA is more fundamental than
GA, because it contains GA as a subalgebra.b
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As is usual in scientific disputes, both sides have a valid point to make, but are reluctant
(if not unable) to appreciate the viewpoint of the opposition. The issue here is not “Which
side is right?” but rather “How should mathematical knowledge be organized?” It is a
problem of mathematical design:>> How to design a geometric algebra of maximal scope,
coherence, flexibility, and simplicity! We think the solution has been around for a long
time, but it has not been widely accepted primarily because the problem it solves has not
been recognized.

Our objective in this article is to formulate the universal geometric algebra in a flexible
way which satisfies the demands of individuals in both the Grassmanian and Cliffordian
camps. In the interest of mathematical harmony let us call this construct the mother
algebra. The mother algebra embraces an enormous range of mathematical structures in
both physics and pure mathematics. Here we review the essential formalism and rationale
for adopting the mother algebra as a universal foundation for linear algebra as well as for
the theory of Lie groups and Lie algebras. This is an elaboration of the approach originally
developed in Ref. 4, so for the most part we adopt the same notation, and we refer there
for many details.

11. RECONCILING GRASSMANN AND CLIFFORD

There is evidence that Grassmann himself became Cliffordian in his last years. In one
of his last publications,” ironically dismissed as inconsequential by historians, he took the
momentous step of adding, for vectors a and b, his inner product a - b to his outer product
a\b to define a new kind of product ab which he called the central product. Thus, he wrote

ab=a-b+aAb, (2.1)

though he employed different notations for the inner and outer products. From the estab-
lished properties of Grassmann’s inner and outer products it can be shown that his central
product has all the properties of multiplication in Clifford algebra.® In a certain sense,
therefore, Clifford algebra is inherent in Grassmann’s algebra. Moreover, Grassmann pub-
lished this a year before Clifford.® To be sure, Grassmann’s intent” was only to show that
Hamilton’s quaternions (a particular Clifford algebra) were inherent in his algebra, but he
undoubtedly recognized more general possibilities. Though the addition in Eq. (2.1) is a
nontrivial extension of Grassmann’s original system, Grassmann plays it down and avoids
giving Hamilton credit for inspiring him to do it, perhaps because he was bitter about the
lack of recognition for his own work. In Grassmann’s defense it can be said that the gener-
alization is straightforward. Clifford was led to the same algebraic structure by asking the
same question: How can one combine quaternions and Grassmann’s algebra into a single
mathematical system? Grassmann expressed his view in these words:” “Since extension
theory makes only one arbitrary assumption, that is that there exist magnitudes that can
be numerically derived from more than one unit, and proceeds from this in a completely
objective way, all expressions that are numerically derivable from a number of independent
units, and in particular the Hamiltonian quaternions, have their definition in extension
theory and only find their scientific foundation in it. This was previously not recognized,”
(translation by L. Kannenberg). No doubt Grassmann would use the same argument to say
that Clifford algebra as we know it today is embraced by his extension theory. And Clifford

2



would probably agree, as he referred to his own work® as an “application” of Grassmann’s
algebra. The point of all this is that Grassmann, Hamilton, and Clifford, as well as Lifs-
chitz and many others since have contributed to the development of a single mathematical
system which cannot be justifiably associated with the name of a single individual. Today,
it is more evident than ever that Clifford’s original term geometric algebra is the most
appropriate name for that system, though the term “Clifford algebra” is more common in
the literature.

To reconcile the contemporary views of Grassmann and Clifford algebras, we begin with a
standard definition of the Grassmann algebra A,, = A(V") of an n-dimensional real vector
space V™. This associative algebra is generated from V" by Grassmann’s outer product
under the assumption that the product of several vectors vanishes if and only if the vectors
are linearly dependent. With the notation in Eq. (2.1) for the outer product, the outer
product

vi Avg AL Ay (2.2)

of k linearly independent vectors is called a k-blade, and a linear combination of k-blades
is called a k-vector. The set of all k-vectors is a linear space

AR = ARV, (2.3)

with dimension given by the binomial coefficient (Z) With the notations AL = V™ and
A% = R for the real scalars, the entire Grassmann algebra can be expressed as a 2"-
dimensional linear space

An =) AL, (2.4)
k=0

This completes our description of Grassmann’s “exterior algebra,” but ore mathematical
structure is needed for applications. Standard practice is to introduce this structure by
defining the space of linear forms on A,. However, we think there is a better procedure
which is closer to Grassmann’s original approach.

We introduce an n-dimensional vector space V" dual to V™ with “duality” defined by
the following condition: If {w;} is a basis for V", then there is a basis {w] } for V"** defining
unique scalar-valued mappings denoted by

ZAa Vi=

20ij fori,j=1,2,...,n. (2.5)

The dual space generates its own Grassmann algebra

n

ATV = A =D AR (2.6)
k=0

The inner product (2.5) can be extended to a product between k-vectors, so that each k-
vector in V** determines a unique k-form on V", that is, a linear mapping of A into the
scalars. In other words, Aﬁ* can be regarded as the linear space of all k-forms.

This much is equivalent to the standard theory of linear forms, though Eq. (2.5) is not a
standard notation defining one-forms. The notation has been adopted here so Eq. (2.5) can
be interpreted as Grassmann’s inner product, and A,, and A} can be imbedded in a single
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geometric algebra with a single central product defined by Eq. (2.1). One way to do that
is by identifying A,, with A but then Eq. (2.5) defines a nondegenerate metric on V", and
Grassmannians claim that that is a loss in generality. Cliffordians counter that the loss is
illusory, for the interpretation of Eq. (2.5) as a metric tensor is not necessary if it is not
wanted; with one variable held fixed, it can equally well be interpreted as a “contraction”
defining a linear form. Be that as it may, there really is an advantage to keeping A,, and
A7 distinct, in fact maximally distinct, as we see next. We turn A,, and A}, into geometric
algebras by defining the inner products

wi+w; =0 and w;-wj=0, (2.7a)

so Eq. (2.1) gives

w; ANwj = wjw; = —wjw;  and  w; Aw; = wiw; = —wjw; .

(2.7b)

Also we assume that the w; and the w; are linearly independent vectors spanning a 2n-
dimensional vector space

Rn,n _ Vn ® Vn* , (28)

with an inner product defined by Egs. (2.5) and (2.7a). This generates a 22"-dimensional
geometric algebra which we denote by

Rom =G(R™) =) RE ., (2.9)
k=0

with k-vector subspaces RE . = GF(R™") = G¥(R,,,). Anticipating the conclusion that
it will prove to be an ideal tool for characterizing linear and multilinear functions on an
n-dimensional vector space, let us refer to R,, , as the mother algebra.

III. STRUCTURE OF THE MOTHER ALGEBRA

Before continuing our study of the mother algebra, we review some definitions and results
from Ref. 4 which enable algebraic manipulations in any geometric algebra without referring
to a basis.

