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A new gauge theory of gravity on flat spacetime has recently been developed
by Lasenby, Doran, and Gull. Einstein’s principles of equivalence and general
relativity are replaced by gauge principles asserting, respectively, local rota-
tion and global displacement gauge invariance. A new unitary formulation of
Einstein’s tensor illuminates long-standing problems with energy-momentum
conservation in general relativity. Geometric calculus provides many simpli-
fications and fresh insights in theoretical formulation and physical applications
of the theory.

I. Introduction

More than a decade before the advent of Einstein’s general theory of relativity
(GR), and after a lengthy and profound analysis of the relation between physics
and geometry [1], Henri Poincaré concluded that:

“One geometry cannot be more true than another; it can only
be more convenient. Now, Euclidean geometry is and will remain,
the most convenient. . . . What we call a straight line in astronomy
is simply the path of a ray of light. If, therefore, we were to discover
negative parallaxes, or to prove that all parallaxes are higher than a
certain limit, we should have a choice between two conclusions: we
could give up Euclidean geometry, or modify the laws of optics, and
suppose that light is not rigorously propagated in a straight line. It
is needless to add that every one would look upon this solution as
the more advantageous.” [italics added]

Applied to GR, this amounts to claiming that any curved space formulation of
physics can be replaced by an equivalent and simpler flat space formulation.
Ironically, the curved space formulation has been preferred by nearly everyone
since the inception of GR, and many attempts at alternative flat space formula-
tions have failed to exhibit the simplicity anticipated by Poincaré. One wonders
if the trend might have been different if Poincaré were still alive to promote his
view when GR made its spectacular appearance on the scene.

A dramatic new twist on the physics-geometry connection has been intro-
duced by Cambridge physicists Lasenby, Doran, and Gull with their flat space

1electronic mail:hestenes@asu.edu

1



alternative to GR called gauge theory gravity (GTG) [2, 3]. With geometric cal-
culus (GC) as an essential tool, they clarify the foundations of GR and provide
many examples of computational simplifications in the flat space gauge theory.
All this amounts to compelling evidence that Poincaré was right in the first
place [4].

The chief innovation of GTG is a displacement gauge principle that asserts
global homogeneity of spacetime. This is a new kind of gauge principle that
clarifies and revitalizes Einstein’s general relativity principle by cleanly sep-
arating arbitrary coordinate transformations from physically significant field
transformations. GTG also posits a rotation gauge principle of standard type
in nonAbelian gauge theory. The present account is unique in interpreting
this principle as a realization of Einstein’s Equivalence Principle asserting local
isotropy of spacetime. With rotation gauge equivalence and displacement gauge
equivalence combined, GTG synthesizes Einstein’s principles of equivalence and
general relativity into a new general principle of gauge equivalence.

A unique consequence of GTG, announced here for the first time, is the
existence of a displacement gauge invariant energy-momentum conservation law.

Many previous attempts to formulate a flat space alternative to GR are awk-
ward and unconvincing. The most noteworthy alternative is the self-consistent
field theory of a massless spin-2 particle (the graviton) [5]. That is a gauge
theory with local Lorentz rotations as gauge transformations. However, it lacks
the simplicity brought by the Displacement Gauge Principle in GTG.

GTG is also unique in its use of geometric calculus (GC). It is, of course,
possible to reformulate GTG in terms of more standard mathematics, but at the
loss of much of the theory’s elegance and simplicity. Indeed, GC is so uniquely
suited to GTG it is doubtful that the theory would have developed without it.
That should be evident in the details that follow.

This is the third in a series of articles promoting geometric algebra (GA)
as a unified mathematical language for physics [6, 7]. Here, GA is extended
to a geometric calculus (GC) that includes the tools of differential geometry
needed for Einstein’s theory of general relativity (GR) on flat spacetime. My
purpose is to demonstrate the unique geometrical insight and computational
power that GC brings to GR, and to introduce mathematical tools that are
ready for use in teaching and research. This provides the last essential piece for
a comprehensive geometric algebra and calculus expressly designed to serve the
purposes of theoretical physics [8, 9].

The preceding article [7] (hereafter referred to as GA2) is a preferred prereq-
uisite, but to make the present article reasonably self-contained, a summary of
essential concepts, notations and results from GA2 is included. Of course, prior
familiarity with standard treatments of GR will be helpful as well. However, for
students who have mastered GA2, the present article may serve as a suitable
entrée to GR. As a comprehensive treatment of GR is not possible here, it will
be necessary for students to coordinate study of this article with one of the
many fine textbooks on GR. In a course for undergraduates, the textbook by
d’Inverno [10] would be a good choice for that purpose. In my experience, the
challenge of reformulating GR in terms of GC is a great stimulus to student
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learning.
As emphasized in GA2, one great advantage of adopting GC as a unified

language for physics is that it eliminates unnecessary language and conceptual
barriers between classical, quantum and relativistic physics. I submit that the
simplifications introduced by GC are essential to fitting an adequate treatment
of GR into the undergraduate physics curriculum. It is about time for black
holes and cosmology to be incorporated into the standard curriculum. Although
space limitations preclude addressing such topics here, the mathematical tools
introduced are sufficient to treat any topic with GC, and more details are given
in a recent book [2].

Recognition that GR should be formulated as a gauge theory has been a
long time coming, and, though it is often discussed in the research literature
[11], it is still relegated to a subtopic in most GR textbooks, in part because
the standard covariant tensor formalism is not well suited to gauge theory.
Still less is it recognized that there is a connection between gravitational gauge
transformations and Einstein’s Principle of Equivalence. Gauge theory is the
one strong conceptual link between GR and quantum mechanics, if only because
it is essential for incorporating the Dirac equation into GR. This is sufficient
reason to bring gauge theory to the fore in the formulation of GR.

This article demonstrates that GC is conceptually and computationally ideal
for a gauge theory approach to GR — conceptually ideal, because concepts of
vector and spinor are integrated by the geometric product in its mathematical
foundations — computationally ideal, because computations can be done with-
out coordinates. Much of this article is devoted to demonstrating the efficiency
of GC in computations. The GC approach is pedagogically efficient as well, as
it develops GR by a straightforward generalization of Special Relativity using
mathematical tools already well developed in GA2.

Essential mathematical tools introduced in GA2 are summarized in Section
II, though mastery of GA2 may be necessary to understand the more subtle
aspects of the theory. Section III extends the tool kit to unique mathematical
tools for linear algebra and induced transformations on manifolds. These tools
are indispensible for GTG and useful throughout the rest of physics.

Section IV introduces the gauge principles of GTG and shows how they gen-
erate an induced geometry on spacetime that is mathematically equivalent to
the Riemannian geometry of GR. Some facility with GC is needed to appreci-
ate how it streamlines the formulation, analysis and application of differential
geometry, so the more subtle derivations have been relegated to appendices.

Section V discusses the formulation of field equations and equations of mo-
tion in GTG. Besides standard results of GR, it includes a straightforward
extension of spinor methods in GA2 to treat gravitational precession and grav-
itational interactions in the Dirac equation.

Section VI discusses simplifications that GTG brings to the formulation and
analysis of solutions to the gravitational field equations, in particular, motion
in the field of a black hole.

Section VII introduces a new split of the Einstein tensor to produce a new
definition for the energy-momentum tensor and a general energy-momentum
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conservation law.
Section VIII summarizes the basic principles of GTG and discusses their

status in comparison with Newton’s Laws as universal principles for physics.

II. Spacetime Algebra Background

This section reviews and extends concepts, notations and results from GA2 that
will be applied and generalized in this paper. Our primary mathematical tool
is the the real Spacetime Algebra (STA). One great advantage of STA is that
it enables coordinate-free representation and computation of physical systems
and processes. Another is that it incorporates the spinors of quantum me-
chanics along with the tensors (in coordinate-free form) of classical field theory.
Some results from GA2 are summarized below without proof, and the reader
is encouraged to consult GA2 for more details. Other results from GA2 will
be recalled as needed. The reader should note that most of GA2 carries over
without change; the essential differences all come from a generalized gauge con-
cept of differentiation. We show in subsequent sections that the gauge covariant
derivative accommodates curved-space geometry in flat space to achieve a flat-
space gauge theory of gravity. However, the accomodation is subtle, so it was
discovered only recently.

A. STA elements and operations

For physicists familiar with the Dirac matrix algebra, the quickest approach
to STA is by reinterpreting the Dirac matrices as an orthonormal basis {γµ;µ =
0, 1, 2, 3} for a 4D real Minkowski vector space V4 with signature specified by
the rules:

γ2
0 = 1 and γ2

1 = γ2
2 = γ2

3 = −1 . (1)

Note that the scalar 1 in these equations would be replaced by the identity
matrix if the γµ were Dirac matrices. Thus, (1) is no mere shorthand for matrix
equations but a defining relation of vectors to scalars that encodes spacetime
signature in algebraic form.

The frame {γµ} generates an associative geometric algebra that is isomorphic
to the Dirac algebra. The product γµγν of two vectors is called the geometric
product. The usual inner product of vectors is defined by

γµ · γν ≡ 1
2 (γµγν + γνγµ) = ηµδµν , (2)

where ηµ = γ2
µ is the signature indicator. The outer product

γµ ∧ γν ≡ 1
2 (γµγν − γνγµ) = −γν ∧ γµ , (3)

defines a new entity called a bivector (or 2-vector), which can be interpreted as
a directed plane segment representing the plane containing the two vectors.

STA is the geometric algebra G4 = G(V4) generated by V4. A full basis for
the algebra is given by the set:
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1 {γµ} {γµ ∧ γν} {γµi} i
1 scalar 4 vectors 6 bivectors 4 trivectors 1 pseudoscalar
grade 0 grade 1 grade 2 grade 3 grade 4

where the unit pseudoscalar

i ≡ γ0γ1γ2γ3 (4)

squares to −1, anticommutes with all odd grade elements and commutes with
even grade elements. Thus, G4 is a linear space of dimension 1+4+6+4+1 =
24 = 16.

A generic element of G4 is called a multivector. Any multivector can be
expressed as a linear combination of the basis elements. For example, a bivector
F has the expansion

F = 1
2Fµνγµ ∧ γν , (5)

with its “scalar components” Fµν in the usual tensorial form. For components,
we use the usual tensor algebra conventions for raising and lowering indices and
summing over repeated upper and lower index pairs.

Any multivector M can be written in the expanded forms

M = α + a + F + bi + βi =
4∑

k=0

〈M〉k, (6)

where α = 〈M〉0 and β are scalars, a = 〈M〉1 and b are vectors, and F = 〈M〉2
is a bivector, while bi = 〈M〉3 is a trivector (or pseudovector) and βi = 〈M〉4 is
a pseudoscalar. It is often convenient to drop the subscript on the scalar part
so 〈M〉 = 〈M〉0. The scalar part behaves like the “trace” in matrix algebra; for
example, 〈MN〉 = 〈NM〉 for arbitrary multivectors M and N . A multivector
is said to be even if the grades of its nonvanishing components are all even. The
even multivectors compose the even subalgebra of G4, which is, of course, closed
under the geometric product.

Coordinate-free computations are facilitated by various definitions. The op-
eration of reversion reverses the order in a product of vectors, so for vectors
a, b, c it is defined by

(abc)˜= cba . (7)

It follows for any multivector M in the expanded form (6) that the reverse M̃
is given by

M̃ = α + a − F − bi + βi . (8)

Computations are also facilitated by defining various products in terms of the
fundamental geometric product.
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The inner and outer products of vectors, (2) and (3) can be generalized to
arbitrary multivectors as follows. For A = 〈A〉r and B = 〈B〉s of grades r, s ≥ 0,
inner and outer products can be defined by

A · B ≡ 〈AB〉|r−s|, A ∧ B ≡ 〈AB〉r+s . (9)

Coordinate-free manipulations are facilitated by a system of identities involving
inner and outer products [8]. These identities generalize to arbitrary dimen-
sions the well-known identities for dot and cross products in ordinary 3D vector
algebra. Only a few of the most commonly used identities are listed here. For
a vector a, the geometric product is related to inner and outer products by

aB = a · B + a ∧ B . (10)

For vectors a, b, c the most commonly used identity is

a · (b ∧ c) = (a · b)c − (a · c)b = a · b c − a · c b . (11)

This is a special case of

a · (b ∧ B) = a · b B − b ∧ (a · B) (12)

for grade(B) ≥ 2, and we have a related identity

a · (b · B) = (a ∧ b) · B . (13)

We also need the commutator product

A × B ≡ 1
2 (AB − BA). (14)

This is especially useful when A is a bivector. Then we have the identity

AB = A · B + A × B + A ∧ B, (15)

which should be compared with (10). For s = grade(B), it is easy to prove that
the three terms on the right side of (15) have grades s− 2, s, s + 2 respectively.

Note the dropping of parentheses on the right hand side of (11). To reduce
the number of parentheses in an expression, we sometimes use a precedence con-
vention, which allows that inner, outer and commutator products take prece-
dence over the geometric product in ambiguous expressions.

Finally, we note that the concept of duality, which appears throughout math-
ematics, has a very simple realization in GA. The dual of any multivector is
simply obtained by multiplying it by the pseudoscalar i (or, sometimes, by a
scalar multiple thereof). Thus, in (6) the trivector bi is the dual of the vector
b. Inner and outer products are related by the duality identities

a · (Bi) = (a ∧ B)i , a ∧ (Bi) = (a · B)i . (16)
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B. Lorentz rotations and rotors

A complete treatment of Lorentz transformations is given in GA2. We are
concerned here only with transformations continuously connected to the identity
called Lorentz rotations.

