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Hamiltonian Mechanics with Geometric Calculus

David Hestenes.

Abstract Hamiltonian mechanics is given an invariant formulation in
terms of Geometric Calculus, a general differential and integral calculus
with the structure of Clifford algebra. Advantages over formulations in
terms of differential forms are explained.

1. INTRODUCTION.

In the recent renaissance of Analytic Mechanics, the calculus of differential forms has be-
come the dominant mathematical language of practitioners. However, the physics commu-
nity at large has been slow to adopt the language. This reluctance should not be attributed
solely to the usual resistance of communities to innovation, for the calculus of forms has
some serious deficiencies. For one thing, it does not articulate smoothly with vector cal-
culus, and it is inferior to vector calculus for many applications to Newtonian mechanics.
Another drawback is that the calculus of forms has accreted a veritable orgy of definitions
and notations which make the preparation required to address even the simplest problems in
mechanics inordinately excessive. This is evident, for example, in the pioneering textbook
of Abraham and Marsden (1967), which provides nearly 200 pages of preparation before
attacking any significant problem in mechanics. The same high ratio of formalism to results
is characteristic of more recent books in the field, such as Libermann and Marle (1987).
All this goes to show that the calculus of forms is not quite the right tool for mechanics.

Without denying that valuable insights have been gained with differential forms, the
contention of this paper is that a better mathematical system is available for applica-
tion to analytical mechanics; namely, the Geometric Calculus expounded by Hestenes and
Sobczyk (1984, henceforth referred to as [GC]). In contrast to differential forms, this cal-
culus includes and generalizes standard vector calculus with no need to change standard
notation, and it has proven advantages in applications throughout Newtonian mechanics,
most notably in rigid-body mechanics (Hestenes, 1985). Geometric Calculus also includes
and generalizes the calculus of differential forms, as explained in [GC]. In particular, it
embraces the quaternion theory of rotations and the entire theory of spinors, which are
completely outside the purview of differential forms. This apparatus is crucial to the effi-
cient development of rigid-body dynamics (Hestenes, 1985).

This paper shows how to employ Geometric Calculus in the formulation of Hamiltonian
mechanics, though space limitations preclude the discussion of applications or advanced
theory. However, the fundamentals are discussed in sufficient detail with supplementary
references to make translation of standard results in symplectic geometry and Hamiltonian
mechanics into the language of Geometric Calculus fairly straightforward.

2. VECTOR SPACE VERSION.

The reader is presumed to be familiar with Clifford algebra and Hamiltonian mechanics,
but familiarity with [GC] will be needed for full comprehension of the ideas, as well as for
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their applications. Definitions, notations, and results from [GC] will be employed without
explanation. Though Geometric Calculus makes a completely coordinate-free approach
possible, it also facilitates computations with coordinates. Coordinates are employed here
primarily to establish a relation to conventional formulations.

For a mechanical system described by coordinates {qi,...,¢,} and corresponding mo-
menta {p1,...,pn}, we first define configuration space as an n-dimensional real vector space
R™ spanned by an orthonormal basis {e;} with

ej el = %(ejek + ekej) = 0jk (1.1)
for 7,k =1,2,...,n. The state of the system can then be represented by the pair of vectors

q=>_qrek, P=) DkCk- (1.2)
k k

The vectors in configuration space generate a real Geometric Algebra, R,, = G(R"), with
geometric product

@p=q-p+qgAp. (1.3)
Differentiation with respect to vectors is defined in [GC, Chap.2] along with the necessary

apparatus to perform computations without resorting to coordinates. However, it will
suffice here to introduce the vector derivative 9, by specifying its relation to the coordinates:

0
k

Equation (1.2) can be solved to express the coordinates as functions of the vector ¢ instead
of as independent variables; thus

G = qe(q) = q-ex . (1.5)

Then the basis vectors e are given as gradients
ek = 04qy - (1.6)

The simple linear form (1.5) for the coordinate functions obtains only for orthogonal coor-
dinates, but the general case is treated in [GC]. It should be noted, also, that the “inner
product” in (1.1) and (1.5) has no physical significance as a “metric tensor.” It is merely an
algebraic mechanism for expressing functional relations. Among other things, it performs
the role of contraction in the calculus of differential forms.