A generic element M of the algebra is called a multivector, and it can be decomposed
into a sum of its k-vector parts, that is, parts ( M ) of grade k, thus,

M= (M)o+ (M) +(M+--. (3.1)

The geometric product is denoted by M N and the “main antiautomorphism” (or reversion)
is defined and denoted by
(MN)T = NTMT, (3.2a)

(M) = (M), (3.2b)

The geometric product AB of an r-vector A = ( A), with an s-vector B = (B )4 has the
decomposition
AB = (AB)rts+ (AB)rys—2+ -+ (AB)|,—s) - (3.3)
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Grassmann’s inner product A+ B and outer product A A B can be defined in terms of the

geometric product by
A-B = <AB>|T—S\7 (34)

AAB - <AB >7'+S7 (35)
For vectors a = (a); and b = (b)1, Eq. (3.3) reduces to

ab=a-b+aAb, (3.6)

with
a-b=3(ab+ba)=b-a (3.7)
aAb=1i(ab—ba)=-bAa. (3.8)

As Eq. (3.6) is identical with Eq. (2.1), we can identify the geometric product with Grass-
mann’s central product. However, the logic is reversed here, and the inner and outer
products are derived from the central product, as in Eqgs. (3.7) and (3.8) or, more generally,
in Egs. (3.4) and (3.5).

The defintions of inner and outer products greatly facilitate manipulations without spec-
ifying a basis in the algebra, and for this purpose, a system of identities interrelating inner
and outer products has been developed in Chap. 1 of Ref. 4. As shown, these indentities
sufice for the developing of the entire theory of determinants. To counter the mistaken
impression that use of the inner product limits the theory to metric spaces, we point out
that it embraces the standard theory of determinants on the Grassmann algebra A,, simply
by imbedding A,, in the mother algebra R, ,. Thus, every determinant of rank r can be
represented by

A-B* = (AB")y, (3.9)

where A = (A), is in A} and B* = (B*), is in A%*. The Laplace expansion and many
other classical theorems of determinant theory are derived in Ref. 4, Chap. 1. For a = (a )
and B = (B)s, Eq. (3.3) generalizes Eq. (3.6) to
aB=a-B+aADB. (3.10)
For a bivector (or two-vector) A = ( A ), Eq. (3.3) yields
AB=A-B+AxB+ANAB. (3.11)
where A x B is the commutator product, defined by
Ax B=1(AB - BA). (3.12)
This product is a “derivation” on the algebra, as expressed by
Ax (BC)=(AxB)C+ B(AxC(C). (3.13)
This implies the Jacobi identity
Ax (BxC)=(AxB)xC+Bx (AxC). (3.14)
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For a bivector A = ( A)3, the commutator product is also “grade-preserving,” that is, for

any multivector M
Ax (M), = (AxM),. (3.15)

It follows that the space of bivectors is closed under the commutator product, so it forms
a Lie Algebra (called a bivector algebra). It was conjectured in Chap. 8 of Ref. 4 that every
Lie algebra is isomorphic to a bivector algebra. We shall see how to prove that in Sec. IV.
Returning to the study R, ,, we first examine the properties of alternative bases for the
generating vector space R™", According to Eq. (2.5), the basis {w;, w;} consists entirely
of null uectors. Nevertheless, we can construct from these an orthonormal basis {e;,€;}
defined by
e = w; +w;, (3.16a)

(2

From Egs. (2.5) and (2.7) it follows that
€€ = 52‘]', €; Ej = 0, Ei . Ej = —(Sij . (317)

The basis {e;} spans a real Euclidean vector space R" while {€;} spans an anti-Euclidean
space R", Therefore, as an alternative to Eq. (2.8), R™" admits the decomposition where

R =R"@R". (3.18)

From the basis {e;,€;} we can construct (p + ¢)-blades

Epq=E,El = E, \NE}, (3.19a)
where

Ep =€1€2...6p = Lpo, (319b)

Eq =eieés.. .Ep = EO,p . (319C)

Each blade determines a projection E, , of R™™ into a (p + ¢)-dimensional subspace R4
defined by
Epqla)=(a-Byo)E, ;= %[a— (—1)PTE, aE, ] . (3.20)

The vector a resides in RP4 if and only if
aNE,,=0=aE,,+ (-1)""E, a. (3.21)

Incidentally, we use an underbar to distinguish linear operators from elements of the algebra.
This notation has the advantage of allowing us to designate the operator by a multivector
which determines it, as in Eq. (3.20), where the operator E, , is determined by the blade
E, 4. Reference 4 develops many properties and applications of projection operators like Eq.
(3.20). For p + g = n, the blade E, , determines a split of R™" into orthogonal subspaces
with complementary signature, as expressed by

R™™ = RP1 @ RV, (3.22)
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This generalizes Eq. (3.18), and Eq. (3.20) shows how a similar split is determined by every
invertible n-blade in Ry ,, without referring to any basis vectors. For the case ¢ = 0, Eq.
(3.20) can be written

Eu(a) = Ya+a%), (3.23)

where a* is defined by
a* = (-1)""E,aE; " . (3.24)

It follows immediately that ef = e; and (€;)* = —e;. Comparison with Egs. (3.16a) and
(3.16b) shows that w; can indeed be obtained from w; by applying Eq. (3.24), so the
notations are consistent.

The split (2.8) of R™™ into subspaces of null vectors cannot be obtained in the same way
as the split (3.22), because the Grassmann algebra A, does not contain any invertible n
vectors. To describe such a split in an invariant way we need a new concept.

Let K be any bivector in Rfm which can be expressed as a sum of n distinct commuting
blades K; with unit square, thus

K=> K, (3.25)

where
KixKj=0 and K?=1. (3.26)

For given k£ and n > 2 the decomposition of K into blades is unique if and only if distinct
blades have different magnitudes, as shown in Secs. III or IV of Ref. 4. The bivector K
determines an automorphism of R™"

K:a—wa=Ka=axK=a-K. (3.27)

This maps each vector a into a vector a which we call the complement of a (with respect
to K).
It is readily verified that Ka = K%a = a, or, as an operator equation,

K*=1. (3.28)
Thus, K is an involution. Furthermore,
a-a=0, (3.29)
and the vectors
ay =ata=ata-K (3.30)

are null vectors. In fact, the sets {ay} and {a_} of all such vectors are dual n-dimensional
vector spaces, so K determines the desired null space decomposition of the form (2.8)
without referring to a vector basis.

From the basis {e;,€;} a suitable K can be constructed by taking

Ki == Giéi = €; AN éi . (331)

Then, indeed,
I_(ei:eiXK:ei'K:a, (332&)
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and, in accordance with Eq. (3.28),

Therefore, e; and €; are complementary pairs, as the overbar notation was chosen to indi-
cate. Now it is evident that K determines a unique correspondence between the comple-
mentary spaces RP¢ and RP9.
From Egs. (3.16) or (3.30) it is easily seen that the null basis {w;,w]} consists of K
eigenvectors with
I_(wi = w; X K= wj , (333&)

Kw; =w] x K = —w] . (3.33b)

The basis {w;, w]} is called a Witt basis in the theory of quadratic forms. The conventional
approach to quadratic forms, as elegantly expounded in Ref. 9, for example, laboriously
establishes many theorems before arriving after a long detour at the concept of Clifford
algebra as the algebra of a quadratic form. Even then the significance of the mother algebra
as a covering algebra for quadratic forms of every possible signature and degeneracy is not
recognized. We submit that the theory can be greatly simplified and unified by introducing
the mother algebra and establishing its properties at the outset. The standard theorems
about bilinear and quadratic forms can then be established more simply and directly from
these properties. Moreover, form theory is thereby automatically related to the vast range
of other applications of the mother algebra and its subalgebras. This will be evident in our
treatment of group theory in subsequent sections.