Every Lorentz rotation R has an explicit algebraic representation in the
canonical form

R(a) = RaR̃ , (17)

where R is an even multivector called a rotor, which is subject to the normal-
ization condition

RR̃ = 1 . (18)

The rotors form a multiplicative group called the rotor group, which is a double-
valued representation of the Lorentz rotation group, also called the spin group
or SU(2). The underbar serves to indicate that R is a linear operator. An
overbar is used to designate its adjoint R . For a rotation, the adjoint is also
the inverse; thus,

R (a) = R̃ aR . (19)

A rotor is a special kind of spinor — as useful in classical physics as in quantum
mechanics.

For a particle history parametrized by proper time τ , the particle velocity
v = v(τ) is a unit vector, so it can be obtained at any time τ from the fixed
unit timelike vector γ0 by a Lorentz rotation

v = Rγ0R̃ , (20)

where R = R(τ) is a one-parameter family of rotors. It follows from (18) that
R must satisfy the rotor equation of motion

Ṙ = 1
2ΩR , (21)

where the overdot indicates differentiation with respect to proper time and
Ω = Ω(τ) is a bivector-valued function, which can be interpreted as a generalized
rotational velocity. It follows by differentiating (20) that the equation of motion
for the particle velocity must have the form

v̇ = Ω · v . (22)

The dynamics of particle motion is therefore completely determined by Ω(τ).
For example, for a classical particle with mass m and charge q in an electro-
magnetic field F , the dynamics is specified by

Ω =
q

m
F , (23)
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which gives the standard Lorentz Force when inserted into (22). One of our
objectives in this paper is to ascertain what Ω should be for a particle subject
to a gravitational force.

One major advantage of the rotor equation (20) for the velocity is that it
generalizes immediately to an orthonormal frame comoving with the velocity:

eµ = RγµR̃ , (24)

where, of course, v = e0. Solution of the rotor equation of motion (21) therefore
gives precession of the comoving frame along with the velocity vector. In Section
VII we adapt this approach to gyroscope precession in a gravitational field.

C. Vector derivatives, differential forms and field equations

Geometric calculus is the extension of a geometric algebra like STA to in-
clude differentiation and integration. The fundamental differential operator in
geometric calculus is the vector derivative. Although the vector derivative can
be defined in a coordinate-free way [9, 8], the quickest approach is to use the
reader’s prior knowledge about partial differentiation.

For a vector variable a = aµγµ defined on V4, the vector derivative can be
given the operator definition

∂a = γµ ∂

∂aµ
. (25)

This can be used to evaluate the following specific derivatives where K = 〈K〉k
is a constant k-vector:

∂a a · K = kK , (26)

∂a a ∧ K = (n − k)K , (27)

∂a Ka = γµKγµ = (−1)k(n − 2k)K , (28)

where n is the dimension of the vector space (n = 4 for spacetime).
In special relativity the location of an event is designated by a vector x in

V4. For the derivative with respect to a spacetime point x we usually use the
special symbol

� ≡ ∂x . (29)

This agrees with the standard symbol �ϕ for the gradient of a scalar field
ϕ = ϕ(x). Moreover, the same symbol is used for the vector derivative of any
multivector field. It is most helpful to consider a specific example.

Let F = F (x) be an electromagnetic field. This is a bivector field, with
standard tensor components given by (5). The vector derivative enables us to
express Maxwell’s equation in the compact coordinate-free form

�F = J , (30)
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where the vector field J = J(x) is the charge current density.
The vector derivative can be separated into two parts by using the the dif-

ferential identity

�F = � · F + �∧ F , (31)

which is an easy consequence of the identity (10). The terms on the right-hand
side of (29) are called, respectively, the divergence and curl of F . Since � · F is
a vector and �∧ F is a trivector, we can separate vector and trivector parts of
(29) to get two Maxwell’s equations:

� · F = J , (32)

�∧ F = 0 . (33)

Although these separate equations have distinct applications, the single equation
(30) is easier to solve for given source J and boundary conditions [9].

Something needs to be said here about differential forms, though we shall
not need them in this paper, because we will not be doing surface integrals.
Differential forms have become increasingly popular in theoretical physics and
especially in general relativity since they were strongly advocated by Misner,
Thorne and Wheeler [12]. The following brief discussion is intended to convince
the reader that all the affordances of differential forms are present in geometric
calculus and to enable translation from one language to the other.

A differential k-form ω is a scalar-valued linear function, which can be given
the explicit form

ω = dkx · K , (34)

where K = K(x) is a k-vector field and dkx is a k-vector-valued volume element.
In this representation, Cartan’s exterior derivative dω is given by

dω = dk+1x · (�∧ K) . (35)

Thus, the exterior derivative of a k-form is equivalent to the curl of a k-vector.
Differential forms are often used to cast the Fundamental Theorem of Integral
Calculus (also known as the generalized Stokes’ Theorem) in the form∫

R
dω =

∮
∂R

ω . (36)

By virtue of (34) and (35), this theorem applies to a differentiable k-vector field
K = K(x) defined on a (k + 1)-dimensional surface R with a k-dimensional
boundary ∂R.

Now it is easy to translate Maxwell’s equations from STA into differential
forms. The electromagnetic field F and current J become a 2-form and a 1-form:

ω = d2x · F , α = J · dx . (37)
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Dual forms can be defined by

∗ω ≡ d2x · (Fi) , ∗α ≡ d3x · (Ji) . (38)

The duality identity (16) implies the duality of divergence and curl:

(� · F )i = �∧ (Fi). (39)

Consequently, the Maxwell equations (32) and (33) are equivalent to the equa-
tions

d ∗ ω = ∗α , (40)

dω = 0 . (41)

The standard formalism of differential forms does not allow us to combine these
two equations into a single equation like �F = J . This is related to a more se-
rious limitation of the differential forms formalism: It is not suitable for dealing
with spinors.

As we are interested to see how quantum mechanics generalizes to curved
spacetime, we record without proof the essential results from GA2, which should
be consulted for a detailed explanation. To be specific, we consider the electron
as the quintessential fermion.

The electron wave function is a real spinor field ψ = ψ(x), an even multi-
vector in the real STA. For the electron with charge e and mass m, the field
equation for ψ is the real Dirac equation

�ψγ2γ1h̄ − eAψ = mψγ0 , (42)

where A = Aµγµ is the electromagnetic vector potential. This coordinate-free
version of the Dirac equation has a number of remarkable properties, beginning
with the fact that it is formulated entirely in the real STA and so implies that
complex numbers in the standard matrix version of the Dirac equation have a
geometric interpretation. Indeed, the unit imaginary is explicitly identified in
(38) with the spacelike bivector γ2γ1, which does square to minus one. The
vector derivative � = γµ∂µ will be recognized as the famous differential oper-
ator introduced by Dirac, except that the γµ are vectors rather than matrices.
Our reformulation of Dirac’s operator as a vector derivative shows that it is the
fundamental differential operator for all of spacetime physics, not just quan-
tum physics. The present paper shows that adapting this operator is the main
problem in adapting quantum mechanics to curved spacetime.

Physical interpretation of the Dirac equation depends on the specification
of “observables,” which are bilinear functions of the wave function. The Dirac
wave function determines an orthonormal frame field of local observables

ψγµψ̃ = ρeµ , (43)
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where ρ = ρ(x) is a scalar probability density and

eµ = RγµR̃ , (44)

where R = R(x) is a rotor field. The vector field ψγ0ψ̃ = ρe0 is the Dirac
probability current, which doubles as a charge current when multiplied by the
charge e. The vector field e3 = Rγ3R̃ specifies the local direction of electron
spin. The vector fields e1 and e2 specify the local phase of the electron, and
e2e1 = Rγ2γ1R̃ relates the unit imaginary in the Dirac equation to electron
spin. A full understanding of this point requires more explanation than can be
given here. Details are given in GA2.

Finally, note the strong similarity between the spinor frame field (40) and
the comoving frame (24) for a classical particle. This provides a common ground
for describing spin precession in both classical and quantum mechanics.

III. Mathematical Tools

This section introduces powerful mathematical tools and theorems of general
utility throughout physics, though the treatment here is limited to results needed
for gauge gravity theory. It is particularly noteworthy that these tools enable
linear algebra and differential transformations without matrices or coordinates.

A. Linear Algebra

Within geometric calculus (GC), linear algebra is the theory of linear vector-
valued functions of a vector variable. GC makes it possible to perform coordinate-
free computations in linear algebra without resorting to matrices, as demon-
strated in the basic concepts, notations and theorems reviewed below. Linear
algebra is a large subject, so we restrict our attention to the essentials needed
for gravitation theory. A more extensive treatment of linear algebra with GC is
given elsewhere [13, 8, 14] as well as [2].

Though our approach works for vector spaces of any dimension, we will be
concerned only with linear transformations of Minkowski space. To begin, we
need a notation that clearly distinguishes linear operators and their products
from vectors and their products. Accordingly, we distinguish symbols represent-
ing a linear transformation (or operator) by affixing them with an underbar (or
overbar). Thus, for a linear operator f acting on a vector a, we write

fa = f(a) . (45)

As usual in linear algebra, the parenthesis around the argument of f can be
included or omitted, either for emphasis or to remove ambiguity.

Every linear transformation f on Minkowski space has a unique extension
to a linear function on the whole STA, called the outermorphism of f because
it preserves outer products. It is convenient to use the same notation f for the
outermorphism and the operator that “induces” it, distinguishing them when
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necessary by their arguments. The outermorphism is defined by the property

f(A ∧ B) = (fA) ∧ (fB) (46)

for arbitrary multivectors A, B, and

fα = α (47)

for any scalar α. It follows that, for any factoring A = a1 ∧ a2 ∧ . . . ∧ ar of an
r-vector A into vectors,

f(A) = (fa1) ∧ (fa2) ∧ . . . ∧ (far) . (48)

This relation can be used to compute the outermorphism directly from the
inducing linear operator.

Since the outermorphism preserves the outer product, it is grade preserving,
that is

f〈M 〉k = 〈 fM 〉k (49)

for any multivector M . This implies that f alters the pseudoscalar i only by a
scalar multiple. Indeed

f(i) = (det f)i or det f = −if(i) , (50)

which defines the determinant of f . Note that the outermorphism makes it
possible to define (and evaluate) the determinant without introducing a basis
or matrices.

The “product” of two linear transformations, expressed by

h = gf (51)

applies also to their outermorphisms. In other words, the outermorphism of
a product equals the product of outermorphisms. It follows immediately from
(51) that

det( gf) = (det g)(det f) , (52)

from which many other properties of the determinant follow, such as

det(f−1) = (det f)−1 (53)

whenever f−1 exists.
Every linear transformation f has an adjoint transformation f which can

be extended to an outermorphism denoted by the same symbol. The adjoint
outermorphism can be defined in terms of f by

〈Mf N 〉 = 〈N fM 〉 , (54)
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where M and N are arbitrary multivectors and the bracket, as usual, indicates
“scalar part.” For vectors a, b this can be written

b · f (a) = a · f(b) . (55)

Differentiating with respect to b we obtain [15],

f (a) = ∂b a · f(b) . (56)

This is the most useful formula for obtaining f from f . Indeed, it might well
be taken as the preferred definition of f .

Unlike the outer product, the inner product is not generally preserved by
outermorphisms. However, it obeys the fundamental transformation law

f [f(A) · B] = A · f (B) (57)

for (grade A) ≤ (grade B). Of course, this law also holds with an interchange
of overbar and underbar. If f is invertible, it can be written in the form

f [A · B] = f−1(A) · f (B) . (58)

For B = i, since A · i = Ai, this immediately gives the general formula for the
inverse outermorphism:

f−1A = [f (Ai)](f i)−1 = (det f)−1f (Ai)i−1 . (59)

This relation shows explicitly the double duality inherent in computing the in-
verse of a linear transformation, but not at all obvious in the matrix formulation.

B. Transformations and Covariants

This section describes the apparatus of geometric calculus [8] for handling
transformations of spacetime and corresponding induced transformations of mul-
tivector fields on spacetime. We concentrate on transformations (or mappings)
of 4-dimensional regions, including the whole of spacetime, but our apparatus
applies with only minor adjustments to mapping vector manifolds of any di-
mension including submanifolds in spacetime. It also applies to curved as well
as flat manifolds and allows the target of a mapping to be a different manifold.
As a matter of course, we assume whatever differentiability is required for per-
forming indicated operations. Accordingly, all transformations are presumed to
be smooth and invertible unless otherwise indicated.

In the next section we model spacetime as a vector manifold M4 = {x} with
tangent space V4(x) at each spacetime point x. Tangent vectors in V4(x) are
differentiably attached to M4 in two distinct ways: first, as tangent to a curve;
second as gradient of a scalar. Thus, a smooth curve x = x(λ) through a point
x has tangent

dx

dλ
= lim

ε→0

1
ε
{x(λ + ε) − x(λ)}. (60)
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A scalar field φ = φ(x) has a gradient determined by the vector derivative

�φ = �xφ(x) = ∂xφ(x). (61)

The two kinds of derivative are related by the chain rule:

dφ(x(λ))
dλ

=
dx

dλ
·�xφ(x). (62)

By the way, we usually write � = �
x for the derivative with respect to a

spacetime point and ∂a for the derivative with repect to a vector variable a
in V4(x). The vector-valued gradient �φ is commonly called a covector to
distinguish its kind from the vector dx/dλ. The difference in kind is manifest
in the different ways they transform, as we see next.

