
In: Neural Networks, Vol. 7 No. 1( c© Elsevier Science Ltd, 1994), 65–77.

Invariant Body Kinematics:

I. Saccadic and Compensatory Eye Movements

DAVID HESTENES

Abstract. A new invariant formulation of 3D eye-head kinematics im-
proves on the computational advantages of quaternions. This includes a
new formulation of Listing’s Law parameterized by gaze direction leading
to an additive rather than a multiplicative saccadic error correction with
a gaze vector difference control variable. A completely general formulation
of compensatory kinematics characterizes arbitrary rotational and trans-
lational motions, vergence computation, and smooth pursuit. The result
is an invariant, quantitative formulation of the computational tasks that
must be performed by the oculomotor system for accurate 3D gaze control.
Some implications for neural network modeling are discussed.

1. INTRODUCTION

Tweed and Vilis (987, 1990a) have put forward a provocative quaternion model of saccadic
eye movement. Is it really plausible, though, to contend that biological systems have discov-
ered and implemented the laws of quaternion calculus in oculomotor control? Those laws
are, as a matter of fact, inherent in the properties of three-dimensional (3D) rotations, from
which Hamilton extracted them a century and a half ago. Although there are many alterna-
tive mathematical representations for rotations (employing matrices with various systems
of coordinates, for example), Tweed and Vilis have correctly noted that quaternions are
computationally the most efficient and, further, are more directly related to the relevant
physiological variables. Therefore, environmental pressures toward fast and accurate ocu-
lomotor control would favor the evolution of some sort of quaternion implementation in the
nervous system.

To this day, even among mathematicians, quaternions are commonly regarded as a math-
ematical oddity outside the scientific mainstream. However, many workers in fields such as
space science have rediscovered for themselves the superiority of quaternions over conven-
tional matrix methods for intensive computations with 3D rotations. Recently, quaternions
have been integrated into a more powerful mathematical system called geometric algebra
(Hestenes, 1986). This system combines all the advantages of quaternions with those of
conventional vector calculus and applies to a far larger mathematical domain.

Geometric algebra is best regarded as a mathematical language for expressing geometric
concepts. Indeed, it is arguably the optimal encoding of geometric concepts in algebraic
form. The grammatical structure of this language is known as Clifford algebra among
mathematicians. However, mathematicians have generally overlooked the geometric inter-
pretation of Clifford algebra and so missed most of its implications for science and engi-
neering. It is the interpretation that transforms Clifford algebra from just another curious
mathematical structure into a powerful scientific language.
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This article presents an invariant formulation and analysis of 3D eye-head kinematics
in terms of geometric algebra. The term invariant here means coordinate-free, that is,
independent of any particular coordinate system. To be sure, the brain employs its own
intrinsic systems of coordinates (Ostriker, Llinas & Pellionisz, 1985), but they are only par-
tially known. Indeed, one of the chief problems of neuroscience is to discover the coordinate
systems or, if you will, the computational codes employed by the brain. This task can be
facilitated by an invariant formulation of body kinematics, providing an unbiased specifica-
tion of the computational tasks that must be solved by the brain to produce accurate and
efficient body movement.

Geometric algebra is an alternative to tensor analysis, which has been employed in sen-
sorimotor theory by Pellionisz and Llinas since 1980. lt is superior to tensor theory in at
least two ways. First, tensor theory is covariant rather than invariant, which means that
coordinates play an essential role and transformation laws must be introduced to formulate
coordinate-independent relations. Geometric algebra avoids all that. Second, computa-
tionally more efficient, in part, because it includes spinors and tensor theory does not. Its
computational superiority has been explicitly demonstrated by computer tests on complex
calculations in the General Theory of Relativity (Moussiaux & Tombal, 1988).

Besides enabling an invariant formulation of kinematics, geometric algebra facilitates the
analysis of alternative control variables, coordinate systems, and kinematic constraints.
This is demonstrated below in a detailed analysis of Listing’s Law, an empirically based
constraint on saccadic eye movement that provides an important clue to the control vari-
ables employed by the brain. A second topic treated below is the coupling between eye and
head kinematics that must be controlled to produce stable images of the external world as
well as to track the images of moving objects.

This paper develops a complete invariant formulation of kinematic computations that
are essential for perfect 3D oculomotor control. Such kinematic analysis is an essential
prerequisite to understanding how the oculomotor neural system operates, because it de-
scribes the computational tasks to be performed. This is evident in the pioneering work of
Robinson (1981). He emphasizes that progress in understanding the oculomotor system has
been greater than for other motor systems in large part because the functions it performs
are so well understood and can be described so precisely. These descriptions are essentially
kinematical. Understandably, Robinson’s early work and most of the oculomotor research
that followed concentrated on one-dimensional kinematics. However, the field is sufficiently
mature now for complete 3D kinematics analysis. The geometric algebra employed applies
equally well to dynamics (Hestenes, 1986). The whole approach will be set in a broader
context in a subsequent paper (Hestenes, 1993). The first to apply quaternions in this field
was Westheimer (1957), and the relevance of Clifford algebra has been noted by Tweed,
Cadera, and Vilis (1990).

2. GEOMETRIC ALGEBRA

Geometric algebras exist for spaces of any dimension, but we will be concerned here only
with the geometric algebra G3 for the 3D Euclidean space of the physical world. One way
to construct G3 is to define an associative product on an orthonormal set of vectors σ1, σ2,
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σ3. For the products of vectors with themselves, we assume

σ2
k = 1 for k = 1, 2, 3 , (1)

and for the products with each other we assume the anticommutative rule

σiσj = −σjσi for i �= j . (2)

The latter binary products of vectors generate new entities called bivectors. There are
exactly three such bivectors, and they can be expressed in several alternative forms:

σ1σ2 = iσ3 = I3 = −k ,

σ3σ1 = iσ2 = I2 = −j ,

σ2σ3 = iσ1 = I1 = −i . (3)

The significance of these alternatives needs some explanation. First, note that these three
bivectors form a basis for a 3D space of bivectors. Just as any vector a can be formed from
a linear combination of the basis vectors σk by writing

a =
∑

k

akσk = a1σ1 + a2σ2 + a3σ3 , (4)

where the ak are scalar (real number) coefficients; so any bivector B can be formed by the
linear combination

B =
∑

k

BkIk , (5)

with scalar coefficients Bk

Though twofold products of the σk generate three distinct bivectors, only one new entity
is generated by threefold products. That is the unit, righthanded pseudoscalar

i = σ1σ2σ3 = −σ3σ2σ1 . (6)

This defines the symbol i appearing in eqn (3), and from eqn (3) we see that every bivector
can be obtained from a vector by multiplication with i. Therefore, to every bivector B
there corresponds a unique vector b such that

B = ib = bi . (7)

Multiplication by i is called a duality transformation and B is said to be the dual of b. As
asserted in eqn (7), multiplication by i is commutative. Furthermore, it is easily proved
from eqn (6) that

i2 = −1 . (8)

Therefore, i has the algebraic properties of scalar imaginary unit. However, it is crucial to
recognize that i also has a geometric interpretation as a pseudoscalar.