The mother algebra R, , is, of course, a subalgebra of the infinite dimensional algebra
Roo,00, which might be called the grandmother algebra or “Eve”. Reference 4 contends
that “Eve” should be regarded as the universal geometric algebra and adopted as the arena
for developing a coordinate-free formulation of manifold theory. Eve has already been
employed in physics as the oco-dimensional algebra of fermion creation and annihilation
operators. Indeed, using Eq. (3.7) to rewrite Eq. (2.5), we obtain

wiw; + wjw; = d;j . (3.34)

This will be recognized as the fundamental equation for fermion operators (See Ref. 10, for
example). However, in this general mathematical context the anticommutivity of “fermion
operators” expressed by Eq. (2.7b) is not an expression of the Pauli principle as it is in
quantum field theory; it is merely an expression of linear independence.

IV. THE GENERAL LINEAR GROUP AS A SPIN GROUP

There are many kinds of linear functions, but those mapping vectors to vectors are espe-
cially significant, so we reserve the term linear transformation to refer to them. Moreover,
adopting the perspective of geometric algebra, we associate with every vector space a ge-
ometric algebra generated by the geometric product. In other words, along with scalar
multiplication and vector addition, we regard the geometric product as a defining property
of the vector concept. One advantage of this perspective is that geometric algebra contains
all the apparatus needed to characterize and analyze linear transformations. In fact, we
shall prove that all linear transformations can be represented as geometric products. Let f
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be a linear transformation defined on a given vector space. The characterization of f is fa-

cilitated by its outermorphism,>? a grade-preserving extension of [ to the entire geometric
algebra, which is defined, for vectors a,b, ..., by

FlanbA--) = (fa)A(fa) A~ (4.1)

The outermorphism derives its name from the fact that it preserves the outer product. It
describes the essential mathematical structure underlying the concept of determinant. In
fact, if P is a pseudoscalar for the vector space on which f is defined, the determinant of
f is defined by the “eigenblade equation” )

f(P) = (det f)P. (4.2)

We are concerned here with linear transformations on R,, ,, and its subspaces, especially
orthogonal transformations. An orthogonal transformation R is defined by the condition
that it leaves the inner product invariant, that is,

(Ra)- (Rb) =a-b. (4.3)
It s called a rotation if det R = 1, that is, if
E(En,n) = En,n s (4.4)

where, as defined by Eq. (3.19a), E,, , = E,E! is the unit pseudoscalar for R,, ,. The
rotations form a group called the special orthogonal group SO(n,n).
Geometrc algebra makes it possible to express every rotation in the canonical form

Ra = RaR', (4.5)
where R is an even multivector (called a rotor) satisfying
RR' =1. (4.6)

The rotors form a multiplicative group called the spin group or spin representation of
SO(n,n), and it is denoted by Spin(n,n). Spin(n,n) is said to be a double covering of
SO(n,n), since Eq. (4.5) shows that both £R correspond to the same R.

It follows from Eq. (4.6) that the inverse R~! = R of the rotation (4.5) is given by

R'a = R'aR. (4.7)
This implies that
a-(Rb) = (aRbR")o = (bRTaR)y = b- (R'a), (4.8)

where the fact that (ABC' )y = (BCA)o has been used. In other words, the adjoint of
a rotation is equal to its inverse. It is worth remarking that sometimes the spin group is
defined by writing R~! instead of R in Eq. (4.5). Then it contains additional elements
[the K; in Eq. (3.31)] which are not continuously connected to the identity. We exclude
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those elements from the group, though it will be seen that they belong to the Lie algebra
of the group.
It can be shown that every rotor can be expressed in the exponential form

R=4e2B, with Rl =4e 25, (4.9)

where B is a bivector called the generator of R or R, and the minus sign can usually be
eliminated by a change in the definition of B. Thus, every bivector determines a unique
rotation. The bivector generators of a spin or rotation group form a Lie algebra under
the commutator product. This reduces the description of Lie groups to Lie algebras. The
Lie algebra of SO(n,n) and Spin(n,n) is designated by the lower case notation so(n,n). It
consists of the entire bivector space Rfln Remarkably, every Lie algebra is a subalgebra
of so(n,n). Our task will be to prove that and develop a systematic way to find them.

Lie groups are classified according to their invariants. For the classical groups'! the
invariants are nondegenerate bilinear or quadratic forms. Geometric algebra supplies us
with a simpler alternative system of invariants, namely, the multivectors which determine
the bilinear forms. As emphasized in Ref. 4, every bilinear form can be written as a - (Qb),
where @Q is a linear operator, and the form is nondegenerate if @ is nonsingular (i.e.,
det Q # 0). Invariance under a rotation R is expressed by B

(Ba) - (QRb) = a - (Qb) . (4.10)
Using Eq. (4.8) this can be reformulated as
a- (R'QRb) = a- (QD). (4.11)
Expressed as an operator equation this condition becomes
R'QR =Q = RQR', (4.12)

or equivalently,
QR = RQ. (4.13)

Thus, the invariance group of the quadratic form consists of those rotations which commute
with Q.

As a simple example, consider the bilinear form a - b* determined by the involution (3.24)
which distinguishes the subspaces R"™ and R". From Egs. (3.24) and (4.7), the condition
(4.12) in this case reduces to an equivalent multivector equation

RE, = RE,R' = E, . (4.14)

Thus, invariance of the bilinear form a - b* is equivalent to invariance of the n-blade E,,.
Using this fact, we can immediately construct a basis for the Lie algebra from the vector
basis {e;,€;} of the * operator. Thus, we obtain the generator basis

€ij = €€, for i1<j=1,2,...,n,
U ’ (4.15)
€kl = €rey, for k<l=1,2,...,n.
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Any generator B in the algebra can be written in the form
B=a:e+ ¢, (4.16)

where

ae = Zaijezj (4.17)

i<j
denotes a linear combination with scalar coefficients a*/. The corresponding group rotor is

R— eé(a:eJrB:E) _ e%a:e + e%ﬁ:é_ (4.18)

This, of course, is the spin representation for the product group SO(n) ® SO(n). Since it
is determined by the invariance of E,, in Eq. (4.10), it is said to be the stability group of
E,. No direct reference to a quadratic form is needed to characterize it.

To facilitate the systematic analysis of less obvious cases, we need some general theorems.
As proved in Ref. 4, every skew-symmetric bilinear form can be written in the form

a-(Qb)=a-(b-Q)=(anb)-Q, (4.19)

where @ is a bivector, and, of course, @ is the corresponding linear transformation. We say
that the bivector Q is involutory if @ is nonsingular and

Q*=+1. (4.20)

At this point a warning is in order. The operator equation (4.20) applies only to the action
of (Q on vectors and not to the outermorphism acting on multivectors of higher grade, as
will be demonstrated below.

By virtue of the fact that (Ra A Rb)-Q = (a Ab)- RTQ, invariance of Eq. (4.19) is
equivalent to the stability condition

R'Q=R'QrR=0Q. (4.21)

In other words, the invariance group of any skew-symmetric bilinear form is the stability
group of a bivector.

From Eq. (4.21) it follows that generators of the stability group G(Q) for  must commute
with ). To ascertain the consequences of this requirement, we study the commutator of )
with an arbitrary two-blade a A b. Since a A b = a x b, the Jacobi identity (3.14) implies

(@Ab)xQ=(ax Q) Ab+an(bxQ)=(Qa)Ab+aA (Qb), (4.22)
and then
[(and) x Q] xQ=[(Qa) Nb+aA (Qb)] x Q
= (Q%a) Nb+2Q(aAb) +a A (Q7D). (4.23)
Applying the condition (4.20) and extending (4.23) by linearity, we arrive at the theorem
(Bx Q) xQ=2(QB+DB) (4.24)
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for any bivector B. Thus if B commutes with @, then
QB =¥B, (4.25)

where the signs are opposite to those in Eq. (4.20). In other words, the generators of G(Q)
are eigenbivectors of () with eigenvalues F1.