Let f be a smooth mapping (i.e. diffeomorphism) that transforms each point
x in some region of spacetime into another point x′, as expressed by

f : x → x′ = f(x) . (63)

The mapping (63) induces a linear transformation of tangent vectors at x to
tangent vectors at x′, given by the differential

f : a → a′ = f(a) = a ·∇f . (64)

More explicitly, it determines the transformation of a vector field a = a(x) into
a vector field

a′ = a′(x′) ≡ f [a(x); x] = f [a(f−1(x′)); f−1(x′) ] . (65)

The outermorphism of f determines an induced transformation of specified
multivector fields. In particular, the induced transformation of the pseudoscalar
gives

f(i) = Jf i, where Jf = det f = −ifi (66)

is known as the Jacobian of f .
The transformation f also induces an adjoint transformation f which takes

covectors at x′ back to covectors at x, as defined by

f : b′ → b = f (b′) ≡ ∇̀f̀ · b′ = �xf(x) · b′ . (67)

More explicitly, for covector fields

f : b′(x′) → b(x) = f [ b′(x′); x ] = f [ b′(f(x)); x ] . (68)

As in (55), the differential is related to the adjoint by

b′ · f(a) = a · f (b′) . (69)
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Since the induced transformations for vectors and covectors are linear trans-
formations, they generalize as outermorphisms to differential and adjoint trans-
formations of the entire tangent algebra at each point of the manifold. According
to (59), therefore, the outermorphism f determines the inverse transformation

f−1(a′) = f (a′i)(Jf i)−1 = a . (70)

Also, however,

f−1(a′) = a′ ·�x′f−1(x′) . (71)

Hence, the inverse of the differential equals the differential of the inverse.
Since the adjoint maps “backward” instead of “forward,” it is often conve-

nient to deal with its inverse

f−1 : b(x) → b′(x′) = f−1 [ b(f−1(x′)) ] . (72)

This has the advantage of being directly comparable to f . Note that it is not
necessary to distinguish between f−1 and f −1.

f

xa

x' = f (x)f_

f
_

f (a) = a'_

f (b' ) = b
_

.

.
b'

Fig. 1. A differentiable transformation f of points induces a differ-
ential f and its adjoint f transforming tangent vectors between the
points.

To summarize, we have two kinds of induced transformations for multivector
fields: the differential f and the adjoint f , as shown in Fig. 1. Multivector fields
transformed by f are commonly said to be contravariant or to “transform like a
vector,” while fields transformed by f are said to be covariant or to “transform
like a covector.” The term “vector” is thus associated with the differential while
“covector” is associated with the adjoint. This linking of the vector concept to
a transformation law is axiomatic in ordinary tensor calculus, because vectors
are defined in terms of coordinates. In geometric calculus, however, the two
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concepts are separate, because the algebraic concept of vector is determined
by the axioms of geometric algebra without reference to any coordinates or
transformations.

As we have just seen, one way to assign a transformation law to a vector or
a vector field is by relating it to differentiation. Another way is by the rule of
direct substitution: A field F = F (x) is transformed to F (f−1(x′)) = F ′(x′) or,
equivalently, to

F ′(x′) ≡ F ′(f(x)) = F (x) . (73)

Thus, the values of the field are unchanged — although they are associated with
different points by changing the functional form of the field.

Directional derivatives of the two different functions in (73) are related by
the chain rule:

a ·�F = a ·�xF ′(f(x)) = (a ·�xf(x)) ·�x′F ′(x′) = f(a) ·�′
F ′ = a′ ·�′

F ′ .

(74)

The chain rule is more simply expressed as an operator identity

a ·� = a · f (�′
) = f(a) ·�′

= a′ ·�′
. (75)

Differentiation with ∂a yields the general transformation law for the vector
derivative:

� = f (�′
) or �′

= f −1(�) . (76)

This is the chain rule for the vector derivative, the most basic form of the chain
rule for differentiation on vector manifolds. All properties of induced transfor-
mations are essentially implications of this rule, including the transformation
law for the differential, as (75) shows.

Sometimes it is convenient to use a subscript notation for the differential:

fa ≡ f(a) = a ·�f. (77)

Then the second differential of the transformation (63) can be written

fab ≡ b · �̀a ·�f̀ = b ·�[f(a)] − [f(b ·�a)] , (78)

and we note that

fab = fba. (79)

This symmetry is equivalent to the fact that the adjoint function has vanishing
curl. Thus, using � = ∂aa ·� we prove

�̀ ∧ f̀ (a′) = ∂b ∧ fb(a′) = ∂b ∧ ∂cfcb · a′ = �∧�f · a′ = 0 . (80)
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The transformation rule for the curl of a covector field a = f (a′) is therefore

�∧ a = �∧ f (a′) = f (�′ ∧ a′) . (81)

To extend this to multivector fields of any grade, note that the differential of an
outermorphism is not itself an outermorphism; rather it satisfies the “product
rule”

fb(A′ ∧ B′) = fb(A′) ∧ f (B′) + f (A′) ∧ fb(B′) . (82)

Therefore, it follows from (80) that the curl of the adjoint outermorphism van-
ishes, and (81) generalizes to

�∧ A = f (�′ ∧ A′) or �′ ∧ A′ = f −1(�∧ A) , (83)

where A = f (A′). Thus, the adjoint outermorphism of the curl is the curl of an
outermorphism.

The transformation rule for the divergence is more complex, but it can be
derived from that of the curl by exploiting the duality of inner and outer prod-
ucts

a ∧ (Ai) = (a · A)i (84)

and the transformation law (58) relating them. Thus,

f (�′ ∧ (A′i)) = f [ (�′ · A′)i ] = f−1(�′ · A′)f (i) .

Then, using (83) and (66) we obtain

�∧ f (A′i) = �∧ [ f−1(A′)f (i) ] = � · (JfA)i ,

where A′ = f(A). For the divergence, therefore, we have the transformation
rule

�′ · A′ = �′ · f(A) = Jf
−1 f [� · (JfA) ] = f [� · A + (� lnJf ) · A ] , (85)

This formula can be separated into two parts:

�̀′ · f̀ (A) = f [ (� ln Jf ) · A ] = (�′
ln Jf ) · f(A) , (86)

�̀′ · f(À) = f(� · A) . (87)

The whole can be recovered from the parts by using the following generalization
of (75) (which can also be derived from (58)):

f(A) ·�′
= f(A ·�) . (88)
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IV. Induced Geometry on Flat Spacetime

Every real entity has a definite location in space and time — this is the funda-
mental criterion for existence assumed by every scientific theory. In Einstein’s
relativity theories the spacetime of real physical entities is a 4-dimensional con-
tinuum modeled mathematically by a 4D differentiable manifold M4. The stan-
dard formulation of general relativity (GR) employs a curved space model of
spacetime, which places points and vector fields in different spaces. In contrast,
our flat space model of spacetime identifies the spacetime manifold M4 with
the Minkowski vector space of special relativity. A spacetime map describes a
spatiotemporal partial ordering of physical events by representing the events as
points (vectors) in M4 = {x}. All other properties of physical entities are rep-
resented by fields on spacetime with values in the tangent algebra V4(x) and the
geometric algebra G(V4) that it generates. For this reason it is worthwhile to
maintain a distinction between V4 and M4 even though they are algebraically
identical vector spaces.

To incorporate gravity into flat space theory we represent metrical relations
among events by fields in V4 rather than intrinsic properties of M4 as in curved
space theory. The following subsections explain how to do that in a systematic
way that is easily compared to Einstein’s curved space theory.

A. Displacement Gauge Invariance

A given ordering of events can be represented by a map in many different
ways, just as the surface of the earth can be represented by Mercator projection,
stereographic projection or many other equivalent maps. As the physical world
is independent of the way we construct our maps, we seek a physical theory
which is equally independent. The Cambridge group has formulated this idea
as a new kind of gauge principle, which can be expressed as follows:

Displacement Gauge Principle (DGP): The equations of physics
must be invariant under arbitrary smooth remappings of events onto
spacetime.

To give this principle a precise mathematical formulation, from here on we
interpret the transformation (63) as a smooth remapping of flat spacetime M4

onto itself. It will be convenient to cast the direct substitution transformation
(73) of a field F = F (x) in the alternative form

F ′(x) ≡ F (x′) = F (f(x)) . (89)

This simple transformation law, assumed to hold for all physical fields and field
equations, is the mathematical formulation of the DGP. The descriptive term
“displacement” is justified by the fact that (89) describes displacement of the
field from point x to point x′ without changing its values. The DGP should
be recognized as a vast generalization of “translational invariance” in special
relativity, so it has a comparable physical interpretation. Accordingly, the DGP
can be interpreted as asserting that “spacetime is globally homogeneous.” In
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other words, with respect to the equations of physics all spacetime points are
equivalent. Thus, the DGP has implications for measurement, as it establishes
a means for comparing field configurations at different places and times.

The Cambridge group had the brilliant insight that enforcement of the trans-
formation law (89) requires introduction of a new physical field that can be iden-
tified with the gravitational field. Properties of this field, called the gauge field
or gauge tensor, derive from the transformation laws of the preceding section.
The most essential step is defining a gauge invariant derivative. To that end,
consider a gauge invariant scalar field φ = φ(x) transformed by (89); according
to (76) the transformation of its gradient is given by

�φ′(x) = �φ(f(x)) = f [�′
φ(x′)] . (90)

To make this equation gauge invariant, we introduce an invertible tensor field
h defined on covectors so that

h′[(�φ′(x)] = h[(�′
φ(x′)] . (91)

Comparison with (90) shows that h must be a linear operator on covectors with
the transformation law

h′ = hf −1 . (92)

More explicitly, when operating on a covector b = �φ the rule is

h′(b; x) = h(f −1(b;x);x′) . (93)

We usually suppress the position dependence and write

h′(b) = h(f −1(b)) . (94)

Applying this rule to the vector derivative � with its transformation rule (76),
we can define a position gauge invariant derivative by

� ≡ h(�) . (95)

The symbol � is a convenient abuse of notation to remind us that the linear
operator h is involved in its definition.

From the operator � we obtain a position gauge invariant directional deriva-
tive

a ·� = a · h(�) = (ha) ·� , (96)

where h is the adjoint of h and a is a “free vector,” which is to say that it can
be regarded as constant or as a vector transforming by the direct substitution
rule (89). This is clarified by a specific example.

Let x = x(τ) be a timelike curve representing a particle history. According
to (64), the diffeomorphism (63) induces the transformation

ẋ =
dx

dτ
→ ẋ′ = f(x.) . (97)
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Thus the description of particle velocity by x
. is “contravariant” under spacetime

diffeomorphisms. Comparing (62) with (96), it is evident that an “invariant”
velocity vector v = v(x(τ)) can be introduced by writing

ẋ = h(v) , (98)

where h obeys the adjoint of the “gauge transformation” rule (92), that is

f−1 h′ = h or h′ = f h . (99)

Accordingly, (97) implies that

ẋ′ = h′(v) , (100)

where v has the same value as in (98), but it is taken as a function of x′(τ)
instead of x(τ). To distinguish the ẋ from the invariant velocity

v = h−1(ẋ) = h′−1(ẋ′) , (101)

one could refer to ẋ as the map velocity. Otherwise the term “velocity” desig-
nates v. The invariant normalization

v2 = 1 (102)

fixes the scale on the parameter τ , which can therefore be interpreted as proper
time.

For any field F = F (x(τ)) defined on a particle history x(τ), the chain rule
gives the operator relation

d

dτ
= ẋ ·� = h(v) ·� = v · h(�) = v ·� , (103)

so that

dF

dτ
= v ·�F . (104)

For F (x) = x, this gives

dx

dτ
= v ·�x = (hv) ·�x = hv , (105)

recovering (98).
Since h and h are mutually determined, we can refer to either as the “gauge

tensor” or, simply, the “gauge” on spacetime. Actually, the term “gauge” is
more appropriate here than elsewhere in physics, because h does indeed deter-
mine the “gauging” of a metric on spacetime. To see that, use (97) in (101)
to derive the following expression for the invariant line element on a timelike
particle history:

dτ2 = [ h−1(dx) ]2 = dx · g(dx) (106)
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where

g = h−1 h−1 (107)

is a symmetric metric tensor. This formulation suggests that gauge is a more
fundamental geometric entity than metric, and that view is confirmed by devel-
opments below. Einstein has taught us to interpret the metric tensor physically
as a gravitational potential, making it easy and natural to transfer this inter-
pretation to the gauge tensor. Some readers will recognize h as equivalent to a
“tetrad field,” which has been proposed before to represent gravitational fields
on flat spacetime [16]. However, the spacetime calculus makes all the difference
in turning the tetrad into a practical tool.

To verify that (106) is equivalent to the standard invariant line element in
general relativity, coordinates must be introduced. Let x = x(x0, x1, x2, x3)
be a parametrization of the points, in some spacetime region, by an arbitrary
set of coordinates {xµ}. Partial derivatives then give tangent vectors to the
coordinate curves ∂µx, which, in direct analogy to (98) and (101), determine a
set of displacement gauge invariant vector fields {gµ} according to the equation

eµ ≡ ∂µx =
∂x

∂xµ
= h(gµ) , (108)

or, equivalently, by

gµ = h−1(eµ) . (109)

The components for this coordinate system are then given by

gµν = gµ · gν = eµ · g(eν) . (110)

Therefore, with dx = dxµeµ, the line element (106) can be put in the form

dτ2 = gµνdxµdxν , (111)

which is familiar from the tensor formulation of GR.
To complete the introduction of coordinates into the flat space gauge theory,

we introduce coordinate functions xµ = xµ(x) and the coordinate frame vectors

eµ = �xµ (112)

reciprocal to the frame {eµ} defined by (108); whence

eµ · eν = eµ ·�xν = ∂µxν = δν
µ . (113)

The displacement gauge invariant frame {gµ} reciprocal to (109) is then given
by

gµ = h(eµ) = �xµ . (114)
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So the gauge invariant derivative is given by

� = h(�) = gµ∂µ . (115)

The flat space and curved space theories can now be compared through
their use of coordinates. The vector fields gµ encode all the information in the
metric tensor gµν = gµ · gν of GR, as is evident in (110). However, equations
(111) and (114) decouple coordinate dependence of the metric, expressed by
eµ = ∂µx, from the physical dependence, expressed by the gauge tensor h or its
adjointh. In other words, the remapping of events in spacetime is completely
decoupled from changes in coordinates in the gauge theory, whereas the curved
space theory has no means to separate passive coordinate changes from shifts
in physical configurations. This crucial fact is the reason why the Displacement
Gauge Principle has physical consequences, whereas Einstein’s general relativity
principle does not.