Hamilton’s symbols i, j, k for a quaternion basis were introduced in eqn (3) to show how
naturally quaternions fit into geometric algebra. The minus sign appears in eqn (3) be-
cause Hamilton adopted a lefthanded basis, whereas we assume that {σk} is a righthanded
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basis set. Hamilton’s rules for quaternion products follow automatically from the more
fundamental rules eqns (l) and (2); thus,

ij = (σ2σ3)(σ3σ1) = σ2(σ3)2σ1 = σ2σ1 = k = −ji

and
i2 = (σ2σ3)(σ2σ3) = −(σ3σ2)(σ2σ3) = −1 = j2 = k2 .

Note the use of associativity in the derivation. Hamilton originally introduced the term
vector for the bivectors i, j, k. Failure to understand the crucial geometrical distinction
between vectors and bivectors (see below) has propagated confusion in the literature to this
day.

Just as the real and imaginary complex numbers can be added, so scalars and bivectors
can be added to form a four-dimensional linear space that can be identified with Hamilton’s
quaternions. As shown above, products of bivectors generate scalars and other bivectors
but never vectors. Thus, the space of quaternions is closed under multiplication, so it is a
subalgebra of the geometric algebra G3.

Independent of any basis, any quaternion Q can be invariantly decomposed into the sum
of a scalar part Q0 and a bivector part Q = iq; thus,

Q = Q0 + Q = Q0 + iq . (9)

This is completely analogous to, or better, it generalizes the decomposition of a complex
number into real and imaginary parts. Each quaternion Q has a unique conjugate Q† given
by

Q† = Q0 − Q = Q0 − iq . (10)

Each Q also has a positive scalar norm or modulus |Q | defined by

QQ† = Q2
0 − Q2 = Q2

0 + q2 = |Q |2 . (11)

From this we infer that Q has a unique multiplicative inverse given by

Q−1 = Q†|Q |−2 . (12)

This completes the algebraic fundamentals of quaternion calculus, but there is more to be
said about its geometric significance and how it fits into geometric algebra. In particular, it
is crucial to recognize that the quantity Q in eqn (9), which is referred to as a vector in the
quaternion literature, must be interpreted as a bivector in geometric algebra to conform to
the coherent geometric interpretation to which we now turn.

The standard geometric interpretation of the vectors σk as representations of (or by)
directed line segments is illustrated in Figure 1a. Similarly, as illustrated in Figure 1b, the
algebraic product of vectors producing bivectors in eqn (3) can be interpreted as a geometric
productof directed line segments to produce directed plane segments. Note that the order
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of multiplication determines an orientation for
the plane segment, and the two possible orien-
tations can be distinguished algebraically by
plus or minus signs, just as for vectors.

Figure 1c illustrates the interpretation of the
unit pseudoscalar i = σ1σ2σ3 as an oriented
space segment (or volume element). Lengths,
areas, and volumes of line, plane, and space
segments are given by the magnitudes of the
corresponding vectors, bivectors, or pseudosca-
lars.

Just as every oriented (straight) line has a
direction that can be represented by a unique
unit vector, so every oriented plane has a direc-
tion uniquely represented by a unit bivector.
Bivectors have another important geometrical
interpretation. Besides representing the unit
directed area element for a unique plane each
unit bivector I is the generator of rotations in
that plane. Specifically, it satisfies

I2 = −1 , (13a)

and multiplication by I of any vector a1 in the
I-plane produces a new vector a2 orthogonal
to a1 as expressed by

a2 = a1I = −Ia1 . (13b)

FIGURE 1. A geometric interpretation of or-
thonormal basis elements in geometric algebra.
(a) Unit vectors σσσ1, σσσ2, σσσ3 interpreted as di-
rected line segments. (b) Unit bivectors σσσ1σσσ2,
σσσ2σσσ3, σσσ3σσσ1 interpreted as directed plane segments.
Note how an orientation (or sense) for each plane
segment is determined by the head-to-tail order-
ing of vectors on the boundary. (c) The unit
trivector i=σσσ1σσσ2σσσ3 interpreted as an oriented vol-
ume (pseudoscalar).

Indeed, for a2
1 = 1, this can be solved for

I = a1a2 = −a2a1 ,

a generalization of relations in eqn (3) to an arbitrary plane. Furthermore, it can be proved
that any given vector, a, lies in the I-plane iff it anticommutes with I as in eqn (13b).

Generating G3 from an orthonormal basis has the advantage of leading quickly to the
well-known relations for a quaternion basis. But there is a more fundamental, invariant
way to generate the geometric algebra. Beginning with a real 3D vector space V3 of vectors
a,b, c . . . , one defines the geometric product ab by adopting the following axioms (or rules):

1. Distributivity:
a(b + c) = ab + ac ,

(b + c)a = ba + ca .
(14a)

2. Associativity:
(ab)c = a(bc) , (14b)

5



3. Commutativity, for multiplication by any scalar λ:

λa = aλ , (14c)

4. Contraction:
a2 = |a |2 ≥ 0 , (14d)

where |a | is a positive scalar (real number) called the length, magnitude, or modulus of a,
and |a |2 = 0 iff a = 0.

With these rules, the entire geometric algebra G3 can be generated from V3 by multi-
plication and addition. It is the contraction rule (14d) relating vectors multiplicatively to
scalars that sets geometric algebra apart from all other associative algebras. Manipulations
as well as notations are the same as in ordinary scalar algebra with the single exception that
multiplicative factors cannot be rearranged at will, because multiplication is not generally
commutative. One can, for example, divide by nonzero vectors. The multiplicative inverse
a−1 of a vector a is defined implicitly by

aa−1 = 1 . (15a)

Multiplying this by a and using eqn (14d), one gets the explicit expressions

a−1 = |a |−2a =
a
a2

=
a

|a |2 =
1
a

. (15b)

We have already used this in solving eqn (13b) for I.
From the geometric product it is convenient to define two other products from the invari-

ant decomposition into symmetric and antisymmetric parts. Thus, the usual inner product
a · b is defined by

a · b = 1
2 (ab + ba) = b · a . (16a)

The outer product a ∧ b is defined by

a ∧ b = 1
2 (ab − ba) = −b ∧ a . (16b)