Now, by employing Eq. (4.22) we verify that for any vectors a and b the condition (4.25)
can only be satisfied by the bivectors

E(a,b) =aANbF (Qa) A (QD). (4.26a)
and

F(a,b) =a A (Qb) — (Qa) Ab. (4.26b)
This is to say that

E(a,b) x Q =0= F(a,b) x Q. (4.27)

Thus E(a,b) and F(a,b) are the desired generators of the stability group for Q. A basis
for the Lie algebra is obtained by inserting basis vectors for a¢ and b. The commutation
relations for the generators E(a,b) and F(c, d) can be found from Eqs. (4.26a) and (4.26b)
by applying the following identity from Ref. 4, which is just a two-fold application of the
Jacobi identity:

(anb)x(cANd)=(b-c)and—(b-d)aNc+ (a-d)bNc—(a-c)bNd. (4.28)

This is, in fact, the so-called structural equation for the Lie algebra of the orthogonal group.
The “structure” is all contained in the inner and outer products; no special Lie structure
coefficients need be mentioned. Equations (4.26a) and (4.26b) show how the structure
is changed by @ to get the subalgebra for the stability group of ). Evaluation of the
commutation relations is simplified by using the eigenvectors of @ for a basis, so it is best
to defer that task until ) is completely specified. -

Now as an example application of these results, we identify Q with the complementa-
tion bivector K in Eq. (3.25), and we note from Eq. (3.28) that K? = 1. We choose an
orthonormal basis which factors the component blades K; into orthogonal factors as in Eq.
(3.31). Then, using Egs. (3.32a) and (3.32b) we obtain immediately a generator basis for
the stability group of K, namely,

Eij = E(ei, e5) = eiej — €€, (t<3), (4.29a)
Fij = Flei,ej) = eie; —&ej (i <), (4.29b)
Ki = 3Fi = ejei, (4.29¢)

fori,j=1,2,...,n.

The stability group of K can now be identified as the general linear group GL(n,R). To
establish that, we first prove that it leaves the null vector spaces V" and V"* invariant.
These spaces have pseudoscalars

W,, = wiwsy - Wy, (4.30a)
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and
W) =wiw; -+ w; . (4.30b)

n

From the eigenvalue equations (3.33a) and (3.33b) we find immediately that
KW,) =W, (4.31a)

and

K(W?) = (—1)"W? (4.31D)

- n

which proves that V" and V"* are invariant. These relations will be preserved only by
rotations which commute with K. It follows that W, must be an eigenblade for every
member of the stability group. More about that below.

Since each group element R leaves V" invariant, we can write

Rw; = Z Wk Pkj - (4.32)
k=1

Then using Eq. (2.4) we can solve for the matrix elements

This shows us how to compute the matrix elements from the spin representation R of the
group. The number of independent elements is n?, which is precisely the number of linearly
independent generators in Eqs. (4.29a)—(4.29¢). This completes our proof.

The identification of the bivectors (4.29a)—(4.29c) with the Lie algebra gl(n, R) has im-
portant consequences. First, it proves the conjecture in Ref. 4 that every Lie algebra is
isomorphic to some bivector algebra, for it is well-known that every Lie group is isomorphic
to a subgroup of the general linear group. Indeed, all Lie algebras have a real matrix rep-
resentation via the “adjoint representation,” and we have shown how that can be realized
in a bivector algebra in general. However, this is not usually a helpful way of construct-
ing the algebras. Explicit construction of bivector versions of the classical Lie algebras is
undertaken in Sec. VI.

Another consequence of Eqs. (4.29a)—(4.29c) is that every positive, nonsingular linear
transformation can be represented by a spinor of the form

R = e%(a:E—i—ﬁ:F—&-u:K)‘ (434)

The composition of linear transformations is then described as the product of such spinors.
It is well established that the computation of composite rotations with such “spin repre-
sentations” is decidedly more efficient than standard matrix methods. So we may expect
the same for general linear transformations. Therefore Eq. (4.34) deserves intensive study,
and from our knowledge of matrix theory, we can expect a rich body of results to follow.
Some comments on the interpretation of Eq. (4.34) and alternative forms for a spinor are
in order. It is known already in the case of rotations that the exponential form for spinors
is not optimal for most computational purposes, but it is, of course, appropriate for a Lie
algebra analysis. Comparing the E;; in Eq. (4.29a) with Eqgs. (4.15) through (4.18), we see
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that they generate rotations of R™ and R™ in tandem, and, by virtue of Eq. (3.30), this
can be interpreted as the orthogonal group SO(n) on V.

The rotations can be described on V" without reference to R"™. For any member R of
GL(n,R), the outermorphism of W,, satisfies

RW,, = W,det R, (4.35)

where the subscript on det ¢ is to distinguish it from the determinant on the whole of R™".
From Egs. (4.30a), (4.30b), and (2.5) it is easily ascertained that

Wr Wi =2"" (4.36)
Therefore,
detoR™! = 2"W> - (RW)). (4.37)
Similarly, since R~ = Rf
detoR™' = 2"W - (RTW}) =" WI.(RW}), (4.38)
SO
RW) =W/'detoR™'. (4.39)

Since every R is a rotation on the whole of R™", we have
B(Wn AWZ) = (BWn) A (BW) = Wn AW, (4.40)
whence we obtain the “classical result”
(det gR)(detgR™) = 1. (4.41)
Next consider the spinor
D = (1/2mK _ J(1/2)m K1 (1/2)p2 Ko | o(1/2)pn Kn (4.42)
According to Eq. (3.33a) the w; are eigenvectors of K, whence
Dw; = Dw; DT = \w; , (4.43)

with eigenvalues
A = el (4.44)

Therefore, D is a symmetric linear transformation which is “diagonalized” by the eigen-
vectors w;. According to the “diagonalization theorem,” therefore, any positive definite
symmetric linear transformation S can be represented as a spinor S of the form

S = R\ DR!, (4.45)

where
Ry = e(l/2)an:E (4.46)
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represents the rotation which diagonalizes S. The polar decomposition theorem asserts
that Eq. (4.34) is equivalent to
R =RsS, (4.47)

where Ry “is” another rotation. Since Rz = Ry R; “is” also a rotation, we have the result
R = R3DR1 — 6(1/2)a3:E€(1/2)M:K6(1/2)a1:E. (448)

As a check, note that this also has n? parameters.
Inserting Eq. (4.47) into Eq. (4.37), we easily obtain the classical result

det OE = det 05 = det (]l_): )\1)\2 ce )\n . (449)

Though we have interpreted the above spinors as representing linear transformations on
the invariant space V™, they can also be interpreted as linear transformations on R"™ by
employing the projection operator E,, = E,, ¢ defined by Eq. (3.20) to write

Rp=En.R (4.50)

for the corresponding operator on R™. Of course, the projection operator introduces com-
plications which are avoided by working on V™.

The above remarks serve to illustrate the powerful potential of the spinor version of linear
algebra. Its generalization to include arbitrary linear transformations will be obtained in
the next section.

