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THE KINEMATIC ORIGIN OF COMPLEX WAVE FUNCTIONS

David Hestenes

Abstract. A reformulation of the Dirac theory reveals that ih̄ has a geometric meaning

relating it to electron spin. This provides the basis for a coherent physical interpretation

of the Dirac and Schödinger theories wherein the complex phase factor exp(−iϕ/h̄) in

the wave function describes electron zitterbewegung, a localized, circular motion gener-

ating the electron spin and magnetic moment. Zitterbewegung interactions also generate

resonances which may explain quantization, diffraction, and the Pauli principle.

You know, it would be sufficient to really understand the electron.
— Albert Einstein [1]

1. Introduction.

Edwin T. Jaynes is one of the great thinkers of twentieth century science [20]. More
than anyone else he has deepened and clarified the role of statistical inference in science
and engineering. To my mind, his greatest accomplishment has been to recognize that in
the evolution of statistical mechanics the principles of physics had gotten confused with
principles of statistical inference, and then to show how the two can be cleanly separated
to produce a simpler yet more powerful theoretical system.

I share with Ed Jaynes the belief that quantum mechanics suffers from an analogous
muddle of probability with physics, which is at the root of the perennial controversy over
physical interpretation. Though a Jaynesian revolution of the “quantum muddle” remains
elusive, I will report here on a promising possibility that has been overlooked.

One of the puzzling features of quantum mechanics is the fact that “probability ampli-
tudes” are complex numbers whereas probabilities are real. This has inspired a belief that
quantum mechanics somehow involves a generalization of the “classical probability con-
cept.” On the contrary, I contend that complex phase factors have a physical origin that
has noting to do with the probability concept per se.

The words of Einstein heading this article serve to remind us that the main ideas, as well
as the greatest successes, of quantum mechanics have come from studying the electron. To
the electron, therefore, we should look for the physical clues needed to resolve the quantum
muddle. Now, the Dirac electron theory and its extension to quantum electrodynamics
is universally recognized as the most well substantiated domain of physics. Strangely,
however, it is rarely involved in the discussions of the foundations of quantum mechanics.
This is a grievous error, for the Dirac theory entails an irreducible relation between spin and
complex numbers with undeniable implications for the interpretation of quantum mechanics.
Analysis of this relation strongly suggests that the complex phase factor in the complex
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function describes a kinematic feature of electron wave motion and therefore has a physical,
rather than statistical, origin.

The argument in support of these contentions has been elaborated elsewhere [3], so we
can be satisfied here with an outline of the main ideas. The argument and its implications
are developed in three separate stages. Stage I is a reformulation of the Dirac theory which
makes its geometric structure explicit, and reveals a connection between spin and the
complex imaginary. Stage II assigns a coherent physical interpretation to the Dirac theory
which is consistent with its geometric structure. Stage III speculates on the possibilityof a
deeper theory of electrons to which the Dirac theory is only an approximation.

In the text that follows, major assertions are set off in boxes and supported by just
enough discussion to make them intelligible or, at least, stimulating to reader familiar with
the Dirac theory.

2. STAGE I. Explicating the geometric structure of the Dirac theory.

The crucial first step is to recognize that the set of Dirac matrices γµ can be interpreted as
an orthonormal frame of vectors in spacetime, rather than mysterious matrix components
of a single vector, as is ordinarily done. This is possible because products of the γµ have
well-defined geometric meanings. Thus, the familiar symmetrized product

1
2 (γµγν + γνγµ) = γµ · γν = gµν (1)

is nothing other than the inner product of vectors defining the metric tensor gµν . On the
other hand, the antisymmetrized product

1
2 (γµγν − γνγµ) = γµ Λ γν (2)

can be identified with the outer product of Grassmann algebra, with the γµ Λ γν composing
a basis for the space of bivectors (i.e., skew-symmetric tensors of rank two). These two
products are thus parts of a single geometric product

γµγν = γµ · γν + γµ Λ γν . (3)

Two other geometric entities are generated by this product: the trivectors (or pseudovectors)

γµ Λ γν Λ γα = εµναβγβγ5 (4)

and the pseudoscalar
γ5 = γ0γ1γ2γ3 = γ0 Λ γ1 Λ γ2 Λ γ3. (5)