Addition of (16a) and (16b) yields

ab = a · b + a ∧ b = b · a − b ∧ a . (16c)

It follows from the axioms that the inner product is scalar-valued, and the outer product
is bivector-valued. Therefore, eqn (16c) is a decomposition of the product ab into scalar
and bivector parts. This is the same as the decomposition (9) of a quaternion into scalar
and bivector parts, for the product ab is quaternion-valued. Conversely, any quaternion
Q = Q0 + Q can be factored into a product of two vectors, as expressed by writing

Q = ab . (17)

This factorization is not unique. However, selecting any nonzero vector a in the plane of Q
(that is, the plane determined by the bivector Q), the vector b is uniquely determined by

b = a−1Q = Q†a−1 . (18)
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This generalizes (13b), including the fact that a must anticommute with the bivector Q.
Comparison of eqn (17) with eqn (10) reveals that

Q† = (ab)† = ba , (19)

so quaternion conjugation can be seen as a consequence of reversing the order of vectors in
a geometric product. For that reason, the operation is called reversion in geometric algebra.
From eqn (6) we can deduce that the unit pseudoscalar, like bivectors, changes sign under
reversion, that is,

i† = −i . (20)

Reversion is analogous to hermitian conjugation in matrix algebra. For any quantities P, Q,
it satisfies the relations

(PQ)† = Q†P † , (21a)

(P + Q)† = P † + Q† . (21b)

The dual of the bivector a ∧ b is a vector, denoted by a × b so we have

a ∧ b = i(a × b) . (22)

As the notation suggests, the vector-valued function a × b defined in this way is precisely
the cross product of standard vector analysis. Accordingly, eqn (16c) can be written in the
form

ab = a · b + i(a × b) . (23)

This shows how the two products a ∧ b and a× b are contained in geometric algebra and,
by virtue of eqn (17), how they are related to quaternions.

The outer product a ∧ b is more fundamental than the cross product a × b because it
applies in any dimension, including two, whereas the vector cross product is a special feature
of three dimensions. However, the relations (22) and (23) make it easy to translate from
one to the other, and the cross product will be preferred below, because it is so much more
familiar to most readers. The outer product of three vectors a ∧ b ∧ c is a pseudoscalar,
and it can be shown to be related to the cross product by

a ∧ b ∧ c = i[(a × b) · c] . (24)

This completes our survey of the fundamentals of geometric algebra. Next we apply it to
rotations.

3. THE CALCULUS OF ROTATIONS

Any rigid rotation of a physical body can be described mathematically as a linear trans-
formation of the vector space V3 that preserves the length of every vector. In geometric
algebra, a rotation transforming each vector r′ into a vector r can be written in the canonical
form

r = Qr′Q−1 , (25)
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where Q is a quaternion. Because Q determines the rotation uniquely by this equation, it
can be regarded as a mathematical representation of the rotation itself. Accordingly, it will
be convenient to use Q itself as a name for rotation it represents. Quaternions employed to
represent a rotation in this way can be called spinors because they are isomorphic to the
spinors employed by physicists in a different mathematical guise.

The spinor Q representing a particular rotation is unique up to multiplication by a
nonzero scalar λ, for if Q is replaced λQ in eqn (25) the λ cancels to leave the equation
unchanged. This arbitrariness can be reduced by normalizing Q to |Q | = 1, in which
case, according to eqn (12), Q−1 = Q†. However, this is unnecessary, and sometimes it is
inconvenient.

Equation (25) is the same as the one describing rotations in the quaternion calculus,
except that r and r′ are genuine vectors rather than bivectors as the quaternion calcu-
lus inadvertently requires. Moreover, geometric algebra has advantages in parametrizing
spinors, as shown below.

Rotations form a mathematical group, which means that the composite of two rotations
is equivalent to a third rotation. This is represented with spinors by multiplication. Thus,
a rotation Q followed by a rotation P determines a rotation

S = PQ . (26)

In other words, the multiplicative group of spinors is a faithful representation of the rotation
group. The 3D rotation group is a three-parameter continuous group, which means that
every rotation can be represented by a continuous spinor-valued function of three scalar
parameters. There are many such parametrizations, each of value in a different application.
We now review several of interest for describing eye and limb movements. It should be
remembered, though, that the spinor variable Q in eqn (25) is an invariant representation
of a rotation in the sense that it is independent of any specific parametrization (or choice
of coordinates). Accordingly, it is advisable to avoid making a particular parametrization
explicit unless absolutely necessary. Note, for example, that the inverse of eqn (25) is simply

r′ = Q−1rQ , (27)

and the computation of Q−1 from Q is trivial without parametrization.
Rotations can be parametrized by an angle vector a = aâ, where a = |a | is the rotation

angle and the unit vector â is the direction of the rotation axis. In this case, the spinor Q
is given by the exponential function

Q = e−ia/2 = cos 1
2a − â sin 1

2a . (28a)

The minus sign is adopted to conform to the standard right-hand rule for the direction of
the rotation axis. It does not appear in quaternion formulations employing a left-handed
coordinate system. The angle in eqn (28a) is necessarily positive because a change in sign
is expressed by reversing the direction of the rotation axis. The one half appears in eqn
(28a) because (25) is a bilinear (or quadratic) function of Q, and Q can be expressed as
the square root Q = (e−ia)1/2. To make eqn (28a) look more like the familiar exponential
function in complex variable theory, one can define a unit bivector I = ia with I2 = −1 so
eqn (28a) takes the form

Q = e−Ia/2 = cos 1
2a − I sin 1

2a . (28b)

8



This is actually more fundamental than eqn (28a) because it describes rotation in two
dimensions where there is no rotation axis. Also. it is worth noting that a rotation angle
should really be regarded as a bivector Ia that specifies the plane of the rotation by its
direction I.

The invariant decomposition Q = q0 − iq with the normalization |Q | = q2
0 + q2 = 1

specifies a parametrization of Q by the vector q. Computationally, this is the simplest
parametrization for evaluating the composite of finite rotations, as is evident in evaluating
the product (26). Expressing eqn (26) in the form

S = s0 − is = (p0 − ip)(q0 − iq) ,

the right side can be expanded, and scalar and bivector parts can be separated to yield the
explicit expressions

s0 = p0q0 − p · q , (29a)

s = q0p + p0q · q + p × q . (29b)

This can be expressed as a relation among rotation angles, for comparison with (28a) shows
that

q0 = cos 1
2a , (30a)

s = â sin 1
2a . (30b)

However, this trigonometric relation between a and q is computationally expensive, an
expense that can be avoided if q rather than a is used to parametrize rotations. By the
way, q0 and q are most frequently called Euler parameters in the literature (not to be
confused with Euler angles).