Returning to group theory, we note that K commutes with all other elements of the Lie
algebra gl(n, R), so it generates a one-dimensional invariant subgroup of GL(n,R). We can
remove it from the group by replacing the K; in Eq. (4.29¢) by

Hz:Kz_KH-l (3:1,2,,n—1) (451)

Along with E;; and Fj; in Eq. (4.29a)-(4.29c), these bivectors generate the special linear
group SL(n,R), the subgroup of GL(n,R) for which the determinant (4.49) is unity.

Finally, we compose the complementation operator K with the *-operator (3.24) to
produce an operator K, defined by

K.a=Ka" = (a") - K. (4.52)
It follows that
I_(*ej = Ej, K*Ej = —€j, . (453)
Hence
K?=-1. (4.54)

Also, in analogy to Eq. (4.25), K, defines a new Lie algebra with generators defined by the
outermorphism condition

K.(B)=-B. (4.55)

From this we construct a generator basis for the invariance group of K,
Lij = eiej —eiej, (4.56)
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F;; =ee; + e, 4.57
J J J

(i, =1,2,....,n,i < j). These are generators of the complex orthogonal group SO(n,C).
The complex structure is defined on R™™ by the operator K, which plays the role of v/—1.
For odd n, K is the only kind of involutory bivector. However, there are others when n
is even, and their invariants determine other groups which are discussed in Sec. VI.
The general linear group GL(p, q) can be obtained and analyzed in essentially the same
way as the Euclidean case, with £, replaced by E(p, q), and the corresponding null space
pseudoscalar W), replaced by W, ; = w1 - wpwy 4 -+ wy,.

V. ENDOMORPHISMS OF R"

Now we develop an alternative argument leading to the conclusion that the mother
algebra R, , is the appropriate arena for the theory of linear transformations and Lie
groups. We show how it arises naturally as the endomorphism algebra End(R,,), the algebra
of linear maps of the Euclidean geometric algebra R,, onto itself. This algebra is, of course,
isomorphic to the algebra of real 2™ x 2™ matrices, that is,

End(R,) ~ R(2") . (5.1)

For an arbitrary multivector A in R, left and right multiplication by basis vectors e;
determine endomorphisms of R,, defined by

ei:A—ei(A)=eiA, (5.2a)

€ 1 A—g(A) = Ae, (5.2b)

where, for the moment, the overbar indicates the main involution of R,, defined by

(AB) = AB and & = —e¢;. (5.3)

We shall see below that this is consistent with our overbar notation in R,, ,,. The operators
e; are clearly linearly independent, and they satisfy the operator relations

eiej+ejei =20, (5.4a)
ee; +e; =20, (5.4b)
eie; +¢ei=0. (5.4c)

By virtue of Eq. (3.7), these relations are isomorphic to the defining relations (3.17) for the
vector basis {e;,€;} in R, ,,. This establishes the algebra isomorphism

R ~ End(Ry) . (5.5)

The above defining equations for this isomorphism were first formulated in Ref. 12. The
role of the main involution in determining the negative signature in Eq. (5.4b) is especially
noteworthy. Its significance can be explained as follows.
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The composite operators
eig; 1 A— eig;(A) =e;Ae; (5.6)

generate Aut(R,), a subgroup of End(R,) which preserves the geometric product. It is
also a subgroup of the group of nonsingular outermorphism on R,, which are generated by
the general linear group on R™, In fact, it is the outermorphism of the orthogonal group,
because it preserves the inner product. Thus, action of the operator (5.6) on vectors defines
the fundamental linear transformation

fi ra— fia = —e;ae;. (5.7)

As is well-known, this transformation is a reflection in a hyperplane with normal e;, and the
entire orthogonal group O(n) is generated by products of such reflections with e; ranging
over all unit vectors in R™. The bivector outermorphism of Eq. (5.7) is

filanb) =ei(aNb)e;. (5.8)
Note that the sign difference between (5.7) and (5.8) is just what is required by the invo-
lution in Eq. (5.6). Thus, the involution is essential to generating Aut(R,,).

As observed in Chap. 3 of Ref. 4, all symmetric transformations are generated by linear
combinations of the operators in Eqgs. (5.7), while orthogonal transformations are generated
by their products. A big advantage of representing these linear transformations in R, ,, is
that both symmetric and orthogonal transformations are generated by products, as we saw
in the previous section.

Our next task is to prove that the mother algebra contains a 2n-dimensional subspace S,
on which all the endomorphisms R,, are faithfully represented by left multiplication with
elements of R, ,,. The space S, is called a spinor space and its elements are called spinors.
It is a minimal left ideal of R,, ,,, and its construction is easily described after establishing
the relevant algebraic relations. The same construction is employed in Ref. 13, and it is
implicit in many other works on physics and mathematics.

From the null vectors

(61' — Ei) s (59)

N[

wi = 5(e; + ), w; =

we construct a family of commuting idempotents I;, which can be expressed in the several
different ways

L =wjw; = 5(1+ ee;) = (14 K;) = ejw; = wie; = wye; = —ew; (5.10)
fori=1,2,...,n. The idempotence and commutative properties are expressed by
IZ=1 I xI; =0. (5.11)

The relations (5.10) will be more useful as expressions for the effect of left and right mul-
tiplication on I;
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From the I; we construct the “mother idempotent”
I="0LI--- I, =W;W}! =W*W,, (5.14)

where it will be recalled from Eq. (4.30a) that W,, is the pseudoscalar for the null space
V™. The impotence property

=1 (5.15)
follows from Eq. (5.10).
From Eq. (5.12) it follows that
€iI = EiI = wiI, (516)
and further that 3
E, I =FE, ] =W, I =W,. (5.17)

This establishes an equivalency of the vector spaces R, R", and V". Indeed, I completely
characterizes the relations among them. Thus, it specifies the involutory bivector

K=2"(I),=K1+ Ko+ -+ K, (5.18)
as well as its relation to the pseudoscalar
Epn=2"(I)on =K Ky K,=EE, =W W], (5.19)
Comparison with Eq. (5.17) yields
E,nl=1. (5.20)

The spinor space S, is generated by left multiplication of I by the entire mother algebra,
as expressed by
Sn=Rnpnl. (5.21)

The multiplicative equivalence of e; and €; implies that S, has the dimension of R,
namely, 2", though the operators on it have the dimension of the algebra R, ,, namely
2" x 2". With the above preparation, it is easy to establish the interpretation of operators
on §,, as endomorphisms of R,,.

First, using Eqgs. (5.20) and (5.16), we see that

En,neil = *61'[ == En,néil == *éil. (522)

Therefore, multiplication of S,, by E, , corresponds to the main involution in R, as
expressed by 3
EnnSn <= Ry . (5.23)

In view of the operaor relations (5.4a)—(5.4c) the definitions (5.2a) and (5.2b) give the
correspondences
eiSn, <— ¢; R, s (5.24)

€S, — 7_lnez- R (525)
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and the latter combines with Eq. (5.23) to give
EiEn,nSn <— R,é€;. (526)

Lastly, it is easily established that reversion in R,, ,, corresponds to reversion in R,,. The in-
terpretation of spinor space operators as R,, endomorphisms is now completely established.
The rest is calculation.