The precise theoretical status of Einstein’s general relativity principle (GRP),
also known as the general covariance principle, has been a matter of perennial
confusion and dispute that some say originated in confusion on Einstein’s part
[17]. One of Einstein’s main motivations in formulating it was epistemologi-
cal: to extend the special relativity principle, requiring physical equivalence of
all inertial frames, to physical equivalence of arbitrary reference frames. He
formulated the GRP as requiring covariance of the equations of physics un-
der the group of arbitrary coordinate transformations (also known as general
covariance). While acknowledging criticisms that the requirement of general
covariance is devoid of physical content, Einstein continued to believe in the
GRP as a cornerstone of his gravitation theory.

Gauge theory throws new light on the GRP, which may be regarded as vin-
dicating Einstein’s obstinate stance. The problem with Einstein’s GRP is that
it is not a true symmetry principle [17]. For a transformation group to be a
physical symmetry group, there must be a well defined “geometric object” that
the group leaves invariant. Thus the “displacement group” of the DGP is a sym-
metry group, because it leaves the flat spacetime background invariant. That is
why it can have the physical consequences described above. There is no com-
parable symmetry group for curved spacetime, because each mapping produces
a new spacetime, so there is no geometric object to be left invariant. Moreover,
general covariance does not discriminate between passive coordinate transfor-
mations and active physical transformations. Those distinctions are generally
made on an ad hoc basis in applications. The intuitive idea of physically equiv-
alent situations was surely at the back of Einstein’s mind when he insisted on
heuristic significance of the GPR over the objections of Kretschmann and others
on its lack of physical content. I submit that the DGP provides, at last, a pre-
cise mathematical formulation for the kind of GRP that Einstein was looking
for. Once again I am impressed by Einstein’s profound physical insight, which
served him so well in assessing the significance of mathematical equations in
physics. Of course, his conclusions depended critically on the mathematics at
his disposal, and displacement gauge theory was not an option available to him.
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B. Rotation Gauge Covariance

Gauge theory gravity requires one other gauge principle, which we formulate
as follows:

Rotation Gauge Principle (RGP): The equations of physics must
be covariant under local Lorentz rotations.

Generalizing the treatment in Section IIIB, we characterize a local Lorentz ro-
tation by a position dependent rotor field L = L(x) with LL̃ = 1. This enables
us to define two kinds of covariant fields, a multivector field M = M(x) and a
spinor field ψ = ψ(x), with respective transformation laws:

L : M → M ′ = L M ≡ LML̃ , (116)

L : ψ → ψ′ = Lψ . (117)

Spinors and multivectors are related by the fact that the spinor field deter-
mines a frame of multivector observables {ψγµψ̃}, where {γµ} is the standard
orthonormal frame of constant vectors introduced in equation (1). Frame inde-
pendence of the gauge tensor is ensured by (116), which implies that the gauge
tensor satisfies the operator transformation law

L : h → h′ = L h . (118)

From (114) it follows that this transformation leaves the metric tensor gµν =
gµ · gν invariant.

To construct field equations that satisfy the RGP, we define a “gauge co-
variant derivative” or coderivative operator D as follows. With respect to a
coordinate frame {gµ = h−1(eµ)}, components Dµ = gµ · D of the coderivative
are defined for spinors and multivectors respectively by

Dµψ = (∂µ + 1
2ωµ)ψ , (119)

DµM = ∂µM + ωµ × M , (120)

where the connexion for the derivative

ωµ = ω(gµ) (121)

is a bivector-valued tensor evaluated on the frame {gµ}. From Section IA,
we know that the bivector property of ωµ implies that ωµ × M is “grade
preserving.” Hence Dµ is a “scalar differential operator” in the sense that
grade(DµM) =grade(M). Note that Dµ is not grade-preserving on the spinor
in (119).

To ensure the covariant transformations for the derivatives

L : Dµψ → L(Dµψ) = D′
µψ′ = (∂µ + 1

2ω′
µ)ψ′ , (122)
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L : DµM → L (DµM) = D′
µM ′ = ∂µM ′ + ω′

µ × M ′ , (123)

the connexion must obey the familiar gauge theory transformation law

ωµ = → ω′
µ = LωµL̃ − 2(∂µL)L̃ , (124)

where it should be noted that the operator ∂µ = gµ ·� is rotation gauge in-
variant. The full vector coderivative D can now be defined by the operator
equation

D = gµDµ , (125)

for which gauge covariance follows from (118) and the definition of Dµ. Since
Dµ preserves the grade of M in (120), the coderivative is a vector differential
operator, so we can decompose it in the same way that we decomposed the
vector derivative � into divergence and curl in equation (31). Thus, for an
arbitrary covariant multivector field M = M(x), we can write

DM = D · M + D ∧ M , (126)

where D · M and D ∧ M are respectively the codivergence and the cocurl.
Combining (118) with (92), we see that the most general transformation of

the gauge tensor is given by

h′ = L hf −1, h′ = f hL . (127)

In other words, every gauge transformation on spacetime is a combination of
displacement and local rotation. This operator equation enables us to turn any
multivector field on spacetime into a gauge covariant field, as shown explicitly
in the next section for the electromagnetic field. Finally, it should be noted
that all the above rotation covariant quantities, including the connexion ωµ, are
displacement gauge invariant as well.

In special relativity, Lorentz transformations are passive rotations express-
ing equivalence of physics with respect to different inertial reference frames.
Here, however, covariance under active rotations expresses local physical equiv-
alence of different directions in spacetime. In other words, the rotation gauge
principle asserts that spacetime is locally isotropic. Thus, “passive equivalence”
is an equivalence of observers, while “active equivalence” is an equivalence of
states. This distinction generalizes to the physical interpretation of any sym-
metry group principle: Active transformations relate equivalent physical states;
passive transformations relate equivalent observers.

To establish the connection of GTG to GR, we need to relate the coderivative
to the usual covariant derivative in GR. Like the directional derivative ∂µ =
gµ ·�, the directional coderivative Dµ = gµ · D is a “scalar differential operator”
that maps vectors into vectors. Accordingly, we can write

Dµgν = Lα
µνgα , (128)

24



which merely expresses the derivative as a linear combination of basis vectors.
This defines the so-called coefficients of connexion Lα

µν for the frame {gν}. By
differentiating gα · gν = δα

ν , we find the complementary equation

Dµgα = −Lα
µνgν . (129)

When the coefficients of connexion are known functions, the coderivative of any
multivector field is determined.

Thus, for any vector field a = aνgν we have

Dµa = (Dµaν)gν + aν(Dµgν).

Then, since the aν are scalars, we get

Dµa = (∂µaα + aνLα
µν)gα . (130)

Note that the coefficient in parenthesis on the right is the standard expression
for a “covariant derivative” in tensor calculus.

Further properties of the connection are obtained by contracting (129) with
gµ to obtain

D ∧ gα = gν ∧ gµLα
µν . (131)

This bivector-valued quantity is called torsion. In the Riemannian geometry of
GR torsion vanishes, so we restrict our attention to that case. Considering the
antisymmetry of the outer product on the right side of (131), we see that the
torsion vanishes if and only if

Lµ
αβ = Lµ

βα . (132)

This can be related to the metric tensor by considering

Dµgαβ = ∂µgαβ = (Dµgα) · gβ + gα · (Dµgβ) ,

whence

∂µgαβ = gανLν
µβ + gβνLν

µα . (133)

Combining three copies of this equation with permuted free indices, we solve for

Lµ
αβ = 1

2gµν(∂αgβν + ∂βgαν − ∂νgαβ) . (134)

This is the classical Christoffel formula for a Riemannian connexion, so the de-
sired relation of the coderivative to the covariant derivative in GR is established.

C. Curvature and Coderivative

In standard tensor analysis the curvature tensor is obtained from the commu-
tator of covariant derivatives. Likewise, we obtain it here from the commutator
of coderivatives. Differentiating (129) we get

[Dµ, Dν ]gα = Rα
µνβgβ , (135)
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where the operator commutator has the usual definition

[Dµ, Dν ] ≡ DµDν − DνDµ , (136)

and

Rα
µνβ = ∂µLα

νβ − ∂νLα
µβ + Lα

νσLσ
µβ − Lα

µσLσ
νβ , (137)

is the usual tensor expression for the Riemannian curvature of the manifold.
This suffices to establish mathematical equivalence of our flat space gauge theory
to the standard tensor formulation of Riemannian geometry and hence to GR.
Now we can confidently turn to the full gauge theory treatment of curvature
and gravitation to see what advantages it has over standard GR.

The commutator of coderivatives defined by (121) gives us

[Dµ, Dν ]M = R(gµ ∧ gν) × M , (138)

where

R(gµ ∧ gν) = ∂µων − ∂νωµ + ωµ × ων

= Dµων − Dνωµ − ωµ × ων ≡ ωµν

(139)

is the curvature tensor expressed as a bivector-valued function of a bivector
variable. This is the fundamental form for curvature in GTG. It follows from
(123) that the curvature bivector has the covariance property

L : R(gµ ∧ gν) → R′(g′µ ∧ g′ν) = L R(L (gµ ∧ gν)), (140)

where L = L−1.
For the gravity field variables gµ, equations (138) and (135) give us

[Dµ, Dν ]gα = ωµν · gα = Rα
µνβ gβ ; (141)

whence

Rα
µνβ = ωµν · (gα ∧ gβ). (142)

Coordinate frame fields {gµ} and {gµ} have been used to introduce the
coderivative and curvature in order to make connection with the standard ten-
sor formalism as direct as possible. However, the vector coderivative and the
curvature bivector can be defined and all their properties can be derived in
a completely coordinate-free way. Derivations are given in Appendix B, and
results are summarized in Table 1.

26



Curvature

R(a ∧ b) ≡ a ·�ω(b) − b ·�ω(a) + ω(a) × ω(b) − ω([a, b])

[a · D̀, b · D̀ ]M̀ = R(a ∧ b) × M = [a · D, b · D ]M − ω([a, b])

[a, b] ≡ a ·�b − b ·�a = a · Db − b · Da

R(gµ ∧ gν) = ∂µων − ∂νωµ + ωµ × ων

[Dµ, Dν ]gα = R(gµ ∧ gν) × gα = Rα
µνβ gβ

R(a ∧ b) = aµbνR(gµ ∧ gν) A · R(B) = B · R(A)

Curvature Contractions and Coderivative Identities

R(a) ≡ ∂b · R(b ∧ a) = ∂bR(b ∧ a) ∂a ∧ R(a ∧ b) = 0

R ≡ ∂a · R(a) = ∂aR(a) ∂a ∧ R(a) = 0

D ∧ D a = (D ∧ D) · a = R(a) (D ∧ D) · M = D · (D · M) = 0

D ∧ D ∧ M = 0 D ∧ D M = (D ∧ D) × M

Bianchi Identity and its Contractions

D̀ ∧ R̀(a ∧ b) = 0 a · D̀R̀(b ∧ c) + b · D̀R̀(c ∧ a) + c · D̀R̀(a ∧ b) = 0

R̀(D̀ ∧ b) = D̀ ∧ R̀(b) R̀(D̀) = 1
2DR

G(a) ≡ R(a) − 1
2aR G̀(D̀) = 0

Table 1. Coderivative and Curvature. All derivatives are rotation
gauge covariant if the fields are. However, coderivatives are well-defined
even for quantities that are not covariant. The fields a and b are vector-
valued, while A and B are bivectors, and the multivector M must have
grade(M) ≥ 2 in the double codivergence identity. Note that accents are
employed in some equations to indicate which quantities are differentiated.

V. Field Equations and Particle Motion

With the differential geometry of gauge fields well in hand, we are ready to
apply it to gravity theory.

A. Einstein’s Equation

Einstein’s gravitational field equation can be created from contractions of
the curvature tensor in the usual way. Contraction of the curvature bivector
(139) gives the usual Ricci tensor expressed as a vector-valued function of a
vector variable.

R(gν) = gµ · R(gµ ∧ gν) , (143)
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With help from the identity (13), a second contraction gives the usual scalar
curvature

R ≡ gν · R(gν) = (gν ∧ gµ) · R(gµ ∧ gν) . (144)

The gravitational field equation can thus be written in the form

G(gν) ≡ R(gν) − 1
2gν R = κT (gν) , (145)

where κ = 8π in “natural units” with the gravitational constant set equal to
unity. The vector-valued function of a vector variable G(a) is Einstein’s tensor,
and its source T (a) is the total energy-momentum tensor for material particles
and non-gravitational fields. Of course, decomposition into tensor components
Gµν = gµ · G(gν) and Tµν = gµ · T (gν) yields Einstein’s equation in its standard
tensor component form.