If Q is not normalized to unity, its relation to the rotation angle is, instead of eqns
(30a,b), best expressed by

q/q0 = â tan 1
2a , (31a)

so
Q = q0(1 − i â tan 1

2a) , (31b)

and
|Q |2 = q2

0(1 + tan2 1
2a) . (31c)

Alternatively, a rotation Q can be parametrized by expressing it as a product

Q = ABC (32)

of three spinors, each of which is a function of a single parameter alone. An advantage of this
approach is that each factor can be chosen to have a fixed rotation axis. Parametrization
by Euler angles is of this type, but there are many others, including the coordinates of Fick
and Helmholtz that are frequently employed in oculomotor studies.

Applied to an orthonormal frame {σk} as specified in Section 2, eqn (25) determines a
new orthonormal frame {ek} with

ek = QσkQ−1 . (33)
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From this, one can calculate the matrix of direction cosines

ejk = σj · ek = 〈 σjQσkQ−1 〉0 (34)

where 〈M 〉0 denotes the scalar part of M . The 3 × 3 matrix [ejk] is the standard matrix
representation of a rotation, and eqn (34) expresses it as a function of Q. Conversely, eqn
(33) can be solved to express Q as a function of the direction cosines. This inefficient
parametrization of rotations is best avoided, and it is mentioned here only to establish the
connection to matrix theory.

To complete our survey of parametrizations, we examine the significance of factoring Q
into a product of vectors Q = bc. Noting that Q−1 = c−1b−1 and substituting this into eqn
(25), it can be seen that eqn (25) can be expressed as the composition of a transformation
of the form

r = −cr′c−1 (35)

followed by a similar transformation with c replaced by b. To interpret this transformation
geometrically, use eqn (16a) in the form cr′ = −r′c + 2r′ · c to write eqn (35) in the form

r = r′ − 2(r′ · c)c−1 = r− − r+ ,

where r+ = (r′ · c)c−1 is the component of r′ collinear with c, and r− is the component
orthogonal to c. This proves that eqn (35) is a mirror reflection in the plane with normal c.
Therefore, Q = bc expresses the fact that any 3D rotation can be expressed as a product
of two reflections. We know, however, from Section 2, that this can be done in infinitely
many ways, because every vector in the plane of Q is a factor of Q. This last fact can be
exploited to determine a best choice, which we do next.

If c is a unit vector in the plane of Q that is rotated into a vector b, then, according to
eqn (18), we have Qc = cQ† and we can write

b = QcQ† = Q2c (36)

with |Q |2 = 1. This can be solved for Q2 = bc, and the square root can be found by
noting that Q2 is a rotation through twice the angle of Q. Therefore, if c or b is selected
as a factor of Q, then the other factor must lie half way between c and b, so we can write
down directly

Q = (bc)1/2 =
(b + c)c
|b + c | =

b(b + c)
|b + c | .

The normalization by |b + c | = [2(1 + b · c)]1/2 is actually of no interest, so we can write
more simply,

Q =̇ (b + c)c = b(c + b) = 1 + bc , (38)

where the symbol =̇ means projective equality or equality up to a scale factor.
Next, we summarize the fundamentals of rotational kinematics. A time-varying rotation

can be expressed as spinor-valued function of time Q = Q(t), where the modulus of Q is
constant. It follows by differentiating the fixed constraint |Q |2 = QQ† that Q must satisfy
a differential equation of the form

Q̇ = −1
2 iωQ , (39)
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where the overdot indicates differentiation and the vector ω = ω(t) is the angular velocity
of the rotation. Of course, the angular velocity should really be regarded as a bivector

Ω = iω = −2Q̇Q−1 . (40)

Also, the term angular velocity is a misnomer and a more precise term is rotational velocity,
for ω is not equal to the derivative of the angle a in eqn (28a) unless the direction of the
rotation axis a is constant. In that case, ω = ȧ = âȧ can be integrated directly to give

a(t) =
∫ t

0

ω(t) dt + a0 (41)

and the solution of eqn (39) is given by eqn (28a). The initial condition a0 = 0 corresponds
to the spinor initial condition Q(0) = 1.

For Q = Q(t) and fixed r0, eqn (25) describes the orbit r = r(t) of a point on a sphere
of radius | r | = | r0 |. To derive the equation of motion for r from eqn (39), note that
(iω)† = −iω, so reversion of eqn (38) yields

Q̇† = Q†(1
2 iω) = 1

2 iQ†ω , (42)

which becomes an equation for Q−1 on division by |Q |2. Now eqns (39) and (42) can be
used to evaluate the derivative of eqn (25); thus,

ṙ = Q̇r0Q
−1 + Qr0Q̇

−1 = −i1
2 (ωr − rω) ,

so, using the relation (23), we obtain the familiar equation

ṙ = ω × r . (43)

It is of interest to express ω as a function of r. Employing eqns (22) and (16c), we have

i ṙr = ω ∧ r = ωr − ω · r ,

whence
ω = i ṙr−1 + (ω · r)r−1 − ṙ × r−1 + (ω · r)r−1 . (44)

The last term here is the component of ω along r, which, of course, is not determined by ṙ
because ṙ · r = 0.

With Q = Q(t), eqn (30) describes a rotating frame {ek = ek(t)} with derivatives

ėk = ω × ek . (45)

This can be given a variety of interpretations. In particular we may regard {ek} as a rigid
frame, attached to the point r, which rotates as it is transported along the path r(t). We
set e1 = r̂, so e2 and e3 are at every point r tangent to the sphere on which the frame
moves. The velocity ṙ of the path also lies in the tangent plane, and its change of direction
is completely described by the first term on the right side of eqn (44). Therefore, the last
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term in eqn (44) describes the rate at which the angle between ṙ and e2 or e3 changes with
the motion. Denoting this angle by ϕ, we can write

ω · r̂ = ω · e1 = ˙varphi . (46)

Adopting a term from physics, let ϕ be called the phase of the motion.
The spinor Q can be factored into the product of a spinor R determining the orbit r(t)

and a spinor determining the phase. Specifically,

Q = R exp{−1
2 iσ1ϕ} . (47)

with
Ṙ = 1

2 ṙr−1R = 1
2 ė1e1R . (48)

This result can be proved by substituting eqn (46) into eqn (39); thus,

iω = −2ṘR−1 − 2Q(−1
2σ1ϕ̇)Q−1 = e1ė1 + ie1

˙varphi ,

which agrees with eqn (44).
In differential geometry, the shortest path between two points on a surface is called a

geodesic, and transport of a frame along a geodesic r = r(t) that maintains a fixed angle
with the velocity ṙ (so ˙varphi = 0) is called parallel transport. The geodesics on a sphere
are, of course, great circles, which are curves with a fixed axis of rotation determined by
the endpoints. It follows that the spinor R in eqn (46) for a geodesic from point a to point
b has an angular velocity of the form

ω1 = r−1 × ṙ = λ̇b × a , (49)

where λ̇ = λ̇(t) is a scalar-valued function determining the speed of the motion. Therefore,
for a specified λ̇(t), eqn (48) can be integrated immediately as in eqn (41) to get R in the
exponential form (28a). An additional condition is needed to determine ϕ = ϕ(t) in eqn
(46) but ϕ = 0 is appropriate for parallel transfer.