Of special interest is the endomorphism correspondence for GL(n,R). We consider the
orthogonal group first. For any unit vectors u,v,...., in R,, Egs. (5.24) and (5.25) give
the correspondences

uitS,, <= uR,u, (5.27)

VUl S,, <= vuR,uv . (5.28)

As noted earlier, the first of these is (the outermorphism of) a reflection in R"™, while the
second, a double reflection, is a rotation in the uAv plane. The generalization is immediate.
For k-vectors uy,us,...., in R™ let us write

U(k) = UrUk—1 """ U2UT and [_](k) = ﬂkﬁk_l ce ’L_Lzﬂl s (5.29)
whence

U(k:)(_](k) = U - .ulak. ..ﬂl — (—]_)k_luk . “UQ@_Lk ...a2ulal e

= ekukﬂkuk_lﬂk_l s UQﬂgulﬂl y (5.30)
where ¢, = (—=1)2F¢+=1_ For odd k, therefore,

EkU(k)U(k)Sn <~ U(k)ﬁ%UT

b s (5.31)

and for even k,

x Uy Uy S <= Uiy RaUfy, (5.32)

Equations (5.31) and (5.32) describe the complete orthogonal group O(n) as an automor-
phism group of R,,. The multiplicative group of unit vectors in R", exemplified by Uy,
in Eq. (5.29), is called the Pin group R,, and denoted by Pin(n). Clearly Pin(n) is a dou-
ble covering of O(n). The subgroup for even n is Spin(n), the double covering of SO(n).
Adopting the notation of Eq. (4.19), it can be shown that, for even I, the Uy in Eq. (5.29)
which are continuously connected with the identity can be written in the exponential form

Uiy = elt/De. (5.33)

Therefore B ~ ~
EkU(k)UZk) — 6(1/2)a:e€—(1/2)a:e — e(l/2)a:(e—e) ] (534)

With E = e — €, we see that this is exactly the rotor representation for elements of O(n)
given by Eq. (4.56). Moreover, it is absolutely clear that the two-bladed structure of the
bivector generators E;; = e;e; — €;€; represents concurrent left and right multiplications of
R, as in Eq. (5.32).
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Next we determine the “correspondence rule” for the diagonal operators

D; = e/ Dmiks — ((/Dpiciei (5.35)
It will be convenient to drop the subscripts and write
D = (M/2Hee — o 4 BeE = uw . (5.36)

This is the well-known “spin representation” for a Lorentz transformation or boost in the
hyperbolic plane of the bivector ee = e A€. It has been thoroughly studied in Ref. 3, where
it is used to represent dilatations in the conformal group, and the decomposition into a
product of unit vectors u and v on the right side of Eq. (5.36) is explained. The parameters
« and ( are related by

DD' =v*? =a? - % =1. (5.37)

For comparison, we consider first the action of D on the null vector w = %(e +¢). From
Egs. (5.9) and/or (5.10) we note

eew = —w = —wee or w X (ee) =w, (5.38)
whence,
Dw = DwD' = D*w = (a — 8)*w. (5.39)
The projection of this into R™ defined by Eq. (4.50) gives

Dg(e) = E,D(w) = (a — §)e, (5.40a)
and for any vector e, orthogonal to e,
Dg(e) =e, , (5.40b)

thus Dg describes a stretch along e by the positive factor (o — 3)2.
In contrast, from Eq. (5.36) we get the endomorphism correspondence

DS, = wS,, <= DR, = aR,, + BeR,e. (5.41)

For a vector a in R™, by virtue of Eq. (5.38) and the identity ae = —ea + 2a - e, Eq. (5.41)
gives

Da = (o + B)a — 2Pa - ee. (5.42)

This is the composite of a dilatation of R™ by (a+ ) with a stretch along e by the factor
(a—pB)(a+ B)~!t = (a— B)? in agreement with Eq. (5.40a).

These results generalize trivially to give the correspondence theorem for an arbitrary
“diagonal” transformation represented by Eq. (4.42). The correspondence for any other
symmetric transformation follows from Eq. (4.45) by composition with a rotation. This
suffices to establish the correspondences for GL(n,R), though much more can, and no
doubt will, be said about the subject. Incidentally, it should be evident from the foregoing
that to each symmetric linear transformation S on R" there corresponds a decomposition
of the involutory bivector K into commuting blades which represent the eigenvectors of S.
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There is one more basic type of transformation to consider. Combining Egs. (5.24) and
(5.25), we obtain

w; S, = %(61 + Ez)Sn < %(6172” + 7_?%61) =e; N Ry, (543)

’LU:Sn = %(6Z — EZ)SH <~ %(ean — ﬁnel) =e - Rn. (544)

Thus, the “fermion creation operator” w; can be represented in the real Fuclidean R,, by
an outer product which raises the grade of every multivector by one unit. Similarly, the
“annihilation operator” w; can be represented in R, by the grade lowering inner prod-
uct. This correspondence has been exploited in Ref. 14 to reformulate Grassmann/Berezin
calculus in R,,, leading to simplifications in the theory of pseudoclassical mechanics.
Composing Eqs. (5.43) and (5.44), we obtain the grade-preserving outermorphisms

LS, = wiw;S, < P;R, = %(Rn +eRues) = e+ (e; ARy, (5.45a)

IJSn = w;‘szn <— P/R, = %(Rn — 61'7?,”61') =e; N\ (ei . Rn) s (545b)

Operating on vectors in R", they become
Pi(a) = 3(a+ejae;) = (aNe) e, (5.46a)

Pi(a) = 1(a —ejae;) = (a-e;)e; . (5.46b)

The first of these is the projection onto the orthogonal complement of e;, called a rejection
in Ref. 4. Thus, I; represents a projection operator which annihilates the e; direction in
R™. Similarly, Eq. (5.46b) is a projection onto the e; subspace in R"™, which is represented
by I in Rpp.

Having shown how projections as well as orthogonal and symmetric transformations on
R™ can be represented in R, , as even monomials (that is, products of an even number
of vectors), we can draw a major conclusion: Every linear transformation in R™ can be
represented in R, , as an even multivector which commutes with the complementation
bivector K. This reduces the composition of linear transformations to geometric products
among idempotents and rotors in Spin(n,n). The commutativity with K simplifies many
manipulations, as is implicit in the reordering of vectors in Eq. (5.30).

V1. CLASSIFICATION OF THE CLASSICAL GROUPS

The classical groups are traditionally distinguished by the various quadratic or bilinear
forms they leave invariant.!® In Sec. IV we saw that the quadratic form which distinguishes
GL(n,R) is determined by an involutory bivector K and this provides an alternative spec-
ification of GL(n,R) as the stability group of K. Here we show that many classical groups
can be similarly classified as stability groups of various involutory bivectors. This approach
appears to be simpler and more systematic than the traditional approach, because it fully
exploits the power of geometric algebra. However, for reference purposes we show how the
two approaches are related.
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Our approach is to systematically search for involutory bivectors and invariant relations
among them. As all the groups are subgroups of an orthogonal group O(p,q), the inner
product a - b is always available as an invariant form, and the pseudoscalar E,, , is necessarily
invariant. Taking this for granted, we search for involutory bivectors in R, ;. As defined
in Sec. IV, each involutory bivector () determines a skew-symmetric linear transformation
Q satisfying one of the two conditions Q% = +1, and it can exist only for vector spaces of
even dimension. For odd n the only possibilities in Rn,n is the complementation bivector
K, but for even n = 2m new possibilities arise which we now explore.