For a Hamiltonian, H = H(q,p), Hamilton’s equations of motion can be expressed in
configuration space as the pair of equations

q = apHv (1.7)
p=—0,H. (1.8)

Since p and ¢ are independent variables, we can reduce this pair of coupled equations to
a single equation in a space of higher dimension. However, to be useful, the extension to
higher dimension must preserve the essential structure of Hamilton’s equations in a way
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which facilitates computation. We now show how such a computationally efficient extension
can be achieved with Geometric Calculus. o

To that end, we define momentum space as an n-dimensional real vector space R
spanned by an orthonormal basis {ey} with

¢j-er = 5(&ek + exej) = i, (1.9)
so the momentum of our mechanical system can be expressed as a vector
p= %pkgk- (1.10)
Now we define phase space R?" as the direct sum
R =R"®R . (1.11)

This generates the phase space (geometric) algebra Ra, = G(R?"), which is completely
defined by supplementing (1.1) and (1.9) with the orthogonality relations

ej-€r = 5(ejer +epe;) =0. (1.12)

The symplectic structure of phase space is best described by introducing a symplectic
bivector

J = zijk (1.13)

with component 2-blades
Jp = eper = ep A e . (1.14)

The bivector J determines a unique pairing of directions in configuration space with direc-
tions in momentum space, as expressed by

er =ep-J =ep-Jp =epJp, = —Jpe, (1.15)

Each blade Ji pairs a coordinate qi with its corresponding momentum py. Moreover, since
each Jj, satisfies
JP =1, (1.17)

it functions as a “unit imaginary” relating ¢i to px. Thus, the bivector J determines a
unique complex structure for phase space. The symplectic structure on phase space can be
described without the reference (1.14) to basis vectors by defining the symplectic bivector
J through a specification of its general properties. The symplectic bivector determines a

skew-symmetric linear transformation J which maps each phase space vector x into a vector
r=Jr=x-J. (1.18)

This, in turn, defines a skew-symmetric bilinear form
zoy=y-(Jr)y=a-Jy=J-(yANa)=—-y-x. (1.19)
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This bilinear form is nondegenerate if and only if Z is nonzero whenever z is nonzero, or,
equivalently, if and only if (J™ )9, is a nonvanishing pseudoscalar. With respect to the
basis specified by (1.14),

(JYon =JA...ANJ=nl(-1)"IE,E,, (1.20)

n times

where E,, = e1ea...€, =e1 NeaA...ep,, B, =€1€65...¢€,, and [n/2] is the greatest integer
in n/2. The “complex structure” expressed by (1.17) can be characterized more generally
by

()" =J%z = —x. (1.21)

It follows that
(7)? = 22, (1.22)

which can be regarded as a “hermitian form” associated with the complex structure.

The group of linear transformations on phase space which preserves symplectic structure
is called the symplectic group. It has recently been shown that the symplectic group has
a natural representation as a “spin group” (Doran et. al., 1992). This promises to be the
ideal vehicle for characterizing symplectic transformations.

Now, to define Hamiltonian mechanics on phase space, from the “position and momentum
vectors” (1.2) we can describe the state of our physical system by a single point x in phase
space defined by

r=4+p=p+q-J. (1.23)
The derivative with respect to a phase space point is then given by
=08, =08;+ 9, = 0y, (1.24)
and we have o B
0=0,=—J-0, =—0,+0,. (1.25)
The Hamiltonian of the system is a scalar-valued function on phase space
H=H(z)=H(q,p). (1.26)

Accordingly, Hamilton’s equation for a phase space trajectory, * = xz(t), of the system
assumes the simple form

i = OH. (1.27)

The transcription of the entire theory of Hamiltonian systems into this invariant formu-
lation is now straightforward. For example, for any scalar-valued phase space function,
G = G(x), the Poisson bracket can be defined by