Integration of eqn (48) along a geodesic yields a spinor describing parallel transport
between the endpoints, and the result, for transport from a to b, can be expressed in
the form eqn (38). Parallel transport around a geodesic triangle on a unit sphere with
vertices at a,b, c (Figure 2) can be expressed as product of three such spinors A = 1 + ba,
B = 1 + cb, C = 1 + ac. The result is a spinor

T = CBA = (1 + ac)(1 + cb)(1 + ba) . (50a)

Expanding and collecting scalar and bivector terms, we have

T = 2 + (ab + ba) + (ac + ca) = cb + a(cb)a
= 2(1 + a · b + a · c + c · b) + c ∧ b + a(c ∧ b)a
= 2(1 + a · b + a · c + c · b) + 2a(c ∧ b ∧ a) .

Using eqn (24), this can be written

1
2 T = 1 + a · b + b · c + c · a − ia[a · (b × c)] . (50b)
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As eqn (50b) shows, the net effect of parallel transporting a frame around a geodesic triangle
is simply to rotate it around the initial point a. By comparison with eqn (31a), the rotation
is through an angle ϕ given by

tan 1
2ϕ =

a · (b × c)
1 + a · b + b · c + c · a . (51)

If a, b, and c are mutually orthogonal, the vertex angles of the triangle are all right angles,
and eqn (51) reduces to tan 1

2ϕ = ±1, so we get the classical result ϕ = ±π, the sign
depending on the orientation of the triangle.

The result (51) belongs to spherical trigonometry, and its derivation shows how the
subject can be simplified with geometric algebra. For more of this, see Appendix A of
Hestenes (1986).

4. SACCADE KINEMATICS

The skull is a rigid body and so determines a physical reference system called the head
space in which it is at rest. This section is concerned with saccadic eye movement in the
head space. A saccade is a rapid shift of gaze in order to fixate a target object in the visual
field on the fovea. The direction of the line of sight to the foveated object is called the gaze
direction, and we represent it by a unit vector g. The fovea subtends an angle of about half
a degree in the visual field, so that provides a measure of the accuracy required for gaze
control.

For kinematic purposes, the eye can be modeled as a ball in a socket joint, so it has three
degrees of freedom. The gaze vector g can then be regarded as rotating with its tail fixed
at the center of the eye. Actually, the eye deforms and its center wobbles by as much as 2
ml as the gaze varies over the oculomotor range; nevertheless, the visual axes for different
directions intersect at a point (Carpenter, 1988), so the model of a rigidly rotating eye is
quite satisfactory for kinematic purposes.

Let p be a reference gaze direction, fixed in the head space. A saccade from p to a new
direction g can be described by a saccade spinor S satisfying

g = SpS−1 . (52)

The spinor S not only describes a change of
gaze direction but also a rotation of the eye
about the gaze direction, which is called tor-
sion in the eye movement literature. This dif-
fers, however from the concept of torsion in
differential geometry, and there is some ambi-
guity as to how it should be defined. Here I
would like to recommend a refinement of ter-
minology in the interest of greater uniformity
and precision. In the eye movement litera-
ture the term eye position is used ambiguously
to mean gaze direction or the orientation of
the eye in space. For the latter concept there
is already a well-established technical term in

FIGURE 2. Parallel transport about a spherical
triangle (i.e., a geodesic triangle) is expressed by
a product of spinors describing geodesic motion
along each side.
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the field of rigid body mechanics, namely, attitude. The attitude of a rigid body is a spec-
ification of how it is positioned or oriented in space, and, as we have seen in the preceding
section, this is best described by a spinor. an attitude spinor. The term attitude control is
well established in aeronautics. Similarly, the term gaze control should be understood as
attitude control of the eye or the gaze. Accordingly, a spinor describing the attitude of the
eye will be called the eye attitude. The saccade spinor in eqn (52) is a particular kind of eye
attitude. The term position in mechanics invariably means a particular place or location, as
designated by a position vector. The kinematic state of a rigid body requires specification
of both a position (vector) X and an attitude (spinor) R as well as their derivatives: the
translational velocity Ẋ and the rotational velocity ω = 2iṘR−1. These concepts will be
needed when combined eye-head kinematics are considered in the next section. Therefore,
it seems best to discard eye position in favor of the more precise term eye attitude, or at
least restrict it to designating the position of the center of the eye. That much said, we can
get back to business.

The structure of the saccade spinor S is completely determined by an empirically derived
kinematical constraint called Listing’s law (Helmholtz, 1866). There are many equivalent
formulations of Listing’s law, but here is one more, based on the concepts developed in the
preceding section. Donders’ law (Helmholtz, 1866) asserts that the gaze attitude S = S(g)
for any gaze direction g is unique and independent of the path (saccade sequence) by which
the eye arrived at g. Listing’s law asserts further that there is a unique gaze direction p,
called the primary direction, such that, for any g, S(g) is obtained by parallel transport
along a geodesic from p. Accordingly, Listing’s law is expressed by the formula

S(g) = 1 + gp = 1 + g · p + i(g × p) . (53)

The quaternion equivalent of the vector g × p is called the angular position vector by
Tweed and Vilis (1987), but the term will not be employed here because g is a more direct
descriptor. Note that, for all g, the vector g×p specifies the axis of rotation and lies in the
plane orthogonal to p (Listing’s plane). This is the basis for an alternative formulation of
Listing’s law already in the literature.

The most significant, new thing about the mathematical formulation of Listing’s law by
eqn (53) is that the Saccade attitude S(g) is expressed explicitly as an algebraic function of
gaze directions g and p. Also, it will become clear that use of the unnormalized spinor (52)
greatly simplifies computations by eliminating the computational costs of normalization.