The spacetime algebra reviewed in Section I enables us to express Einstein’s
tensor Gβ = G(gβ) in the new unitary form:

Gβ = 1
2 (gβ ∧ gµ ∧ gν) · ωµν = 1

2 (gβ ∧ ωµν) · (gµ ∧ gν) . (146)

The last equality is a consequence of the well-known symmetry of the curvature
tensor,

(gα ∧ gβ) · R(gµ ∧ gν) = (gµ ∧ gν) · R(gα ∧ gβ) . (147)

Identities (12) and (13) can be used to expand the inner product in (146) to get

Gβ = gµ · ωµνgνβ − 1
2gβ(gν ∧ gµ) · ωµν , (148)

which will be recognized as equivalent to the standard form (145) for the Einstein
tensor. Thus, expansion of the inner product has split the “unitary” Einstein
tensor into two parts. Let us refer to this as the Ricci split of the Einstein
tensor.

As is well known, Einstein originally chose the particular combination of
Ricci tensor and scalar curvature in (145) because, as shown in Appendix B and
Table 1, its codivergence G̀(D̀) vanishes in consequence of the Bianchi identity.
Using Dµ(ggµ) = 0 from appendix A, we can write this version of the Bianchi
identity in the form

Dµ[gG(gµ)] = gG̀(D̀) = 0 . (149)

It follows, then, from Einstein’s field equation (145) that

Dµ[gT (gµ)] = gT̀ (D̀) = 0 . (150)

Initially, Einstein wanted to interpret this as a general energy-momentum con-
servation law. However, that interpretation is not so straightforward, because a
true conservation law requires vanishing of an ordinary divergence rather than
a codivergence. Instead, we shall see in Section VC that (150) determines the
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equation of motion for matter. Then in Section VII we see that an alternative
to the Ricci split is more suitable for deriving the general energy-momentum
conservation law that Einstein wanted.

B. Electrodynamics with Gravity

GTG differs from GR in providing explicit equations for the influence of
gravity on physical fields. This is best illustrated by electrodynamics. Maxwell’s
equation �F = J with F = �∧A is not gravitation gauge covariant. To make
the vector field A gauge covariant and incorporate the effect of gravity, we simply
write [15]

A = h(A) , (151)

and gauge covariance is assured by (127). In fact, the influence of gravity on
the electromagnetic field is fully characterized by the gauge tensor h.

Now applying (240) from Appendix A to (151), we immediately obtain a
gauge covariant expression for the electromagnetic field strength:

F = h(F ) = D ∧ A = h(�∧ A ) . (152)

Similarly, applying the cocurl again and using Table 1, we obtain

D ∧ F = D ∧ D ∧ A = h(�∧�∧ A ) = 0 . (153)

Thus, Maxwell’s equation � ∧ F = 0 applies irrespective of the gravitational
field. Now it is obvious that the gauge covariant form of Maxwell’s equation
must be

D F = D · F + D ∧ F = J . (154)

From the vector part of this equation, we have, using the double codivergence
identity in Table 1,

D · (D · F ) = 0 = D · J , (155)

A little more analysis is needed to relate the right side of this equation to the
standard charge current conservation law.

Explicit dependence of the codivergence D · F on the gauge tensor can be
derived from (152) by exploiting duality. The derivation is essentially the same
as that for (85) and yields the result

D · F = hh−1[� · (h−1 h(F ))] , (156)

where h ≡ det(h). For the vector field J the result is a scalar, and we obtain
the simpler equation

D · J = h� · (h−1 h(J )) , (157)
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so comparison with (155) identifies J = h−1 h(J ) with the conserved charge
current. Combining this with (156), we can write D · F = J in the equivalent
form

� · (h−1 hh(F )) = J . (158)

This enables us to interpret the operator h−1 hh = h−1 g−1 as a kind of dielectric
tensor or generalized index of refraction for the “gravitational medium” [18]. Of
course, equation (158) can be used to compute refraction of light by the sun,
with a result in agreement with alternative GR calculations.

The standard Maxwell energy-momentum tensor (as given in GA2) is easily
generalized to the gauge covariant form:

TEM (a) = −1
2F aF (159)

Using (153) to compute its coderivative , we obtain

T̀EM (D̀) = − 1
2 (F̀ D̀F + F DF ) = 1

2 (J F − F J ) . (160)

In other words,

Dµ[gTEM (gµ)] = gT̀EM (D̀) = gF · J . (161)

One way to assure mutual consistency of Einstein’s field equation with Maxwell’s
equation is to derive them from a common Lagrangian. This has been done
by the Cambridge group in a novel way with GC, and the method has been
extended to spinor fields with provocative new results. The reader is referred
to the literature for details [2].

C. Equations of Motion from Einstein’s Equation

In classical electrodynamics Maxwell’s field equation and Lorentz’s equation
of motion for a charged particle must be postulated separately. It came as
quite a surprise, therefore, to discover that in GR the equation of motion for
a material particle can be derived from Einstein’s field equation, provided it is
assumed to hold everywhere, including at any singularities in the gravitational
field. This discovery was made independently by several people, though most
of the credit is unfairly given to Einstein [19]. Here we sketch essential elements
in one especially simple approach to deriving equations of motion to illustrate
advantages of using GA. The form of the equation of motion is determined by
the form of the energy-momentum tensor. The idea is to describe a localized
material system as a point particle by a multipole expansion of the mass distri-
bution. Then the problem is to reformulate the result as a differential equation
for the particle.

We consider only the simplest case of a structureless point particle. For a
fluid of non-interacting material particles, the energy-momentum tensor can be
put in the form

TM (a) = mρ(a · v)v, (162)
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where ρ is the proper particle density, v is the proper particle velocity and m is
the mass per particle. Its codivergence is

T̀M (D̀) = T̀M (�̀) + ωµ · T (gµ) = mvD · (ρv) + mρv · Dv. (163)

As shown in (157) for a charge current, the codivergence D · (ρv) can be ex-
pressed as a true divergence, so its vanishing expresses particle conservation,
which we assume holds here. For a single particle, ρ is a δ-function on the par-
ticle history, and it can be eliminated by integration, but we don’t need that
step here.

For a charged particle the total energy-momentum tensor is

T (a) = TM (a) + TEM (a) = mρa · vv − 1
2F aF . (164)

According to (161) and (163), its codivergence is

Dµ[g(TM (gµ) + TEM (gµ)] = gρmv · Dv + gJ · F . (165)

For a particle with charge q the current density is J = qρv, so the vanishing of
(165) gives us

mv · Dv − qF · v = 0. (166)

This has the desired form for the equation of motion of a point charge. For
F = 0 it reduces to the geodesic equation, as described in the next Section.

The electromagnetic field in (166) can be expressed as a sum F = F self +
F ext, where F self is the particle’s own field and F ext is the field of other parti-
cles. Evaluated on the particle history, F self describes reaction of the particle
to radiation it emits. This process has been much studied in the literature [19],
but the analysis is too complicated to discuss here. If we neglect radiation, we
can write F = F ext in (166), and qF · v is the usual Lorentz force on a “test
charge.”

D. Particle Motion and Parallel Transfer

The equation for a particle history x = x(τ) generated by a timelike velocity
v = v(x(τ)) in the presence of an “ambient” gauge tensor h is x

. = h(v). For any
covariant multivector field M = M(x(τ)), eqn. (120) gives us the directional
coderivative

v · DM =
d

dτ
M + ω(v) × M , (167)

where the gauge invariant proper time derivative is given by (104). Obviously,
all this applies to arbitrary differentiable curves in spacetime if the requirement
that v be timelike is dropped.

The equation for a geodesic can now be written

v · Dv = v
. + ω(v) · v = 0 (168)
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With ω(v) specified by the “ambient geometry,” this equation can be integrated
for v = h−1(x.) and then a second integration gives the geodesic curve x(τ).
The solution is facilitated by noting that (168) implies

v · v
. = 1

2

dv2

dτ
= v · ω(v) · v = ω(v) · (v ∧ v) = 0 . (169)

Therefore v2 is constant on the curve and, as noted in GA2, the value of v at
any point on the curve can be obtained from a timelike reference value v0 by a
Lorentz rotation. Thus,

v = R v0 = Rv0R̃ , (170)

where R = R(x(τ)) is a rotor field on the curve satisfying the differential equa-
tion

v · DR =
dR

dτ
+ 1

2ω(v)R = 0 . (171)

This is equivalent to the spinor derivative (119), so the rotor R can be regarded
as a special kind of spinor.

More generally, the parallel transport of any fixed multivector M0 to a field
M = M(x(τ)) defined on the whole curve is given by

M = R M0 = RM0R̃ . (172)

Of course, it satisfies the differential equation

v · DM = Ṁ + ω(v) × M = 0 . (173)

The formal similarity of this formulation for parallel transport to a directional
gauge transformation is obvious, but the two should not be confused.

With the spinor coderivative defined by (171) (and not necessarily vanish-
ing), we can rewrite (167) as an operator equation

v · D = R
d

dτ
R, (174)

or equivalently, as

Rv · D = v ·�R =
d

dτ
R . (175)

This shows that a coderivative can be locally transformed to an ordinary deriva-
tive by a suitable gauge transformation.

According to (166), for a particle with unit mass and charge q in an elec-
tromagnetic field F = h(F ) = D ∧ A = h(�∧ A), the geodesic equation (168)
generalizes to

v
. = v · ω(v) + qF · v , (176)
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The first term on the right can be interpreted as a “gravitational force,” though
the standard GR interpretation regards it as part of “force-free” geodesic mo-
tion. From (246) and (242) in Appendix A, we see that v · (v · H) = (v∧v) · H =
0, so

v · ω(v) = v · H(v) = −v · h [�̀ ∧ h̀−1(v)] , (177)

where the accent indicates which quantity is differentiated. Thus, the “gravi-
tational force” is determined by the bivector-valued function H(v), and we can
write

v · H(v) + qF · v = h[ (�̀ ∧ h̀−1(v) + �∧ A) ] · h−1(x.)

= h[ (�̀ ∧ h̀−1(v) + �∧ A) · x
. ].

(178)

Finally, on expanding the last term and introducing the metric tensor g defined
by (107), we can put the equation of motion (176) in the form

d

dτ
[ g(x.) + qA] = �̀[ 1

2x
. · g̀(x.) + qÀ · x

. ] . (179)

Except for the presence of the metric tensor g, this is identical to the equation
of motion for a point charge in Special Relativity, so we can use familiar tech-
niques from that domain to solve it (details in Section VII). Ignoring the vector
potential and solving for

..
x , it can be put in the form

..
x = g−1

[
1
2
�̀x

. · g̀(x.) − ġ(x.)] . (180)

This is equivalent to the standard formulation for the geodesic equation in terms
of the “Christoffel connection.” Note how the metric tensor appears when the
equation of motion is formulated in terms of a spacetime map rather than in
covariant form.

E. Gravitational Precession and Dirac Equation

The solution of equation (171) gives more than the velocity. In perfect anal-
ogy with the treatment of electromagnetic spin precession in GA2, it gives us
a general method for evaluating gravitational effects on the motion and preces-
sion of a spacecraft or satellite, and thus a means for testing gravitation theory.
To the particle worldline we attach a (comoving orthonormal frame) or mobile
{eµ = eµ(x(τ)) = eµ(τ);µ = 0, 1, 2, 3}. The mobile is tied to the velocity by
requiring v = e0. Rotation of the mobile with respect to a fixed orthonormal
frame {γµ} is described by

eµ = R γµR̃ , (181)

where R = R(x(τ)) is a unimodular rotor. This has the same form as equation
(24) for a mobile in flat spacetime because the background spacetime is flat.
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Applying (167) to (181) we obtain the coderivative of the mobile:

v · Deµ = ėµ + ω(v) · eµ . (182)

The coderivative here includes a gauge invariant description of gravitational
forces on the mobile. In accordance with (21) and (23), effects of any nongrav-
itational forces can be incorporated by writing

v · Deµ = ėµ + ω(v) · eµ = Ω · eµ , (183)

where Ω = Ω(x) is a bivector such as an external electromagnetic field acting
on the mobile. The four equations (183) include the equation of motion

dv

dτ
= (Ω − ω(v)) · v (184)

for the particle, and are equivalent to the single rotor equation

dR

dτ
= 1

2 (Ω − ω(v))R . (185)

For Ω = 0 the particle equation becomes the equation for a geodesic, and the
rotor equation describes parallel transfer of the mobile along the geodesic. This
equation has been applied to gravitational precession in [20], so there is no need
to elaborate here.

Our rotor treatment of classical gravitational precession generalizes directly
to gravitational interactions in quantum mechanics. We saw in (40) that a real
Dirac spinor field ψ = ψ(x) determines an orthonormal frame of vector fields
eµ = eµ(x) = RγµR̃ . Generalization of the real Dirac equation (38) to include
gravitational interaction is obtained simply by replacing the partial derivative
∂µ by the coderivative Dµ defined by equation (119). Thus, we obtain

gµDµψγ2γ1h̄ = gµ(∂µ + 1
2ωµ)ψγ2γ1h̄ = eA ψ + mψγ0 , (186)

where A = h(A) is the gauge covariant vector potential. This is equivalent to
the standard matrix form of the Dirac equation with gravitational interaction,
but it is obviously much simpler in formulation and application. Comparison
of the spinor coderivative (119) with the rotor coderivative (185) tells us imme-
diately that gravitational effects on electron motion, including spin precession,
are exactly the same as on classical rigid body motion. The Cambridge group
has studied solutions of the real Dirac equation (186) in the field of a black hole
extensively [21].