A. Subgroups of 0(2m)

In the geometric algebra Ra,,, = G(R?™), from an orthonormal basis {e;, €;} on Ray,, we

construct the involutory bivector
m

J=> e (6.1)
i=1

This determines the skew-symmetric transformation
Ja=a-J=ua, (6.2)

with the involutory property
J*=(a) = —a. (6.3)

Thus, J induces a complex structure on R*™. From our theorem (4.25 ) about @, it follows
that the stability group of J is the invariance group of this complex structure. This is the
unitary group U(m). It has the same dimension as GL(m, R), and its structure differs only
in replacing K2 =1 by J? = 1.

Like gl(m,R), a generator basis for the Lie algebra u(m) can be written down at once
from Eq. (4.26a) and (4.26b), namely,

Eij = e;e; + glg] (Z < ]) (64&)
Fij=eij —ee; (i <) (6.4b)
Ji == e{e} N (64C)

fori,7=1,2,...,m.

In analogy with the restriction of gl(m, R) to sl(m,R), u(m) contains J, which commutes
with all other elements and so generates an invariant U(1) subgroup. We can remove J
from the u(m) to produce generators for the special unitary group SU(m) by replacing the
Ji in Eq. (6.4c) by

Hi:Ji_JiJrl (i:1,2,...,n—1). (65)

In passing we note the interesting relation
T = L Jy e Jy = Eap . (6.6)

From the invariant bilinear forms a - b and a - Jb we can construct a Hermitian symmetric
bilinear form by introducing a “unit imaginary” i (which could be a bivector) and writing

€(a,b) =a-b+1i(a-Jb). (6.7)
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With the definition i = —i, this has the symmetry property
ela,b) =€ (b,a) =b-a—i(b-Ja). (6.8)

This introduction of i is clearly an artifice for expressing the fact that U(n) leaves two
distinct bilinear forms invariant, one of which is skew-symmetric. The properties assigned
to i have no essential relation to the underlying group structure, though standard choice
i = —1 reflects the involutory relation (6.3). Moreover, the use of Hermitian forms hides
the essential role of J and so makes it difficult to relate to other groups. In particular, the
stability group of J is the symplectic group Sp(m,R). Since U(m) leaves a - b invariant as

well as J, we have the group relation
U(m) =0(2m)NSP(m,R). (6.9)

We have introduced J as a splitting operator which splits R2™ into equivalent orthogonal
subspaces R™ and R™ with bases {e;} and {€;}. Alternatively, it is often convenient to
regard J as a doubling operator which generates R?>™ = R™ @& R™ from R™.

B. Subgroups of 0(2m,2m)

To import the complex structure in R, into the general linear group, we simply double
the dimension to Rayy, 2y using a complementing bivector K which commutes with J. This

can be done by introducing a basis {e;, €;, f;, fl} satisfying

eirej =& =0y =—fifi=—Fif; (6.10)

fori,7=1,2,...,m. Then

J = (eiei+ fif:), (6.11)
=1
i=1
We verify that
Jx K =(JK)y=> (fiti+ef, — fii +eif;) =0. (6.13)
i=1

The invariance group of both J and K is the complex general linear group GL(m,C) . It
is the subgroup of GL(2m,R) which leaves J invariant or, equivalently, the subgroup of
U(2m) which leaves K invariant. In other words

GL(m,C) =U(2m) N GL(2m,R) . (6.14)
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We can derive a basis for gl(m,C) by applying Eq. (4.26a) and (4.26b) with K? = 1 to
double the basis for u(m) in Egs. (6.4a)—(6.4c). Thus, we obtain
Eij = eiej+€i€5 — fif; + flfj ,
Fij = eie; —eej + fz'fj — fafis
Gij = eif; — fie; —&f; + Fi&;,
Hy=ef;+ fieg;+ fiej +&f; (i<j=12...m)),
Ji = e+ fif i
Ki=efi—ef; (i=12...,m),

(6.15)

for a total of 4 x %m(m — 1) + 2m = 2m? generators. Both J and K can be eliminated as

before by replacing J;, K; by
Hi:Ji—Ji+1, Gi:Ki—Ki+1 (i:1,2,...,n—1). (616)

The result is the Lie algebra for SL(m,C). This completes our discussion of GL(m,C).
We can describe the extension from Rgay, to Ray, 2m in a different way. If we replace K
in Eq. (6.12) by

m

Ky = Z(eifi +&f.) (6.17)
i=1
then Eq. (6.13) is replaced by
J x K3 :2K2, (618)
where .
Ky =Y (fiti +eif,). (6.19)
i=1

Thus we have another stability group for J which leaves K; and hence K5 invariant instead
of K. This is the full symplectic group Sp(m,R). It is a subgroup of GL(m,R), since the
latter is defined by K invariance. In contrast to U(m), however, it is not a subgroup of
O(2m); see Eq. (6.9). A basis for sp(m,R) can be written down from the gl(m,R) basis
(6.15) simply by noting the effect of switching the sign in replacing K by K; and replacing
K; by _ -

Ky =efi+ef;, and Ky =ef;+ fie;. (6.20)

Thus sp(m, R) contains m more generators than gl(m,C).
By combining the *-operator (3.24) with K1, as we did in Sec. IV, we define the operators

Ki.a=Kia*=a" Ky, (6.21a)

and
KQ*G/ = KQG,* =a*- K2 . (621b)

Then we have an algebra of three operators satisfying
K, =K3 =J?=-1, (6.22a)
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and
[, K14 = —2K.. (6.22b)

As established in Sec. IV, the invariance group of K, is SO(2m). The subgroup which also
leaves J in variant is denoted by Sk(m, Q) or So*(2m). The Q refers to the quaternionic
structure specified by the invariant relations (6.22a) and (6.22b). With the artifice of
introducing quaternionic units i, j, k (which could be bivectors in R3), Sk(m, Q) can be
regarded as the invariance group of the quaternion skew-Hermitian form

e(a,b)y=a-Jb+ (a-b)i+ (a- K1.b)j+ (a- Ka.b)k. (6.23)

This defines a mapping from R?™ x R?™ to the quaternions. Of course, the four coefficients
are separately group invariants. With quaternion conjugation denoted by a dagger, the
skewHermitian property is expressed by

e(a,b) = —€'(b,a). (6.24)

A basis for the Lie algebra of Sk(m, Q) is easily constructed by doubling the u(n) basis
(6.4a)—(6.4c) with the symmetry of the so(n,C) basis (4.56) and (4.57).

C. Subgroups of 0(4m)

On doubling R?™ to R*™ we gain the possibility of two invariant involutory bivectors.
Expressing this doubling by writing an orthonormal vector basis in the form {e;, g;, €;, g, },
one involutory bivector is defined by

m

J = (e + 9:G;) - (6.25)

i=1

Another is defined by .
J' = Z(ez@ + gi€i) - (6.26)

i=1

Their commutator is
JxJ =(JJ )= i@ig’i +eigi —eigi —g;€;) =0. (6.27)
i=1

Since J and J’ commute, the group which leaves them both invariant is U(m) @ U(m).
Alternatively, if we write J = J; and replace J' by

m
J2 = Z(eigi — i€i) , (6.28)
i=1
we get the quaternionic structure
Jl X J2 = 2J3, (629)
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where
m

J3 = Z(eigi + g;€i) - (6.30)
i=1

The invariance group of this structure is U(m, Q), [also denoted by HU(m), USp(m), or
Sp(m) in the literature]. It can be described as the invariance group of the Hermitian
symmetric quaternion-valued bilinear form

e(a,b) =a-b+i(aAnb)-J1+jland)-Ja+k(aNb)-Js. (6.31)

The Hermitian symmetry is, of course, expressed by e(a,b) = €'(b,a). A basis for the Lie
algebra u(m, Q) can be constructed by double application of Egs. (4.26a) and (4.26b), with
the result

Eij = eiej +€i€; + 9ig9; + 9:9; »
Fij = ei€j —€ie; + 9i9; + 9495
Gij = eigj — gi€j — 9;€; + €idj (6.32)
Hij =eig; — giej —€igj +gie; (1<j=1,2,...,m),
F,=eie; —gig; Gi=e€9i—9g;6; H;=e€9,—¢€g (i=12,...,m),

for a total of 4 x m(m — 1) + 3m = 2m? + m generators.