All of these geometric entities are perfectly defined without regarding the γµ as matrices.
Every element of the Dirac algebra can be expressed as a linear combination of the 16 basis
elements (with µ, ν = 0, 1, 2, 3)

I, γµ, γµ Λ γν , γµγ5, γ5 (6)

where I is the identity matrix if the γµ are matrices, but I = 1 is the unit scalar if the
γµ are regarded as vectors. If the coefficients are real, the matrix algebra generated by
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these basis elements is called the real Dirac algebra, but the algebra is called the spacetime
algebra if the γµ are vectors. Thus, it can be concluded that:

The real Dirac algebra is a matrix representation of a generic geometric
algebra describing properties of spacetime with no special relation to the
quantum mechanics of spin.

The spacetime algebra was first employed in the formulation of electrodynamics and general
relativity in [4].

Naturally, it takes some practice to become fully conversant with the spacetime algebra
and its geometric significance. In the meantime, readers may continue to regard the γµ as
matrices when considering algebraic manipulations.

The next step in explicating the geometric structure of the Dirac theory is to reformulate
it in terms of the spacetime algebra. One easy way to do that is to choose a fixed unit
spinor u satisfying the eigenvalue equations

γ0u = u, (7)

γ2γ1u = iu, (8)

where i is the usual unit imaginary of the complex field. Equation (8) is especially significant
because it relates i to the bivector γ2γ1, and thus reveals that i has an implicit geometric
meaning in the Dirac theory. This meaning can be made explicit by eliminating i from the
theory in favor of the geometric quantity γ2γ1. It is easy to prove that each Dirac spinor
Ψ can be written in the form

Ψ = ψu, (9)

where ψ is a unique even element of the real Dirac algebra. In other words, ψ can be
written in the form

ψ = α1 + αµν γµ Λ γν + α2γ5, (10)

where the eight alphas are real coefficients. Since there is an isomorphism between Ψ and
ψ, it is fair to refer to ψ as a spinor or, more specifically, as an operator representation of
a Dirac spinor.

In terms of ψ the Dirac equation takes the form

γµ
(
∂µψγ2γ1h̄ − e

c
Aµψ

)
= mcψγ0 (11)

Multiplication by u on the right shows immediately that this is equivalent to the usual
Dirac equation

γµ
(
ih̄∂µ − e

c
Aµ

)
Ψ = mcΨ (12)

The significant difference between these isomorphic equations is that (11) involves the real
Dirac algebra exclusively. Note how the imaginary factor ih̄ in (12) has been replaced by
the bivector γ2γ1h̄ in (11).

The geometric structure of the Dirac wave function is expressed by the following asser-
tion.
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The Dirac wave function has an invariant operator representation

ψ =
(
ρeβγ5

) 1
2 R, (13)

where R is a unimodular spinor describing the kinematics of electron motion.

Here unimodularity means that R can be written in the form

R = e
1
2 B , (14)

where B is a bivector. The relation to kinematics comes from the fact that R determines
a Lorentz transformation of the frame {γµ} into a “frame of observables” {eµ} given by

eµ = RγµR̃ . (15)

The timelike unit vector e0 is the direction of the Dirac current, while e3 is the direction
of the “spin,” or polarization, vector. This can be proved by establishing the following
relations to standard expressions in the Dirac theory. The components Jµ of the Dirac
current

J = ψγ0ψ̃ = ρe0 (16a)

are given by
Jµ = J · γµ = Ψ̃γµΨ. (16b)

The components of the spin vector

s = 1
2 h̄e3 (17a)

are given by
ρsµ = 1

2 h̄γµ · (ψγ3ψ̃) = 1
2 h̄Ψ̃γ5γµΨ. (17b)

The γµ (or the γ0γµ) have been interpreted as velocity operators in the Dirac theory. As
(16b) shows, this is tantamount to identifying the direction of Dirac current as the local
electron velocity, so the γµ are operators only in the trivial sense of picking-out vector
components by the inner product with basis vectors.