VI. Solutions of Einstein’s Equation

Though GC facilitates curvature calculations, the nonlinearity of Einstein’s
equation still makes it difficult to solve. Gauge theory gravity introduces simpli-
fications both in calculation and physical interpretation by cleanly separating
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the functional form of the gauge tensor from arbitrary choices of coordinate
system. Using results in the Appendices and Table 1, gravitational curvature
can be calculated from a given gauge tensor by the straightforward sequence of
steps:

h(a) → �̀ ∧ h̀
−1

(a) → ω(a) → R(a ∧ b) . (187)

To solve Einstein’s equation for a given physical situation, symmetry consider-
ations are used to restrict the functional form of the gauge tensor, from which
a functional form for the curvature tensor is derived by (187). This, in turn, is
used to simplify the form of Einstein’s tensor and reduce Einstein’s equation to
solvable form. Finally, gauge freedom is used to analyze alternative forms for
the solution and ascertain the simplest for a given application. Details, framed
somewhat differently, are given in [2] and other publications by the Cambridge
group, so they need not be repeated here. We confine our attention to a review
of results that showcase advantages of the GC formulation and analysis.

A. Static Black Hole

The most fundamental result of GR is the gravitational field of a point particle
at rest called a black hole. To construct a spacetime map of this field and the
motion of particles within it, we represent the velocity of the hole by the constant
unit vector γ0 and locate the origin on its history. As explained in GA2, this
defines a preferred reference frame and a spacetime split of each spacetime point
x into designation by a time t = x · γ0 and a relative position vector x = x∧ γ0,
and a split of the vector derivative ∂t = γ0·� and ∇ = γ0 ∧�, as expressed by

xγ0 = t + x, γ0� = ∂t + ∇. (188)

It will also be convenient to write r = |x ∧ γ0| = |x| so that x = rx̂, and to
introduce the unit radius vector

er = ∂rx = −�r = x̂γ0. (189)

The Cambridge group has shown that the curvature tensor for a black hole
can be written in the wonderfully compact form [2, 3]

R(B) = − M

2r3
(B + 3x̂Bx̂), (190)

where M is the mass of the black hole. Considering the local Lorentz rotation of
the curvature (140), it is evident at once that the curvature tensor is invariant
under a boost in the x̂ = erγ0 plane, as expressed by

L x̂ = Lx̂L̃ = x̂. (191)

This simple symmetry of the curvature tensor has long remained unrecognized
in standard tensor formulations of GR.
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Using the vector derivative identity (28), it is not difficult to verify by direct
calculation that

R(b) = ∂̀aR(à ∧ b) = 0, (192)

so Einstein’s tensor G(a) vanishes when r �= 0. As is evident in (190), the
curvature is singular at r = 0; this can be shown to arise from a delta-function
in the energy-momentum tensor:

T (a) = 4πδ3(x)(a · γ0)γ0 . (193)

This simple expression for the singularity contrasts with standard GR where the
black hole singularity is not so well defined, and it is often claimed that such
entities as “wormholes” are allowed [12]. Unfortunately for science fiction buffs,
GTG rules out wormholes by requiring global solutions of Einstein’s equation,
as explained below.

The standard Schwarzschild solution of Einstein’s field equation for a black
hole is equivalent to the symmetric gauge tensor

hS(a) = (α−1a · γ0 + αa ∧ γ0)γ0, α =
(

1 − 2M

r

) 1
2

. (194)

Alternative solutions can be generated by gauge transformations that leave the
curvature (190) invariant. Allowed transformations are determined by three
parameters. One parameter is fixed by boundary conditions at infinity, a sec-
ond generates displacements, and the third generates boosts defined by (191).
The Cambridge group [3] has found boost-displacements that transform the
“Schwarzschild gauge” (194) into a “Kerr-Schild gauge”

hKS(a) = a +
M

r
a · (γ0 − er)(γ0 − er), (195)

and a “Newtonian gauge”

h(a) = a − ϕ(a · γ0)er, ϕ =
(

2M

r

) 1
2

. (196)

The former corresponds to such well-known solutions as the Eddington-Finkelstein
metric, while the latter has hardly been noticed in the GR literature, despite its
considerable virtues, which we now expose. It should be noted that the Newto-
nian gauge (196) is well-defined for every r �= 0, while the Schwarzschild gauge
(194) has a well-known singularity at r = 2M . Therefore, the former is a more
general solution to Einstein’s equation than the latter.

To interpret results of physical measurements in the gravitational field, we
follow the usual practice of setting up reference systems of imaginary observers.
First, consider a stationary observer at a fixed distance r from the black hole,
so his world line is defined by the map velocity

x
. = t

.
γ0, (197)
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so ẋ = 0. As only gauge covariant quantities are physically significant, we must
consider the observer’s “gauge velocity” determined by (196):

v = h−1x
. = t

.
(γ0 + ϕer). (198)

Whence the constraint v2 = 1 implies

t
.
=

(
1 − 2M

r

)− 1
2

. (199)

This tells us that the stationary observer’s clock (reading proper time τ) runs
slow compared to the proper time t of the black hole. But how can we “read” a
clock on the black hole? That is answered by considering a freely-falling observer
with a constant gauge velocity v = γ0 equal to that of the black hole, so his
map velocity is

x
. = h−1γ0 = γ0 + ϕer, (200)

which we solve immediately for

t
.
= x

. · γ0, r
. = −x

. · er = −ϕ = −
(

2M

r

) 1
2

. (201)

This tells us that the clock of a freely falling observer has the same rate as the
proper time of the black hole, and his velocity r

. is identical to the infall velocity
in Newtonian theory. This justifies the name “Newtonian gauge” introduced
above and suggests referring to time t as “Newtonian time.”

As our discussion of observers suggests, the Newtonian gauge simplifies phys-
ical interpretation and analysis of motion in the gravitational field of a point
particle. It has the great advantage of showing precisely how GR differs from
Newtonian theory in this case. To compare with standard GR, we need the
“Newtonian” gauge tensor, which from (196) is

g a = h−1 h−1a = a + ϕ(a · γ0 er + a · erγ0) − ϕ2a · γ0γ0. (202)

This determines a line element

ds2 = dx · g dx = dt2 − (dr + ϕdt)2 − r2dΩ2. (203)

This line element does not appear in any GR textbook. Only Ron Gautreau
has expounded its pedagogical benefits in a series of AJP articles [22]. All his
analysis can be neatly reformulated in Newtonian gauge theory.

Now, to analyze the general motion of a point charge in the Newtonian
gauge, we multiply equation (179) by γ0 to do a space-time split. Considering
first the scalar part of the split, for static fields ∂t g = 0 and ∂tA = 0 we find
immediately the constant of motion

E = ( gx
. + qA) · γ0 = v · u + V , (204)
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where V = qA · γ0 is the usual electric potential and

v · u = γ0 · gẋ = h−1(γ0) · h−1(x.) = t
.
(1 − ϕ2) − ϕr

.
. (205)

We recognize this as a gauge invariant generalization of energy conservation in
special relativity. The time derivative can be eliminated from this expression
with the constraint

1 = v2 = (x. + ϕt
.
er)2 = (1 − ϕ2)t

.2 − 2t
.
r
. − ẋ2 . (206)

As our analysis to this point is sufficient to show how electromagnetic interac-
tions can be included, let us omit them from the rest of our analysis to con-
centrate on the distinctive features of the gravitational interaction. Introducing
the angular momentum (per unit mass)

L = x ∧ ẋ = r2x̂ ˙̂x (207)

so we can write

ẋ2 = r
.2 +

L2

r2
(208)

with L2 = −L2, we eliminate t
.

between (204) and (206) to get an equation
governing radial motion of the particle:

E2 = (1 − ϕ2)
(

1 +
L2

r2

)
+ r

.2. (209)

A pedagogically excellent analysis of the physical implications this equation and
related issues in elementary black hole physics is given by Taylor and Wheeler
[23]. Their treatment could be further simplified by adopting the Newtonian
gauge.

To complete our analysis of motion in the Newtonian gauge, we return to
the space-time split of equation (179) to consider the bivector part, which gives
us the spatial equation of motion

ġ = −∇̀ 1
2x

. · g̀(x.) , (210)

and, from (202), we get the more explicit expressions

g ≡ ( gx
.) ∧ γ0 = ẋ + ϕt

.
x̂ (211)

−∇̀ 1
2x

. · g̀(x.) = t
. [

r
.∇ϕ +

ϕ

r
(ẋ − r

.
x̂) + 1

2 t
.∇ϕ2

]
. (212)

Inserting these expressions into (210), we get the equation of motion in the
form

ẍ = λx̂ , (213)
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where λ is a complicated expression that is difficult to simplify. However, all
we need is to recognize that the right side of (213) is a central force, so angular
momentum is conserved. Then, with the help of (208), we obtain

ẍ =
(

..
r − L2

r3

)
x̂ , (214)

and, differentiating the radial equation (209) to eliminate
..
r , we get the equation

of motion in the simple explicit form

ẍ = −M

r2
x̂ − 3ML2

r3
x̂ . (215)

Thus, the deviation of GR from the Newtonian gravitational force has been
reduced to the single term on the right side of this equation.

To solve the equation of motion (215), we first neglect the GR correction, so
the equation has the familiar Newtonian form, although the parameter is proper
time rather than Newtonian time. This equation is most elegantly and easily
solved by using (207) to put it in the form

Lẍ = −M

r2
Lx̂ = M ˙̂x , (216)

which reveals at once the constant of motion

Mε = Lẋ − M x̂ . (217)

The solution is now completely determined by the two constants of motion ε and
L, and GA facilitates analysis of all its properties, as demonstrated exhaustively
elsewhere [24]. The solution is a conic section with eccentricity ε = |ε|, and ε̂ is
the direction of its major axis. For 0 ≤ ε < 1 the solution is an ellipse. Changing
the independent variable from proper time to Newtonian time has the effect of
making the ellipse precess. That is a purely kinematic effect of special relativity.

To ascertain the GR effect on orbital precession, we use (217) to write (215)
in the form

dε

dτ
= 3L3 x̂ · L̂

r3
. (218)

Averaging over an orbital period, we get [2]

∆ε =
6πM

a(1 − ε2)
ε·L̂ , (219)

where a is the semimajor axis of the ellipse. For Mercury, this gives the famous
GR perihelion advance of 43 arcseconds per century.

B. Other Solutions

The Cambridge group has applied GTG to most of the domains where GR
is applied, with many new simplifications, insights and results. For example,
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anyone who has studied the Kerr solution for a rotating black hole should be
pleased, if not astounded, to learn that the Kerr curvature tensor can be cast
in the compact form

R(B) = − M

2(r − iL cos θ)3
(B + 3x̂Bx̂), (220)

where L is a constant and θ is the angle with respect to the axis of rotation. It
has been known for a long time that the Kerr curvature can be obtained from
the Schwarzschild curvature by complexifying the coordinates, but (220) shows
that it can be reduced to a substitution for the radius in (190), and the unit
imaginary is properly identified as the unit pseudoscalar, so the substitution
can be interpreted as a duality rotation-scaling of the Schwarzschild curvature.
GTG provides other insights into Kerr geometry, but so far they have not been
sufficient to solve the important problem of matching the Kerr solution to the
boundary of a rotating star.

The Cambridge group, including a number of graduate students and post-
docs, is actively applying GTG to a number of outstanding problems in GR,
particularly in cosmology and black hole quantum theory. As this work is con-
tinually progressing, interested readers are referred to the Cambridge website
[21] for the latest news.

VII. Energy-momentum Conservation

Shortly after publishing his general theory of relativity, Einstein endeavored to
define an energy-momentum tensor for the gravitational field so he could inter-
pret his gravitational field equation as a general equation for energy-momentum
conservation [25]. His proposal was immediately confronted with severe diffi-
culties that have remained unresolved to this day despite considerable efforts
of many physicists. The general consensus today is that a unique energy-
momentum tensor cannot be defined, so only global energy-momentum con-
servation is allowed in GR [26]. However, there are dissenters who maintain
that local energy-momentum conservation is a fundamental experimental fact,
so it must be and can be incorporated in GR [27]. In this section we show
how GTG provides a new approach to the problem of local energy-momentum
conservation in GR.

An alternative to the Ricci split (148) is obtained by substituting the curva-
ture bivector (139) into the new unitary form for Einstein’s tensor (146) to get
Einstein’s equation in the form

gG(gβ) = g(gβ ∧ gµ ∧ gν) · (Dµων − 1
2ωµ × ων) = κgT (gβ) = κT β , (221)

where g = |det(gµ · gν)|
1
2 = |det(gµν)|

1
2 is the“metric density,” so T β ≡ gT (gβ)

is a “tensor density.” Next, we define an “energy-momentum superpotential” by

κUβµ ≡ g(gβ ∧ gµ ∧ gν) · ων , (222)
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and, using the following identity derived from an identity at the end of Appendix
A

Dµ[g(gβ ∧ gµ ∧ gν)] = 0 , (223)

we write

g(gβ ∧ gµ ∧ gν) · Dµων = DµUβµ = ∂µ Uβµ + ωµ × Uβµ . (224)

Inserting this into (221) we obtain a split of Einstein’s equation in the following
form:

κ−1gG(gβ) = T β − tβ = T β , (225)

where

tβ ≡ Uβµ × ωµ + 1
2κ−1g(gβ ∧ gµ ∧ gν) · (ωµ × ων) (226)

is identified as the energy-momentum tensor (density) for the graviational field,
so

T β ≡ ∂µUβµ , (227)

can be identified as the total energy-momentum tensor (density). It follows
immediately that we have the true energy-momentum conservation law:

∂βT β = ∂β(tβ + T β) = 0 , (228)

because ∂β∂µUβµ = −∂β∂µUβµ = 0. Because of its evident importance in
giving us a general conservation law, let us refer to (225) with the associated
definitions (226) and (227) as the canonical energy-momentum split.