D. Subgroups of 0(4m,4m)

The doubling of R4y, to Ram,am produces new groups analogous to those in Ropm 2m,
but, of course, with quaternionic instead of complex structure. The analysis is similar to
the previous case, so our discussion will be limited to describing the group invariants.

The general linear group with quaternionic structure GL(m, Q) is the invariance group
of bivectors K, Jy, Jo, J3 satisfying

Kx J, = 0, J1 X Jo = 2J3, (633)

and
K*=1, JP=—1. (6.34)

This bivector algebra has an m-dimensional representation in RimAm. The special linear
group SL(m, Q) ~ Su™(2m) is obtained by eliminating the Abelian subgroup generated by
K from GL(m, Q).

We now turn to the other new group structure obtained from doubling Ry, It differs
from GL(m, Q) in the way that the quaternionic structure on the complementary spaces
Ram and Ry, are linked by group elements. The complex skew norm in 2m-dimensional
complex space is represented in Ry, by

€(a,b) =(anb)-J1 +i(aNb)- Js, (6.35)

with
Jl X J2 = 2.]3 . (636)
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TABLE 1. The eight types of bilinear form and their groups.

Type Form Base space Group
R-symmetric e(a,b)=€e(b,a)=a-b R™ SO(n)
R-skew e(a,b)=—e(b,a)=a-Jb REM2N Sp(n,R)
C-symmetric e(a,b)=—e(b,a)=a-b+i(a-K.)b R™™ SO(n,C)
C-skew e(a,b)=—e(b,a)=a-J,b+i(a-J,b) RAT AT Sp(n,C)
C-Hermitian symmetric e(a,b)=€ (b,a)=a-b+i(a-Jb) R2" U(n)
C-Hermitian skew e(a,b)=—e(b,a)=a-Jb+i(a-d) R" U(n)
O-Hermitian symmetric e(a,b):eT(b,a):a-b+(a-£lb)i+(a-12b)j RA™ U(n,Q)

+(a-J bk
O-Hermitian skew e(a,b)=—e'(b,a)=a-Jb+(a-b)i+(a-Ki.b)j R4 Sk(n,Q)
+(a-K2.b)k

To obtain its complete invariance group Sp(m,C), we must double to Ram 4m and find it
as a subgroup of GL(2m,C), just like we did to get the real symplectic group Sp(m,R) for
a single involutory bivector.

The quaternionic structure (6.36) can be preserved while the group structure generated
by Ji, Jo2, J3 is broken by composing the *-operator (3.24) with J; and Js to get

Jisa = Jia"*, Joa=Jya". (6.37)
From Egs. (6.35) and (6.36) we get the operator relations
J=Jh =1, Ji--1, (6.382)

(14, J2u] = [J1, 2] = 2J3. (6.38Db)

Sp(m,C) is the invariance group of these relations. Note the similarity of these relations
with Egs. (6.21a) and (6.21b), where the * operator was used to generate quaternionic
structure from the K;.

This completes our characterization of the major “classical groups.” It includes all real
forms of Cartan’s series of complexified semisimple groups: A,_1 =~ SL(n,C), B, ~
SO(2n+1,C), Cy, ~ Sp(n,C), D,, ~ SO(2n,C). The exceptional semisimple groups are also
subgroups of Spin(n,n), but their invariants are not just pseudoscalars and/or bivectors.'6
However, that topic deserves a separate article. The classical classification of groups ac-
cording to bilinear forms is given in Table 1 to summarize the results of this section. These
groups are all subgroups of the general linear groups, which are, in turn, are subgroups of
O(n,n), as summarized in Table II.

Vil. PROJECTIVE SPLITS AND OTHER FACTORS

The classical groups which we have discussed so far are all subgroups of GL(n, R) which,
in turn, is a subgroup of the mother group O(n,n). But there is more to the mother group
than that. In fact, the mother algebra R, , embraces all of projective geometry and its
group structure. The essential ideas and techniques to explicate this projective structure
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TABLE II. The general linear groups as subgroups of O(n,n).

Group Invariants
O(n,n) a-b
GL(n,R)subsetO(n,n) K
GL(n,C) subset GL(2m,R) K,J
GL(n,Q) subset GL(4m,R) K,J1,J2,J3

are laid out in Ref. 3, so we remark here only on how the present perspective generalizes
and, perhaps, perfects the approach there.

Reference 3 explains the geometric meaning of two kinds of multiplicative splits (or
factorizations) of geometric algebra. The first kind, a split with respect to a vector, was
called a “projective split” there. For the Euclidean and anti-Euclidean algebras R,, and R,
the projective split can be described as the decomposition

Rip+1 =R @R, Rut1 =Rn®@Ry, (7.1)

where ® means that vectors in the generating vector spaces of the factored algebras mu-
tually anticommute. As explained in Ref. 3, the group structure associated with these
factorizations is the “metric affine group.” This group extends the orthogonal group to in-
clude translations. To get the full affine group, we need to generalize the orthogonal group
to the general linear group, and we now know that the way to do this is to extend R,, to

Rom =Rn®R, . (7.2)
This entails a generalization of Eq. (7.1) to

Rotint1 = Run®@Ria, (7.3)

where the elements of Rq; now commute with the elements of R, ,. The split (7.3)
was called a “conformal split” in Ref. 3, because its invariance group is the conformal
group on R™", but now we see it as a generalized projective split. In recognition of this
synthesis, we propose, henceforth, to refer to Eq. (7.3) as a projective split, discarding the
term “conformal split.” Since the affine group is a subgroup of the conformal group which
preserves the split

Rl,l = Rl ®Rl s (74)

it would be appropriate to call Eq. (7.1) an affine split.

A projective split is determined by a single two-blade K, with positive signature, say
K? = 1. The “factor algebra” R;; is generated by all vectors which anticommute with
K. To describe the projective split of R,, ,, in more detail, we adopt an orthonormal basis
{e;,e;} with “complementary” blades K; = e;e;. To split R, , with respect to Ki, we
define a new basis

! / l
62:€2K1, 63:63[(1, ey en:enKl. (75)

Since these basis elements anticommute and have unit square, we can regard them as vectors
generating a Euclidean algebra R,_; which commutes with R; ;. The complementary
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vectors €, = e; K; generate the corresponding anti-Euclidean algebra R,,_; Thus we obtain
an explicit projective split of R, ,,

This process can, of course, be repeated to express R, , as an n-fold product of com-
muting R, algebras. Also, similar splits can be made with respect to two-blades with
negative signature. We cannot analyze, here, the rich group structure associated with the
various splits. Our aim is only to call attention to the possibilities.
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