Spin angular momentum is actually a bivector quantity, though it can be proved from
angular momentum conservation the Dirac theory that the bivector spin S is related to the
spin vector s in (17a) by

S = γ5se0 = 1
2 h̄γ5e3e0. (18a)

Moreover, γ5e3e0 = e2e1, so

S = 1
2 h̄e2e1 = 1

2R(γ2γ1h̄)R̃ . (18b)

This relates the bivector γ2γ1h̄ in the Dirac equation (11) to the electron spin. To express
it as a relation in the standard Dirac language, multiply (9) by (18b) and use (13) and (8)
to get

4



SΨ = 1
2 ih̄Ψ (19)

This proves unequivocally that the “imaginary” factor ih̄ in the Dirac equation is a
representation of the electron spin angular momentum S by its eigenvalue, and the
electron wave function is always an “eigenstate” of the spin.

This fact that the ubiquitous factor ih̄ is a representation of electron spin necessarily
applies to the Schrödinger equation as well, in as much as it is an approximation to the
Dirac equation. It enriches Dirac’s conclusion that the most fundamental aspect of quantum
mechanics is the role of the unit imaginary i [5].

3. STAGE II. The zbw interpretation.

The identification of the bivector S as spin rests on the prior identification of

p
µ

= ih̄∂µ − e

c
Aµ (20)

as energy-momentum operator, which is surely one of the fundamental postulates of quan-
tum mechanics. But what shall we make of the “spin” factor ih̄ in (20)? An answer is
suggested by examining the electron kinematics.

In terms of p
µ

the energy-momentum tensor of the Dirac theory is given by

Tµν = Ψ̃γµp
ν
Ψ (21)

To see what this implies about electron kinematics, note that the derivatives of the kine-
matics factor R in (13) can be written in the form

∂µR = 1
2ΩµR, (22)

where Ωµ is a bivector representing the rotational velocity of the frame {eν} under a
displacement in the direction γµ.

The local electron momentum pµ is defined by the energy-momentum flux in the direction
of the electron velocity, that is,

ρpµ = (e0 · γν)Tµν , (23)

where ρ is the probability density defined by (13). Evaluated with (21) and (22), (23)
yields

pµ = S · Ωµ − e

c
Aµ (24)

The term S · Ωµ has precisely the form of a rotational kinetic energy. Thus, the
intrinsic energy (mass) of the electron is associated with rotational motion in the
spacelike plane of the spin S.

To give this fact a literal physical interpretation wherein the spin S is generated by
electron motion, the velocity of the electron must be redefined to maintain a component
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in the spin plane. Accordingly, the most natural definition of electron velocity is the null
vector

u = e0 − e2. (25)

This leads to a self-consistent interpretation of the Dirac theory with the following features:

(a)
The electron is modeled as a structureless point particle travelling at the speed
of light along a helical lightlike trajectory in spacetime.

(b)

The helical trajectory has a diameter on the order of a Compton wavelength,
and a circular frequency on the order of twice the de Broglie frequency mc2/h̄ ≈
1021s−1.

(c)
The helical motion generates electron spin and may be attributed to magnetic
self-interaction.

(d)
Each solution of the Dirac equation determines an infinite family of such helices
and a probability distribution for the electron to be found on any given helix.

(e) The center of curvature for each helix lies on a streamline of the Dirac current.

All these assertions are consistent with the mathematical form of the Dirac theory, and
they supply the mathematical structure of the theory with the most complete and coherent
physical interpretation available. They constitute a generalization of the zitterbewegung
interpretation originally proposed by Schrödinger.

The zitterbewegung (zbw) is reflected in the structure of the kinematic factor R of the
Dirac wave function (13) by writing it in the form

R = R0e
−γ2γ1ϕ/h̄. (26)

The helical motion of the electron can be visualized as a particle moving in a circle lying in
the spacelike plane of the spin S while the center of the circle is translated along a streamline
of the Dirac current. The phase angle ϕ in (26) represents the angular displacement on the
circle (in units of angular momentum), lying in γ2γ1-plane, while R0 represents a Lorentz
transformation which rotates this plane into the spin plane. Inserting (26) into (22) and
using (18b), one finds

Ωµ = 2(∂µR)R̃ = 2(∂µR)R̃0 + (∂µϕ)S−1 . (27)