The most striking and perhaps the most profound feature of the canonical
split is the simple linear relation (222) between the the superpotential, which
determines energy-momentum density, and the connexion, which determines
gravitational force. It is a kind of duality between a vector-valued function of a
bivector variable κUβµ and a bivector-valued function of a vector variable ωσ.
The duality relation can be inverted by expanding the right side of (222) to get

κUµν = g(gµ ∧ gν ∧ gσ) · ωσ = 1
2κ(gµ ∧ gν) · I + g(gµ ∧ gν) · ωσgσ , (229)

where

I ≡ 1
2 (gν ∧ gµ) · Uµν = gν(gµ · Uµν) = 2κ−1ggσ · ωσ (230)

is a “frame-independent” vector field. Solving (229) for the connexion bivector
we obtain

κ−1gωσ = 1
2 (gσ ∧ gν ∧ gµ) · Uµν + 1

2I ∧ gσ . (231)
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This surprising dual equivalence of the connexion ωσ to the superpotential κUβµ

can be regarded as a hitherto unsuspected relation of gravitational force to
energy-momentum tensor. Accordingly, it can be expected to provide new
physical insights, but there is insufficient space to explore the possibilities in
this paper. A more complete analysis of the canonical split, including its re-
lation to alternative splits by Einstein and others, will be published elsewhere
[28].

Physically, the most important question about the canonical split is the
uniqueness of the energy-momentum tensor defined by (227). In other words,
to what degree is energy-momentum localizable? We have already noted that
the connexion ωµ = ω(gµ) is invariant under the position gauge transformations.
Hence, the superpotential and all other elements of the canonical split are gauge
invariant. This completely solves Einstein’s problem of defining a coordinate
independent energy-momentum tensor.

In contrast to the Ricci split (148), however, the canonical split is not ro-
tation gauge covariant. According to (124), the connexion transforms as a
“pseudotensor” under local rotations. Since the superpotential Uµν is directly
proportional to ωµ and the energy-momentum tensor is a gradient thereof, these
quantities depend on the choice of the local rotation gauge, which is not uniquely
defined by the theory. However, local energy-momentum conservation is not
necessarily destroyed by this gauge variability, because the local gravitational
force retains its duality to local energy-momentum density. To make the point
explicit, consider the geodesic equation for a particle with invariant velocity
v = h−1(ẋ):

v · Dv = v̇ + ω(v) · v = 0. (232)

For a given gauge, the term −ω(v) · v can be regarded as the gravitational force
on the particle. This force changes with a change in gauge, but the superpoten-
tial and energy-momentum tensor change in the same way. Therefore, the local
relation of force to energy-momentum is preserved. In other words, with respect
to local energy-momentum exchange, all gauges are equivalent. In this sense,
energy-momentum is localizable whatever gauge is chosen. However, much more
analysis will be needed to confirm this line of reasoning.

VIII. Spacetime Modeling Games

Every scientific theory is characterized by general principles, often ill-defined
or unstated, that define the domain and structure of the theory. Accordingly,
an essential step in evaluating a theory is articulating its defining principles.
Einstein taught us that models of spacetime underlie every physical theory,
so that is where we begin. To facilitate comparison with alternative theories,
especially Einstein’s general relativity (GR), I have outlined the basic principles
of gauge theory gravity (GTG) as I see it in Table 2. Some commentary is
needed to understand the design and intent of the table.
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In the early stages of GTG development the Cambridge group was keen to
show how it differs from GR, particularly in the treatment of black holes [18].
I cannot speak for their current opinions, but my own view is that GTG is not
fundamentally different from GR. I see it, rather, as simplifying and clarifying
the structure of GR — in a sense, as perfecting the foundations and completing
the development of GR. As a bonus, GTG brings the full power of geometric
calculus to the analysis and solution of problems in the domain of GR, and it
goes beyond GR when torsion is included [29].

As Newtonian mechanics is the original prototype for all physical theories,
I have followed Newton’s example in formulating a set of Universal Laws that
define GTG. The Laws are “universal” in the sense that they apply to all models
and explanations consistent with the theory, and they are intended to embrace
all of physics. This is not to say that the Laws cannot be modified, improved
or extended.

I have argued elsewhere that it takes six Universal Laws to define Newton’s
theory completely [30, 31], so I have constructed analogs of those six Laws for
GTG in Table 2. This stimulates an enlightening comparison of Newtonian the-
ory with GR and GTG, giving us a new slant on Newton’s original formulation
and how physics has evolved since then.

I have partitioned the six Laws into two major categories: I. Laws of space-
time structure and measurement. II. Laws of motion and interaction. The first
category, embracing the Zeroth and First Laws, is a central concern of this
paper, so it deserves the most thorough commentary.

The second category, embracing the Second through the Fifth Laws, consists
of standard equations and concepts of GR expressed in the language of STA,
augmented with the new definition of energy-momentum tensor in Section VII. I
confess that I am not fully satified with the formulation of Laws in this category,
but I offer it as a means to focus attention on fundamental theoretical issues.
The categorization according to Newtonian Laws may not be not optimal, but
it provides a convenient platform for comparison with Newtonian theory.

Table 2: UNIVERSAL LAWS FOR GAUGE GRAVITY THEORY

I. Laws of Spacetime Structure and Measurement

Zeroth Law: (Spacetime Structure)

(0.1) Irreducible physical events are represented by points in 4D
Minkowski spacetime.

(0.2) Physical entities are modeled as particles or fields on spacetime
(with values in the spacetime algebra).

(0.3) Particle histories are positive timelike (or lightlike) curves.
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First Law: (Gauge Equivalence)

(1.1) The equations of physics are gauge invariant under global
displacements and covariant under local Lorentz rotations.

(1.2) The effects of gravity are represented by a gauge tensor h and its
derivatives.

(1.3) Only gauge invariant quantities are physical observables.

II. Laws of Motion and Interaction.

Second Law: (Particle Motion)

Every particle has a gauge covariant velocity v = h−1(ẋ) and an equa-
tion of motion of the form

(2.1) v̇ = −ω(v) · v + Ω · v ,

where the gravitational force is specified by the “connexion bivector”
ω(v) and nongravitational forces are specified by the bivector Ω. For
a particle with rigid internal structure defined by a comoving frame
{eµ} with v = e0, the equation of motion generalizes to

(2.2) ėµ = [Ω − ω(v)] · eµ .

Third Law: (Gravity Field and Energy-momentum Conservation)

The gravitational field ω(a) is determined (up to a rotation gauge
transformation) by Einstein’s equation

(3.1) 1
2 (a ∧ ∂b ∧ ∂c) · R(b ∧ c) = κT (a) ,

where R(b ∧ c) is the curvature bivector (defined in Table 1), T (a) is
the total energy-momentum tensor for all entities present, and κ is a
constant. With vanishing torsion, the total energy-momentum density
is given by

(3.2) T (a) = Ù(a∧�̀) with U(a∧b) ≡ gh(a∧b∧∂c) · ω[h−1(c)] ,

so it satisfies the conservation law

(3.3) T̀ (�̀) = 0 .

Fourth Law: (Energy-momentum Tensor)

Every physical system has an energy-momentum tensor T (a) with the
following properties:
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Additivity: T (a) is the sum of energy-momentum tensors for any sub-
systems. Thus, for a two component system,

(4.1) T (a) = T1(a) + T2(a) .

Energy positivity: For every nonspacelike vector v,

(4.2) v · T (v) ≥ 0 , and [T (v)]2 ≥ 0 .

Fifth Law: (Sources and Fields)

Every material system is the source of fields that propagate according to
field equations and interact with particles according to the Second Law.

My formulation of Universal Laws for GTG is in accord with Einstein’s view
of GR as an extension of classical field theory. Even so, the formulation is general
enough to include relativistic quantum mechanics, though I need not discuss the
matter here, as the Cambridge group has treated the subject thoroughly with
an elegant Lagrangian approach [3, 2].

Lagrangian field theory has many well-known advantages, including (a) deriva-
tion from a single Lagrangian guarantees mutual consistency of the various
field equations, (b) derivation of conservation laws from symmetry principles
(Noether’s theorem). It sometimes seems that you get more out of the La-
grangian than you put in, but, of course, you can’t really. The advantage of
an explicit listing of Universal Laws like Table 2 is that it helps one identify
critical components of the theory. That can serve as a guide in constructing
a serviceable Lagrangian. Thus, the Cambridge Lagrangian (tacitly) presumes
the Zeroth Law to begin with and builds in the First Law by introducing the
gauge tensor and the connexion bivector as independent variables; additivity
of interactions is introduced in the usual way through additive terms in the
Lagrangian.

I. Laws of spacetime structure and measurement

Although the standard curved space version of GR is mathematically equiv-
alent to GTG in all essential respects, there are striking differences between the
two versions in regard to geometric intuition and physical interpretation. In GR
physical entities and interactions are woven into the fabric of spacetime; whereas
in GTG spacetime is little more than a bookkeeping system and physical entities
are represented as geometric objects that live on rather than in spacetime — so
to speak, they live in the tangent algebra. The Zeroth Law in Table 2 lays out
the essential ideas.

The Zeroth Law is about making spacetime maps. Law (0.1) asserts that
physical events are mapped into points in a 4D Minkowski vector space in exactly
the same way as in special relativity [7]. Spacetime maps express contiguity and
differentiability relations among events as well as a partial ordering of events
into timelike, lightlike and spacelike relations as determined by the Minkowski
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lightcone. These relations among events are “premetrical,” as they do not re-
quire a concept of spacetime distance between events. The metrical notion of
distance is introduced by the First Law.

The ordering of events in a particle history is specified by Law (0.3). To
give it a mathematical formulation, let x = x(λ) and y = y(λ) be two distinct
histories that cross at some point and denote their derivatives by overdots. Then
Law (0.3) asserts that at the crossing point

ẋ2, ẏ2 ≥ 0 and ẋ · ẏ > 0 . (233)

The first inequality asserts that each history is timelike or lightlike, while the
second asserts that the two histories share the same forward lightcone, which we
designate as positive. No metrical concept is involved here, though the concept
of spacetime signature is crucial. It is worth mentioning that Law (0.3) is easily
generalized to allow piecewise differentiable curves that can be used to describe
creation and annihilation of particles.

In GTG the concept of observer is replaced by, or if you will, augmented by
the concept of spacetime map. In GTG we can regard each inertial system as
identified with a single fixed frame {γµ} defining the flat space background of
Minkowski space. So to speak, all inertial frames are reduced to a single flat
spacetime where the observations of any observer can be recorded in a spacetime
map using any convenient coordinate system. Different spacetime maps can then
be compared with procedures specified by the First Law.

Besides designating locations of objects, maps designate the kind of object
at specified locations. Law (0.2) specifies the class of geometric objects that
GTG allows for modeling physical entities, namely, particles or fields with val-
ues in the real STA. We have seen that this class includes Dirac spinors and
coordinate-free representation of the tensors that are needed for GR. The class
also includes representations for particles of any spin within the real STA, but
we cannot go into that here. All this is in full accord with the conventional view
that fundamental physical entities should by modeled by representations of the
Lorentz group, though association with the Lorentz group comes from the First
Law in GTG.

The heart of the First Law is the Displacement Gauge Principle (DGP)
and the Rotation Gauge Principle (RGP) that were introduced and thoroughly
discussed in Section III. My purpose here is to place these principles in a broader
theoretical context and reconcile them with the ideas of Einstein and Newton.

We have seen how the rich mathematical structure of differential geometry is
generated by the DGP and RGP on the flat spacetime background. The DGP
requires existence of the gauge tensor h(a), while the RGP entails existence
of the coderivative D and the connexion bivector ω(a). By differentiation the
connexion is related to the gauge tensor and the curvature is derived from the
connexion. Law (1.2) identifies this geometry with effects of gravity. Indeed,
Law (1.2) can be regarded as a formulation of Einstein’s “Strong Principle of
Equivalence,” as it asserts universality of gravitational effects on all fields and
particles.
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The First Law provides the foundation for quantitative measurements on
spacetime maps admitted by the Zeroth Law. Every measurement is a compar-
ison of some sort. We have seen how the gauge tensor enables a gauge invariant
definition of proper time on a particle history, thereby defining equivalent time
intervals on the history, which is the foundation for time measurement. More
generally, the gauge tensor determines a metric tensor that enables gauge in-
variant comparisons of lengths and angles at any spacetime point. However, we
need more than that for a general theory of measurement. To compare physical
measurements at different places and times, we need to generalize the Euclidean
notion of congruence. That generalization is supplied by the DGP, which allows
us to map any spacetime region into any other. In other words, the background
spacetime is globally homogeneous; this can be regarded as an alternative for-
mulation of the DGP. To complete our formulation of generalized congruence,
we need a means to compare directions at neighboring points in any spacetime
region. That is supplied by the RGP, which can be regarded as asserting that
spacetime is locally isotropic.

The fundamental roles of the DGP and the RGP as “Laws of Measurement”
can be neatly encapsulated by referring to the the First Law as the Princi-
ple of Gauge Equivalence. It is about equivalence of measurements or physical
configurations rather than equivalence of observers. Displacement and rotation
gauge transformations are active transformations comparing lengths and direc-
tions of physical configurations at different locations, rather than passive coor-
dinate transformations comparing labels that different observers assign to the
same configuration of events. In GTG the assignment of coordinates to events
(spacetime maps) is completely separated from the assignment of measurable
lengths and relative directions.