{H,G} = (0H) -G = —{G, H}. (1.28)
Its equivalence to the conventional definition in terms of coordinates is provided by

{H,G} = (0,H — ,H) - (8, + 8,)G
= (8 H) '8 G — (aqH) . (‘%G)

-2 {(G) ) - (o) (5] 120
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The definition (1.28) does not actually require that G be scalar-valued, so it can be applied
to any multivector-valued function, M = M (x), describing some “observable” property of
the system. It follows that the equation of motion for the observable is given by

M =i-OM = (9H)-OM = {H,M} . (1.30)

For M = z we have _ _
{H,z} = (0H)-0x = 0H, (1.31)

so Hamilton’s equation (1.27) can be expressed in the form
t={H,z}. (1.32)

According to (1.30), M is a constant of the motion if {H, M} = 0. It follows that H is
a constant of the motion, since

{H,H} = (0H)-(0H) = J- (0H A OH) = 0. (1.33)

Our next task is to generalize this approach to Hamiltonian mechanics on manifolds.

3. VECTOR MANIFOLD VERSION.

The initial characterization of configuration space in the preceding section depends on the
choice of coordinates. There is a “canonical” choice, though. For a system of N particles
a configuration space of dimension n = 3NN is naturally defined by

RN =R3a...®R3, (2.1)
D e g

N times

where a separate copy of the 3-dimensional “physical space” is allotted to each particle.
Whatever the choice of “generalized coordinates,” its relation to physical space must be
maintained, so a mapping to the choice (2.1) must be specified. For many purposes, how-
ever, this mapping is not of interest, so we desire a formulation of mechanics where it can
be suppressed or resurrected as needed.

For a system of particles or rigid bodies with constraints, the space of allowable states is a
manifold of dimension 2n equal to the number of independent degrees of freedom. Although
this manifold can be mapped locally into the vector space representation of phase space in
the preceding section, this is awkward if the system has cyclic coordinates. Alternatively,
we can describe here the representation of phase space as a 2n-dimensional vector manifold
M?". The mathematical apparatus needed for differential and integral calculus on vector
manifolds has already been developed in [GC]. The phase space manifold M?" can be
regarded as embedded in a vector space of higher dimension (e.g., of dimension 6N for an
N particle system), but this is not required except, perhaps, to describe the relation to
physical space expressed by (2.1).

The mathematical apparatus in [GC] enables us to adapt our vector space version of
Hamiltonian mechanics to a vector manifold version with comparatively minor alterations.
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The main difference is that the algebraic relations of interest will be defined on the tangent
spaces of the manifold instead of on the manifold itself.

Each point = on the phase space manifold M?™ represents an allowable state of the
system. The symplectic bivector J of the preceding section becomes a nondegenerate
bivector field J = J(z) on M?" with values in the tangent algebra [GC, Chap.4]. For
vector fields v = v(z) and v = u(z), in the tangent space at each point z, J(x) determines
a linear transformation

v=Juv=uv-J (2.2)

and a corresponding nondegenerate bilinear form
Uv=-—-v-u, (2.3)

just as in (1.18) and (1.19). However, a direct analogue of (1.21) is not feasible, because it
may conflict with requirements on the derivatives of J. Instead, however, we can introduce
another bivector field K = K (x) with the property

Kv=v-K=w. (2.4)
Thus, K = J~! is the inverse of J. Now the Jacobi identity [GC, p.14] implies that
KJv=K-(v-J)=(K-v)-J+v:- (K xJ),
where K x J = $(KJ — JK) is the commutator product. So if J is to be the inverse of K,

we must have

K xJ=0, (2.5)

or the equivalent operator equation
KJ=JK=1. (2.6)

To specify the relation of K to J more precisely, we note that, as in (1.13), they can each
be expressed as a sum of n commuting blades.