Actually, for an arbitrarily chosen reference p, any gaze attitude G = G(g) can be written
in the form

G(g) = (1 + gp)e−ipϕ/2 = e−igϕ/2(1 + gp) . (54)

Identification of ϕ as torsion angle is one convenient way to define torsion. Based on eqn
(54), Donders’ law can be formulated precisely as specifying that the torsion angle is a
function ϕ = ϕ(g) of g alone, independent of the saccadic path to g. Listing’s law then
states that there is a choice of p so that ϕ = 0 everywhere. The expression (54) may
be most valuable for describing deviations from Listing’s law. Indeed, there is empirical
evidence for a small path dependent torsion (Ferman, Collewijn, & Van den Berg, 1987a,b;
Tweed & Vilis, 1990b). However, the following discussions will be limited to investigating
implications of Listing’s law.

The spinor (53) describes the change in gaze attitude due to a saccade from primary
position. To maintain Listing’s law (53), the spinor S(b,a), describing a saccade between
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arbitrary gaze directions a and b, must satisfy

S(b) = S(b,a)S(a) . (55)

This determines S(b,a) uniquely, for

S(b,a) = S(b)[S(a)]−1 =̇ S(b)S†(a)
= (1 + bp)(1 + pa) = (p + b)(p + a)
= 1 + pa + bp + ba

= [1 + p · a + b · p + b · a]
− i[(a − b) × p + a × b] . (56)

The last term, of course, specifies the rotation axis. The possibility that this axis remains
fixed during a saccade has been investigated (Van Opstal et al., 1991). In that case, the
angular velocity would be given by

ω(t) = λ(t)[(a − b) × p + a × b] , (57)

and the time development of the saccade spinor is given by eqn (28a) with eqn (41). There
are other possibilities to consider, however. Though Listing’s law determines the end result
(56) of a saccade, it does not determine the path of a saccade between endpoints, so a
theoretical analysis of the alternative is advisable.

A huge advantage of the unnormalized form eqn (53) for the saccade spinor is that its
derivative is the simple linear function of gaze velocity ġ:

Ṡ = ġp . (58)

This describes the change in gaze attitude along an arbitrary gaze direction path g = g(t),
assuming that Listing’s law is satisfied at every point on the path. It integrates to a simple
additive law for gaze shift:

S(b) − S(a) = (b − a)p . (59)

It is crucial to note that this result obtains only for unnormalized spinors, so both the
scalar part (b − a) · p and the vector part (b − a) × p must be computed to get rotation
angle by eqn (31a).

To find how the rotational velocity ω = ω(t) varies along the path g(t), use eqn (58) to
evaluate

2ṠS−1 = 2ġ
(p + g)
|p + g | =

g(p + g)

1 + g · p .

Unlike eqn (40), this has a nonvanishing scalar part, because the norm

|S |2 = |p + g |2 = 2(1 + g · p) (60)

is not constant. Just the same, its bivector part yields

ω =
(p + g) × g
1 + g · p . (61)
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Note that this has a torsional component

g · ω =
p · (ġ × g)
1 + g · p . (62)

Note also that it implies, for any ġ, that ω lies in a plane with normal p + g, which is
Listing’s plane when g = p. This plane is called the displacement plane at g by Tweed
and Vilis (1990b), who have amassed direct experimental support for its existence. At
this point, we can make some inferences about possible neural implementations of saccadic
computations. Employing a normalized spinor Q = |S |−1S, Tweed and Vilis (1987, 1990a)
suggest that the time course of Q may be determined by neurally integrating

2Q̇ = −iωQ , (62a)

with a multiplicative error estimate given by eqn (55) in the form

E = Q∗Q−1 , (62b)

where Q∗ = |S(b) |−1S(b) is the target spinor. This has a number of drawbacks. First of
all, to compute the right side of eqn (62a) it requires a multiplicative feedback structure that
seems unlikely on the basis of current neurophysiological data. Second, it does not take
advantage of computational simplifications due to Listing’s law or other special features
of saccade kinematics. For example, if saccades have a fixed rotation axis, as much data
suggests, then ω can be integrated directly, as in eqn (41), and the updated Q can be
computed algebraically from eqn (28a) without integration.

The basic problem is to determine what control variable is neurally employed in saccadic
computation. Equation (62a) might be appropriate if ω is the control variable. However,
since the seminal work of Mays and Sparks (1980, 1981), there has been accumulating
evidence consistent with identification of the difference vector b−a as the control, neurally
represented in the superior colliculus and from there controlling the saccadic generator
(Waitzman et al., 1988). Recent evidence (Waitzman et al., 1991) indicates that this control
variable is updated as the saccade progresses. Equation (59) agrees perfectly with evidence
that the vector difference b−a between the desired target gaze direction b and the present
gaze direction a is the saccadic control variable. Moreover, the additive error correction (59)
is much simpler to implement than the multiplicative correction (62b), and it automatically
implements Listing’s law. It seems likely, then, that the essential multiplication by p would
be implemented in the saccadic generator, if Listing’s law applies to saccades generated by
the frontal eye fields (Carpenter 1988) without activating the superior colliculus.

If the vector difference b − a is indeed the saccade control variable, then the optimal
saccadic path from a to b is a geodesic with the rotation axis a×b. That would not be the
rotation axis for the eye as a whole, however. As shown in Section 3, the saccade transition
spinor (56) can be factored into the product

S(b,a) = (1 + ba)e−iaϕ/2 , (63)

where the first factor is the geodesic spinor and, according to eqn (51), the torsion angle is
given by

tan 1
2ϕ =

p · (b × a)
1 + a · b + b · p + p · a . (64)
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The sign in eqn (64) is opposite to the one in eqn (51), because the torsion factor in eqn (63)
must cancel the rotation due to saccadic parallel transfer around a closed curve. Without
such cancellation, saccades around a closed circuit would rotate the image on the retina.
Implementation of Listing’s law is a simple way to prevent this. That, in turn, suggests that
Listing’s law may be a consequence of some adaptive mechanism that enforces Donders’
law to prevent retinal torsion from saccadic circuits. A direct experimental test of that
possibility would require a means of inducing torsion experimentally.

The key result in all this analysis is the implication of eqn (59) that the simplest way to
drive saccades with subtractive feedback based on gaze vectors is with the additive error
signal

E = (b − a)p . (65)

This involves the geometric product in an essential way, so we cannot help asking if the
oculomotor system has learned to compute this product to achieve optimal computational
efficiency. Tweed and Vilis (1990a) have already suggested ways that the closely related
quaternion product could be implemented neurally. Their analysis has not exhausted the
possibilities, however. The ultimate answer must come from experiment, of course, but
theory is needed to suggest what to look for and explain what has been found.