The term involving R0 describes relativistic effects as the electron is accelerated by external
forces, and it is always smaller than the last term. By keeping only the dominant term,
then, insertion of (27) into (24) yields

pµ = ∂µϕ − e

c
Aµ, (28)

which shows explicitly that the electron energy-momentum can be attributed to the circular
zitterbewegung. In the same approximation, we can set R0 = 1 and the Dirac wave function
reduces to

ψ0 = ρ
1
2 e−γ2γ1ϕ/h̄ (29)
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This is exactly the form of the Schrödinger wave function. Thus, we conclude that

The complex phase factor exp(−iϕ/h̄) in both the Dirac and Schrödinger
wave functions describes kinematics of electron motion, specifically the cir-
cular zitterbewegung.

Schrödinger theory describes the dominant component of the zitterbewegung. That’s
why it is such a successful approximation to the Dirac theory.

Of course, the challenge to this interpretation is to devise experimental tests which show
that the helical zitterbewegung is a real physical phenomenon. One such test is a prediction
of deviations from the Mott-scattering cross section when the impact parameter is on the
order of a Compton wavelength [6].

4. STAGE III. Zitterbewegung Interactions.

If the circular zitterbewegung is a real physical phenomenon and not merely a picturesque
metaphor, then we should expect its presence to be manifest in the electron’s electromag-
netic field. Indeed, to explain the electron’s static magnetic dipole field as a consequence
of the zitterbewegung, we must regard the electron as a point charge for which the average
motion over a zitterbewegung period is an effective current loop. But the same assumption
implies that the zitterbewegung must generate high-frequency fluctuations about that av-
erage; call this the zitterbewegung field of the electron. The frequency of these fluctuations
(∼ 1021s−1) is too high to observe directly, but it has been suggested that zitterbewegung
fields are responsible for some of the most peculiar features of quantum mechanics [7].

The possibility of zbw interactions is not contemplated in the Dirac theory, though to
some degree it may be inherent in the theory and its extention to quantum electrodynamics.
In any case, it appears that a complete mathematical treatment of zbw interactions requires
new physical assumptions which have not yet been formulated and analyzed, so the best
that can be done at this time is a qualitative analysis of possibleconsequences.

We begin with the picture of each electron as the seat of a bound electromagnetic field
fluctuating with the electron’s zbw frequency, and we set aside the question of what theoret-
ical assumptions are necessary to make this possible. Every electron, of course, is perturbed
by the zbw fields of other electrons, with doppler-shifted frequencies due to their motions.
Conceivably, this random background of electromagnetic fluctuations can play the role of
the vacuum field in quantum electrodynamics, and a stochastic term in the electron equa-
tions of motion is needed to account for its effect. In that case, the Casimir effect could be
explained by adapting well-known arguments.

A more significant and prominent feature of zbw interactions is the likelihood of reso-
nances. Three kinds of resonances are of special interest:
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(1) Electron diffraction is usually “explained” by invoking an interference metaphor.
However, an explanation in terms of “quantized momentum exchange” is equally
consistent with the formalism of quantum mechanics as well as a strict particle
interpretation. Moreover, the zbw field provides a physical mechanism for this
exchange. When an electron is incident on a crystal, it is preceded by its zbw field
which is reflected from the crystal back to the electron. The conditions for resonant
momentum exchange are met when the reflected field is resonant with the electron’s
zbw, which must occur at the Bragg angles if the explanation is correct.

(2) Quantized energy states appear when the frequency of an electron’s orbital mo-
tion is resonant with a harmonic of its zbw frequency, as is implied by a zbw inter-
pretation of solutions to Schrödinger’s equations. As in diffraction, the underlying
causal mechanism may be a resonance of the electron’s zbw with the reflection of
its own zbw field off the atomic nucleus.

(3) The Pauli principle may be explained as a zbw resonance between two electrons,
mediated by their zbw fields. Such a resonance can occur only when the electrons
are in the same state of translational motion, as the Pauli principle requires.

Other quantum phenomenon, such as barrier penetration and the Lamb shift, can also
be explained qualitatively by the zbw. The problem remains to make these explanations
fully quantitative.
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