J= Sk K=Ky (2.7)

Moreover, we can select each K} to be proportional to J,. Then the condition K = J~!
can be expressed by the more specific condition

Kp=J; " (2.8)
for each k. This generalizes the condition J, ' = —Jj in (2.8). Incidentally, we note that

J-K =YK+ Jp =n. (2.9)
k

Modern approaches to Hamiltonian mechanics (Abraham and Marsden, 1967; Libermann
and Marle, 1987) begin with symplectic manifolds. A manifold M?" is said to be symplectic
if it admits a closed, nondegenerate 2-form w. As shown in [GC], this is equivalent to

6



admitting a closed, nondegenerate bivector field K on the vector manifold. Indeed, the
2-form can be defined by
w= K- (dx Ady), (2.10)

where dx and dy are tangent vectors. The 2-form is said to be closed if its “exterior
differential” vanishes, that is, if

dw = (dxe NdyNdz)- (ONK)=0. (2.11)
This condition is obviously satisfied if K has vanishing curl:
ONK =0. (2.12)
Actually, though, (2.11) implies only the weaker condition of vanishing cocurl:
VANK=POANK)=0, (2.13)

where P is the projection into the tangent algebra of M?" (see [GC, p.140]). The tangent
algebra is essentially the same thing as the “Clifford bundle” which “pastes” Clifford al-
gebras on manifolds, instead of generating them from a vector manifold as in [GC]. The
coderivative \V as well as the derivative 0 is an essential concept for calculus on vector
manifolds, and its properties are thoroughly discussed in [GC, Chapt.4], so we can exploit
some of its properties without establishing them here.

Instead of translating the “differential forms approach” into geometric algebra, it is more
enlightnening to ascertain directly what condition on the bivector field J = J(x) are re-
quired to ensure the essential features of Hamiltonian mechanics on M?". Hamilton’s
equation (1.27) can be adopted without change. The Hamiltonian H(x) determines a vec-
tor field i = h(z) on M2" given by

h=0H = (0H) - J. (2.14)
Hamilton’s equation _
x(t) = h(:c(t)) (2.15)

determines integral curves of this vector field. This condition that these curves describe an
“incompressible flow” is given by Liouvilles Theorem

Veh=0-h=0. (2.17)

Since B
O-h=0+-(—J-h)=—(0-J)-h+J-(0Ah).

and 9 ANh =0 A0H = 0, the condition
V-J=P0-J)=0 (2.18)
suffices to imply Liouvilles Theorem. We adopt (2.18) instead of the weaker condition

h-(0+J) = (hA03)-J = 0, because it appears to be essential for the theory of canonical
transformations outlined below.



The definition (1.28) for the Poisson bracket can be taken over to M?" without change.
However, the role of J in determining its properties must be examined. Scalar-valued
functions F' = F(z), G = G(x), H = H(x) determine vector fields

f=0F,  §G=0G, h=0H. (2.19)
Let us refer to such fields as symplectic vector fields. It follows from (2.19) that
D-f=—J-(OAf)=0, (2.20)
but (2.18) implies the stronger condition
0-f=-0-f=0. (2.21)

Therefore, all nonvanishing symplectic vector fields generate incompressible flows on (or
automorphisms of ) M?".
The Poisson bracket can be written in a variety of forms, including

(F.Gy=-J-(fAg)=F-g=-Gf
=0-(Fg) = —8- (Gf). (2.22)

Alternatively, using (2.4), one can write
{F.GYy=K- (] 1), (2.23)

which, according to (2.10), expresses the bracket as a 2-form evaluated on symplectic vector
fields. This is closer to conventional formulations in terms of differential forms. However,
(2.22) is simpler because K is not involved.