As a final minor elaboration of the theory, we can introduce an orthonormal reference
basis {σk} fixed in the head frame with σ3 designating the upward vertical, σ2 the lateral,
and σ1 the forward direction. Then there is a spinor P determining the primary direction
by

p = Pσ1P
−1 (66)

so an arbitrary gaze frame {ek} is given by

ek = GσkG−1 (67)

with gaze direction q = e1 and gaze attitude

G = SP . (68)

It seems more likely that the entire attitude P , rather than just the gaze direction p, would
be modified by the adaptive mechanism suggested above.

Tweed and Vilis (1990a), like Grossberg and Kuperstein (1989) as well as others, have
noted the crucial fact that saccadic error is expressed in terms of a spatial code in the supe-
rior colliculus that must be converted to a temporal code by the saccadic generator before
the ocular muscles can be activated. Grossberg and Kuperstein (1989) have recognized
that this temporal code must be adaptively calibrated to accurately represent eye position
(i.e., attitude), and they have proposed muscle linearization networks to accomplish that.
This calibration mechanism could do more; for example, it might adjust the temporal code
so that eqn (65) is implemented. Only the difference vector b − a need be represented in
the superior colliculus. The primary vector p could then be adjusted adaptively to produce
accurate saccades.

17



x

rr g
1

=
1 1

2X

2

r

X 1X

d1
d2

g
1

T

2

g

5. COMPENSATORY KINEMATICS AND PURSUIT

Optimal vision requires fixation of a target object on the fovea. To keep the gaze directed
at a target when the head moves, precise compensatory rotations of the eyes are required.
This section provides an invariant formulation of eye-head kinematics to specify completely
the computations that must be performed by the oculomotor system to achieve perfect
compensatory control. The relevant position variables are designated in Figure 3. The first
task will be to characterize the compensatory control variables. Head movement is measured
by the vestibular system using accelerometers
located in the inner ears on each side of the
head. Linear acceleration is detected by or-
gans called otoliths and rotational acceleration
is detected by the semicircular canals. The sig-
nals are then integrated to produceestimates
of the otolith linear velocities Ẋ1, Ẋ2, and the
rotational velocity of the head ωH . Kinemati-
cally, the simplest choice of a center X for the
head is

X = 1
2 (X1 + X2) , (69)

so the translational velocity of the head is

Ẋ = 1
2 (Ẋ1 + Ẋ2) . (70)

The motion of the head is then described as
translational motion of the head center along
a curve X = X(t) while the body rotates about
X with rotational velocity ωH = ωH(t). Any
rigid body motion can be described in this way.

It is a theorem of rigid body kinematics that
ωH is independent of the point chosen as cen-
ter. Therefore, the semicircular canals in each
ear give two independent measurements of the
same quantity ωH . Independent measurements
of Ẋ and ωH are also made by the optokinetic
system from flow patterns of the visual scene
across the whole retina. However, we need not
consider here how the various measurements
are combined into a single best estimate of Ẋ
and ωH . Our concern is how compensatory
rotations can be computed from these quanti-
ties.

As shown below, perfect compensatory con-
trol requires an estimate of the target distance
from each eye. This can be obtained by tri-
angulation from measurements of gaze direc-

FIGURE 3. Eye, head and target position vec-
tors. The gaze vectors g1,g2 of the two eyes
point toward a small target position T at dis-
tances r1,r2 from the eye centers. The centers
of the left and right eyes are designated by vec-
tors d1,d2 fixed in the head frame; these vec-
tors determine a natural horizontal plane for the
head, the head plane. The right and left otoliths
are fixed in the head and located at positions

X1,X2. The head center is defined as the mid-
point X=

1
2 (X1+X2). The position of the target

with respect to the head (center) is designated
by x=T−X. No restrictions are placed on the
target position; in particular, the target need
not lie in the head plane.
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tions. The relevant variables are depicted in Figure 4, and elaborated detail from Figure
3. The baseline for the triangulation is described by the vector d = d2 − d1, the directed
distance from the right to left eye. The equation for the triangle with vertices at the two
eyes and the target is

r1g1 − r2g2 = d . (71)

The problem is to solve this equation for the distances r1 and r2. The variable r2 can be
eliminated by employing the outer product. because g2 ∧ g2 = 0, so

r1g1 ∧ g2 = d ∧ g2 .

Solving this by division and introducing alternative parametrizations defined below, we
obtain

r1 =
d ∧ g2

g1 ∧ g2

=
d sin θ2

sin(θ1 + θ2)
=

β2d

α1β2 + α2β1
. (72a)

Similarly.

r2 =
d ∧ g1

g1 ∧ g2

=
d sin θ1

sin(θ1 + θ2)
=

β1d

α1β2 + α2β1
. (72b)

It is worth noting that these solutions of the triangle in Figure 3 amount to applica-
tions of the law of sines from trigonometry or Cramer’s rule from linear algebra, both
of which are automatically included among the computational capabilities of geometric
algebra (Hestenes, 1986).

Geometrically, an angle describes a relation between two directions. Accordingly, the
angles in Figure 4 are defined algebraically by the geometric products

g1d̂ = eIθ1 = α1 + Iβ1 , (73a)

(−d̂)g1 = eIθ2 = α2 + Iβ2 , (73b)

where d̂ = d/d with d = |d |, I is the unit oriented bivector for the plane of the triangle,

and αk = cos θk, βk = sin θk. Multiplying eqn
(73a) by eqn (73b), we obtain

g1g2 = eI (θ1+θ2)

= β1β2 − α1α2 − I(α1β2 + α2β1) (74)

Finally, the expressions in eqns (72a,b) are ob-
tained by taking the ratio of the bivector parts
of eqn (73a,b) to those of eqn (74).

This completes the derivation of the eqns
(72a,b) for computing target distance. As noted
before, the angles such as θ1 and θ2 are not
likely to be employed by the brain, because
computation of trigonometric functions and in-
verse trigonometric functions is unnecessarily
expensive. The parameters αk, βk, or, bet-
ter, the Euler parameters of the gaze attitude

FIGURE 4. Target distance by triangulation.
The result can be computed from the vectors
g1, g2, d.
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spinors are more likely. Evidently, computations would be simplest if the primary gaze
directions pk for each eye are coplanar with d. This should be checked experimentally.

Our next task is to determine the rotational velocity of the gaze directions gk required
to keep the target foveated during arbitrary target and head motions. According to Figure
3, the gaze directions are determined by the triangle constraint

x = T − X = dk + rkgk (75)

for k = 1, 2 . As this constraint holds for each eye separately, it will be convenient to
suppress the subscripts in the following analysis, writing

x = d + rg . (76)

As in (3.20), the rotational velocity of the gaze is related to the gaze velocity ġ by

ωg = g × ġ + (g · ωg)g . (77)

The torsion rate g · ωg is not affected by the constraint (76), so we set it to zero to keep
images from rotating on the retina.