An essential property of the Poisson bracket is the Jacobi identity

{F.{G, HY} + {G,{H,F}} + {H,{F,G}} =0. (2.24)
Using (2.22) to express the left side of (2.24) in terms of vector fields, we obtain
~0-1(@-h)f+ (h-f)g + (f-9)h]
= 0-[J-(fAgAR)]
=(fAgAR)-(ONT)+(JND)-(fAgAh)
=(fAGAR) - (ONT) = LT AT)-[OA(fAgAR). (2.25)
This computation employed the algebraic identities
S (FAgNR)=T-(FNg)h =T (fAh)g+T- (g AR)f
=(g-)h+(f-h)g+ (h-g)f (2.26)
[GC, eqn.(1-1.40)], and
(JAJ)-0=2JA(J-0)=—2JAD, (2.27)
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ATV [ON(FAGAR)] =[(JAT)-0]-(fAgAh) (2.28)

[GC, eqn. (1-1.25b) or (1-4.6)].
The last term in (2.25) vanishes identically when f, g and h are gradients. Therefore,
from (2.25) it follows that the Jacobi identity (2.24) obtains if and only if

VAJ=P@ONANJI)=0. (2.29)

This condition is not independent of the “incompressibility condition” (2.18), for from
(2.27) we obtain the relation

IV INT)=(V-D)NT = (J-V)AJ
=JA(V-J)+VAJ. (2.30)
Thus, (2.24) and (2.29) together imply
Ve (JAJ)=0. (2.31)

In analogy with (1.30), a multivector field M = M (x) which is invariant under the flow
generated by a symplectic vector field f = OF satisfies

{F,M}=f-VM=0. (2.32)

Note the use of f-V instead of f 0 when M is not scalar-valued. A flow is said to be a
canonical transformation when it leaves the symplectic bivector J invariant, that is, when

{(F,J}=f-VJ=0. (2.33)

The differentiable vector fields on a manifold compose a Lie algebra under the Lie bracket
defined for vector fields u = u(x) and v = v(z) by

[u,v] =u-0v—v-0u=V-(uAv)+uV-v—ovV-u. (2.34)

The properties of the Lie bracket are studied at length in [GC]. For symplectic fields we
derive the identity

[£.3) = f-05—§-0f = {F,0G} — {G,0F}
= {F,GY+ f-(§-0J) —g-(f-0J). (2.35)

According to (2.33), the last two terms in (2.35) vanish for canonical transformations.
Therefore, the canonical transformations compose a closed Lie algebra on M?", and the
Poisson bracket of “canonical generators” F' and G is also a canonical generator. This should
suffice to show how the general theory of canonical transformations can be developed on
vector manifolds.

As a final point, the crucial role of the symplectic bivector J in canonical transformations
suggests that it should be more intimately linked with the Hamiltonian H in the theory.
One attractive possibility for linking them is to introduce a bivector field 2 given by

Q=HJ. (2.36)
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Then (2.18) implies

h=(0H)-J=V-(HJ)=Y-Q, (2.37)

and Hamilton’s equation (2.15) takes the form
T=V-0. (2.38)

Thus, €2 is a bivector potential for Hamiltonian flow, and H plays the role of an integrating
factor for this bivector field. This is very suggestive!

4. CONCLUSIONS.

Experts will have noted that phase space is identified with its own dual space in the preced-
ing formulation of Hamiltonian mechanics. Some may claim that the conventional formula-
tion in terms of differential forms is preferable because it does not make that identification.
On the contrary, it can be argued that such generality is excessive, contributing little if
anything to deepening analytical mechanics, while introducing unnecessary complications.
Be that as it may, it should be recognized that the identification of phase space with its
dual is a deliberate choice and not an intrinsic limitation of geometric algebra. Indeed,
the geometric algebra apparatus needed to separate phase space from its dual is available
in Doran et. al. (1992) and ready to be applied to mechanics. Ironically, that apparatus
automatically produces a kind of quantization, something which can only be imposed artifi-
cially in conventional approaches. It remains to be seen if that fact has significant physical
import.

The purpose of this short paper has been to lay the foundation for a reformulation of
analytical mechanics in the language of geometric calculus. Translation of standard results
into this language is not difficult, but it will not be without surprises and new insights as
the treatment above already suffices to show. Though the emphasis here has been on an
invariant methodology, a powerful apparatus for dealing with coordinates is available in
[GC]. One especially promising possibility is an extention of the invariant formulation for
rigid-body mechanics in Hestenes (1985) to a phase space formulation for systems of linked
rigid bodies. That is likely to have important applications to robotics.
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