To evaluate eqn (77), differentiate eqn (76) and use

ḋ = ωg × d (78)

to get
ẋ = rġ + ṙg + ωg × d . (79)

Inserting this into eqn (77), we get

rωg = g × ẋ − g × (ωg × d) . (80)

This is related to the compensatory rotational velocity of the eye ωE by

ωg = ωH + ωE . (81)

Therefore,

rωE = −ωH +
1
r

g × ẋ +
1
r

g × (d × ωH) . (82)

This can be expressed in an alternative form by employing the vector identity

g × (d × ωH) = (g · ωH)d − (g · d)ωH (83)

and noting from eqn (76) that g · d + r = g · x. Whence, with r−1 = g/r,

ωE = −(r−1 · x)ωH + r−1 × ẋ + (r−1 · ωH)d . (84)

This equation was derived by Viirre et al. (1986) in a study of the gain of the vestibulo-
ocular reflex (VOR). Consistent with earlier experimental results, they found a dependence
of the gain on the target distance r as required by the equation. Equation (82), however,
appears to be more directly relevant to neural computation.
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Equation (82) expresses ωE as a sum of terms dependent on three different sources of
information, so the terms can be computed in parallel and combined additively (presumably
in the vestibular nuclei) to produce a resultant eye movement command. The dominant
term in eqn (82) is, of course, the first term −ωH , which has been extensively studied in
VOR research and is often the only term considered in theoretical analysis. This term has
the same value for both eyes.

The last term on the right side of eqn (82) is a vergence correction that is significant only
for near targets. Because the variables r, g, and d are different for each eye, the correction
is different for each eye. The double cross product need not be directly computed neurally
because the identity eqn (83) can be employed. Evidently, the only way to compute the
vector d internally is by error correction from visual feedback, so the cerebellum must
be involved in the computation. Recent improvements in the precision of gaze direction
measurements make it possible to evaluate experimentally the accuracy with which this
VOR vergence correction is made.

In the cyclops approximation where d is neglected, so the eye is regarded as centered in
the head, eqn (82) reduces to

ωE = −ωH +
1
r

g × ẋ . (85)

According to eqn (75),
ẋ = Ṫ − Ẋ , (86)

so for a fixed target we have ẋ = −Ẋ, and the last term in eqns (82) or (85) describes the
compensatory rotation for translational self-motion. On the other hand, for a moving target
and fixed head, we have ẋ = Ṫ, and the same term describes the eye rotation required to
follow an object in smooth pursuit. This strongly suggests that the (phylogenetically recent)
smooth pursuit system co-opts the neural output mechanisms of the (phylogenetically old)
vestibular system. There is some experimental support for this conclusion (Eckmiller, l981;
Collewijn, 1985).

With ωH = 0, substitution of eqn (78) into eqns (82) or (84) leads right back to eqn (77),
which can be written

iωE =
1
r

g ∧ ẋ = g ∧ ġ = gġ . (87)

This is just a way of describing the retinal slip of the moving target image if the eye remains
stationary. This means that the cross product g × ẋ need not be computed neurally. lt
is just a formal way of selecting the tangential (retinal slip) component of ẋr−1, which is
independent of r in the cyclops approximation. The radial component of r along g is, of
course, eliminated by the cross product, so it need not be computed neurally.

The above description of compensatory kinematics is expressed with respect to an ex-
ternal reference system called the workspace in robotics. However, the head space is more
natural for neural computations. Vectors in the two reference systems are related by

d = Hd′H−1 , (88a)

g = Hg′H−1 , (88b)

where the primes denote vectors in head space, and H = H(t) is the head attitude spinor.
The vector d′ is constant, but

g′ = Ep′E−1 , (89)
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where p′ is the primary direction and E = E(t) is the eye attitude spinor in head space.
Insertion of eqn (88b) into eqn (87) gives

g = Gp′G−1 , (90)

where
G = HE (91)

is the eye attitude in the workspace. Transformed to head space, eqn (76) becomes

d′ + rg′ = H−1xH = x′ . (92)

Similarly, with

ωg = Hω′
gH

−1, ωH = Hω′
HH−1, ωE = Hω′

EH−1, (93)

eqn (76) becomes
ω′

g = ω′
H + ω′

E . (94)

in head space.
For given angular velocities the equations of motion for the attitude spinors are, by

definition,

Ḣ = −1
2 iωHH = H(−1

2 iω′
H) , (95a)

Ė = −1
2 iω′

EH , (95b)

Ġ = − 1
2 iωgG = −1

2 i(ωH + ωE)G . (95c)

But Ġ = ḢE + HĖ, so eqn (94) can be put in the form

ω′
g = 2i(H−1Ḣ + ĖE−1) . (96)

It is noteworthy that this equation in head space completely separates head and eye con-
tributions to gaze shift, in contrast to

ωg = 2iĠG−1 = 2i(ḢH−1 + HE−1ĖH−1) , (97)

the corresponding equation in workspace.
Finally, because inner products like g · d = g′ · d′ are invariant under a change of reference

system, transformation of eqn (82) to head space yields

ω′
E = ω′

H +
1
r

g′ × (H−1ẋH) +
1
r

g′ × (d′ × ω′
H) . (98)

Differentiation of eqn (92) with the help of eqn (95a) yields

H−1ẋH = ẋ′ + ω′
H × x′ . (99)
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Inserting this into eqn (96), we obtain

ω′
E = −1

r
g′ × ẋ − (g′ · ω′

H)g′

= g′ × ġ′ − (g′ · ω′
H)g′ . (100)

As remarked about eqn (86), this is nothing more than an equation for directly cancelling
the observed retinal slip. It suggests that the optokinetic system might work by translating
slip into gaze vector kinematics, as expressed by eqn (100). Of course, evaluation of ġ′ in
terms of vestibular inputs takes eqn (100) back to eqn (98).

The eye attitude E represents the command that must be sent to the eye muscles to hold
the gaze after smooth pursuit or compensatory rotation. It can be computed from inputs
ω′

H and H−1ẋH by integrating eqn (95) with ω′
E given by eqn (98). However, as noted in

the discussion of saccades, it is doubtful that the multiplicative structure required by the
right side of eqn (95) exists in oculomotor neural networks. Rather, it is more likely that E
is parametrized neurally by the gaze direction g′, with compensatory torsion determined by
integrating the last term on the right side of eqn (100). This is not the place to try resolving
the issue. It is enough that the computational requirements for perfect compensatory eye
motion and target pursuit have been set down in invariant form. Geometric algebra has
the flexibility needed to analyze all computational possibilities systematically to discover
which ones have been neurally implemented in vivo.
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