The RGP can be regarded as a clarification and refinement of Einstein’s
weak principle of equivalence (WPE), though the precise meaning and import
of the WPE continues to be a matter of dispute [17]. For our purposes, it suf-
fices to take the WPE as asserting that, for a given reference system at any
spacetime point, a gravitational force is indistinguishable from an acceleration
of the reference system; in other words, the gravitational force can be “can-
celled” by accelerating the reference system. In accord with equation (124), the
RGP allows us to interpret that local acceleration as a local Lorentz rotation
that transforms the connection ωµ (determining the gravitational force) to a
physically equivalent vanishing connection ω′

µ = LωµL̃ − (∂µL)L̃ = 0, with the
cancelling acceleration expressed by the derivative (∂µL)L̃ . Since the WPE is
presumed to hold for arbitrary gravitational forces, it requires the existence of
arbitrary gauge rotations. Thus, the WPE can be regarded as an alternative
formulation of the RGP, or better, perhaps, as an operational formulation in
terms of physical measurements. Moreover, formulation of the WPE as a gauge
principle makes it clear that the WPE implies existence of a gravitational force
expressed as a connexion.

In Section IVA, we saw how Einstein’s general principle of relativity can be
purged of its adventitious reliance on coordinates by recasting it as a displace-
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ment gauge principle. With respect to physical measurements, this too can be
regarded as and equivalence principle. Thus, it may be better to speak of “gen-
eral (gauge) equivalence” rather than “general relativity,” or, at least, regard
gauge equivalence principles and relativity principles as different names for the
same thing.

It may be useful to distinguish “special and general gauge theories,” just
as we distinguish “special and general relativity theories.” We can define the
special (or restricted) gauge theory by the requirement that the gauge tensor is
constant, which we know implies a vanishing gravitational field. This can be
neatly expressed by reformulating the First Law as follows.

Restricted First Law: The history of a free particle is a straight line.

Every straight line through a point x0 has a parametric equation of the form
x(τ) = x0 + vτ , where v is a constant vector. The most general displacement
that maps straight lines into straight lines is a Poincarè transformation:

f : x → x′ = f(x) = RxR̃ + c , (234)

where c is a constant vector and R is a constant rotor. This is not a (passive)
relabeling of points, but an active transformation between congruent free parti-
cle histories. The differential of this transformation is f(a) = Ra = RaR̃ , so if
we begin with h = 1, this induces a gauge transformation to the constant gauge
field ha = Ra. Thus, the (constant) Lorentz Group defines a class of equivalent
gauge tensors.

The restricted version of the First Law is a fairly straightforward generaliza-
tion of Newton’s First Law [30], which assigns uniform motion in a straight line
to free particles. This establishes the First Law in GTG as a natural generaliza-
tion of Newton’s so-called Law of Inertia. The Newtonian version of the Zeroth
Law models physical space with a Euclidean metric. In the present version
all metrical assumptions have been transferred to the First Law. In retrospect
we can see that Newton’s First Law tacitly involved metrical assumptions for
defining free particles and inertial frames — though it was not until the lat-
ter part of the nineteenth century that physicists recognized its necessity for
defining inertial systems. I, for one, am amazed at the richness of the gauge
theory generalization of a subtle Law that has often been dismissed as a trivial
case of Newton’s Second Law. It is time in the physics curriculum to recog-
nize Newton’s great First Law for what it is: a fundamental principle of gauge
equivalence.

II. Laws of motion and interaction.

Law (2.1) in Table 2 is a fairly straightforward generalization of Newton’s
Second Law. As we noted in Section VD where it was studied at some length,
Law (2.1) reduces to the gravitational geodesic equation when Ω = 0. The grav-
itational force is gauge dependent, though it is well-defined when a physically
significant gauge is specified, as we saw in our study of the Newtonian gauge
for a black hole field.
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I have suppressed “inertial mass” in Law (2.1) so it gives the geodesic equa-
tion for lightlike (massless) particles, and I have included its generalization (2.2)
to include intrinsic spin, because these equations are so basic and useful. We
have seen in Section VE how (2.2) can be reduced to a single spinor equa-
tion. Indeed, that equation it has been derived as a classical limit of the Dirac
equation with electromagnetic interaction [7], and its generalization to include
gravitational interactions is given here.

In Section VC we saw how the equation for particle motion can be derived
from Einstein’s field equation, at least for a particular case. One could ar-
gue that this fact renders the Second Law in Table 2 superfluous. However, I
propose to regard equations (2.1) and (2.2) as general forms for any admissi-
ble equations of motion, with which the derivation of specific forms from spe-
cific energy-momentum tensors must be consistent. It is in the context of such
specific derivations that the fundamental problems of defining mass and mass
renormalization should be addressed.

I have used the coordinate-free method from Appendix B to formulate the
equations in the Third Law, though a semi-coordinate method was used for the
more detailed formulation and analysis in Section VII. It may be surprising to
see Einstein’s Law (3.1) proposed as a generalization of Newton’s Third Law.
However, according to (228) the “generalized conservation law” (3.3) implies
the local balance of energy-momentum fluxes

∂βtβ = −∂βT β , (235)

which is indeed a generalization of Newton’s Third Law. The balance among
nongravitational fields and particles is covered by (4.1).

It should be mentioned, that the Universal Laws in Table 2 permit a grav-
itational connexion with torsion, though that requires redefining the energy-
momentum tensor (3.2). Nonvanishing torsion is explicitly included in the Cam-
bridge treatment of GTG [29, 3], so it need not be considered here. Suffice it to
say that association of torsion with intrinsic spin has implications for angular
momentum conservation and symmetry of the energy-momentum tensor.

In my expanded formulation of Newton’s Laws [31], I followed Arnold Som-
merfeld in formulating the “superposition principle” as a Fourth Law, indepen-
dent of Newton’s Second Law. The additivity of independent bivectors ω(v)
and Ω in the Second Law of Table 2 is already a limited superposition principle.
However, field theory (which was not available to Newton) enables us to trace
superposition to properties of the field equations and sources. Thus, superposi-
tion of electromagnetic forces follows from the linearity of Maxwell’s equation.
In contrast, the nonlinearity of Einstein’s equation precludes superposition of
gravitational forces from different sources, though I propose the additivity Law
(4.1) as a weaker kind of superposition principle. As that additivity is presumed
to apply generally, I have folded it into a Fourth Law postulating general prop-
erties for any (non-gravitational) energy-momentum tensor. The importance of
the energy positivity Law (4.2) has been demonstrated by Hawking and Ellis
[32].
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To complete the formulation of Newton’s Laws, I proposed a Fifth Law that
specifies a general functional form for laws of force in the Newtonian system
[31]. This sets the stage for Newton’s general research program: to systemat-
ically search for fundamental force laws in nature. The ground rules for that
search have been changed by classical field theory, which regards all forces as
propagated by fields with sources in material particles. Accordingly, I propose
a Fifth Law that sets the stage for investigating fields and field equations in
nature. Of course, physics has gone a long way along that path. So far only
electromagnetic field theory has been fully incorporated into GTG. Weak and
strong interactions remain to be included, and some modification of GTG may
be needed to do that in a geometrically fundamental way.

Of course, GTG is not the only spacetime modeling game in town, though it
may be the most conservative. String theory proposes to generalize the space-
time manifold to 10 dimensions. It remains to be seen if extra spacetime di-
mensions are really needed.

Appendix A. Cocurl and Connexion

To solve the gravitational field equation, we need to relate the coderivative (or
its connexion) to the gauge tensor. As explained in Section IVB, Riemannian
geometry requires

D ∧ gµ = D ∧�xµ = 0 . (236)

This is equivalent to the condition that, for any scalar field φ = φ(x),

D ∧ Dφ = D ∧�φ = D ∧ h(�φ) = 0 . (237)

To understand the geometric significance of vanishing torsion, observe that (237)
is actually an integrability condition for scalar fields, as seen by applying (236)
to get

D ∧ Dφ = D ∧ gµ∂µφ = gν ∧ gµ∂ν∂µφ = 0 , (238)

whence

∂ν∂µφ = ∂µ∂νφ . (239)

This commutativity of partial derivatives is the classical condition for integra-
bility.

For φ = a · x and constant vector a, (237) becomes

D ∧ h(a) = 0 . (240)

By (123) this can be expanded to

� ∧ h(a) + ∂b ∧ [ω(b) · h(a) ] = 0 , (241)
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which can be solved for ω(a). Define

H(a) ≡ −h(�∧ h−1(a)) , (242)

and note that

H(a) = −h(�̀) ∧ h[ h̀−1(a) ] = �̀ ∧ h̀[h−1(a) ] , (243)

so (241) becomes

H(a) = ∂b ∧ [a · ω(b) ] . (244)

Protraction of this equation gives the position gauge invariant quantity

H ≡ ∂b ∧ ω(b) = − 1
2∂b ∧ H(b) . (245)

It follows that

a · H = ω(a) − ∂b ∧ [a · ω(b) ] .

Adding this to (244), we obtain the desired result

ω(a) = H(a) + a · H . (246)

This formula enables us to calculate ω(a) from a given h by first calculating
H(a) from (242) and then H from (245). The simple functional form (242)
makes H(a) seem almost as important as ω(a) itself.

As a check on our analysis, note that in the absence of gravity we can choose
the gauge h = 1, so ω(a) vanishes everywhere, and the coderivative reduces to
the derivative. This is most easily proved from (242). Every other h can be
generated from 1 by a transformation f(x), so its adjoint h becomes a gradient
and

h−1(a) = f (a) = �xf(x) · a . (247)

Inserted into (242), this makes H(a) vanish because of the operator identity
�∧� = 0, so ω(a) vanishes by (246). Similarly, displacement gauge covariance
of H(a), and hence of ω(a), can be verified directly by substituting h′ = hf
into (242).

Many other differential identities are consequences of vanishing torsion. The

following is needed for Section VII. For g = |det(gµν)|
1
2 , every textbook on GR

derives the result

Lν
νµ = ∂µ ln g . (248)

Whence we derive the identity

Dµ(ggµ) = gDµgµ + Dg = 0 , (249)

and from this, the identity

Dµ[g(gµ ∧ gν)] = gD ∧ gν = 0 . (250)
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Appendix B. Properties of the Coderivative and
Curvature

This appendix is devoted to summarizing and analyzing properties of the coderiva-
tive and the curvature tensor using the coordinate-free techniques of GC to
demonstrate its advantages.

Using (236) we can recast the curvature equation (135) in terms of the
coderivative:

D ∧ Dgα = 1
2Rα

µνβ(gµ ∧ gν)gβ . (251)

This can be analyzed further in the following way:

D2gα = (D · D + D ∧ D)gα = D(D · gα + D ∧ gα) . (252)

Hence, using (236) again, we obtain

(D ∧ D)gα = D(D · gα) − (D · D)gα . (253)

The right-hand side of this equation has only a vector part; hence the trivector
part of (251) vanishes to give us

D ∧ D ∧ gα = 1
2Rα

µνβ(gµ ∧ gν ∧ gβ) = 0 . (254)

This is equivalent to the well known symmetry property of the curvature tensor:

Rα
µνβ + Rα

βµν + Rα
νβµ = 0 . (255)

However, its deep significance is that it implies

D ∧ D ∧ M = 0 . (256)

for any k-vector field M = M(x). This answers the question raised in Section
VB about the existence of a vector potential for the electromagnetic field. It is
a consequence of the condition (236) for vanishing torsion.

By the way, equation (251) reduces to

D ∧ Dgα = (D ∧ D) · gα = Rα
βgβ , (257)

where

Rα
β = Rα

βµνgµν (258)

is the standard Ricci tensor. Comparing (257) with (253), we get the following
provocative form for the Ricci tensor:

R(gα) ≡ Rα
βgβ = D(D · gα) − (D · D)gα . (259)

Though this suggests alternative forms for Einstein’ equation, we will not in-
vestigate that in this paper.
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For vector fields a = aµgµ and b = bνgν the fundamental equation (138) can
be put in the form

[a · D, b · D ]M = R(a ∧ b) × M , (260)

where it has been assumed that a · Db − b · Da = 0 to avoid inessential compli-
cations.

Equation (260) shows that curvature is a linear bivector-valued function of
a bivector variable. Thus, for an arbitrary bivector field B = B(x) we can write

R(B) ≡ 1
2B · (∂b ∧ ∂a) R(a ∧ b) = 1

2BνµR(gµ ∧ gν) , (261)

where ∂a is the usual vector derivative operating on the tangent space instead
of the manifold, and Bνµ = B · (gµ ∧ gν). Note that this use of the vector
derivative supplants decomposition into basis vectors and summation over in-
dices, a technique that has been developed into a general method for basis-free
formulation and manipulation of tensor algebra [8]. To that end, it is helpful
to introduce the terminology traction, contraction and protraction, respectively,
for the tensorial operations

∂a R(a ∧ b) = gµR(gµ ∧ b) = γµR(γµ ∧ b) , (262)

∂a · R(a ∧ b) = gµ · R(gµ ∧ b) = γµ · R(γµ ∧ b) ,

∂a ∧ R(a ∧ b) = gµ ∧ R(gµ ∧ b) = γµ ∧ R(γµ ∧ b) .

that are employed below. These relations are easily proved by decomposing the
vector derivative with respect to any basis and using the linearity of R(a∧ b) as
in (261). Of course, the replacement of vector derivatives by basis vectors and
sums over indices in (262) is necessary to relate the following coordinate-free
relations to the component forms of standard tensor analysis.

To reformulate (260) as a condition on the vector coderivative D, note that
for a vector field c = c(x) the commutator product is equivalent to the inner
product and (260) becomes

[a · D, b · D ]c = R(a ∧ b) · c . (263)

To reformulate this as a condition on the vector coderivative, we simply elimi-
nate the variables a and b by traction. Protraction of (263) gives

∂b ∧ [ a · D, b · D ]c = ∂b ∧ [ R(a ∧ b) · c ] = R(c ∧ a) + c · [ ∂b ∧ R(a ∧ b) ] .

Another protraction together with

D ∧ D = 1
2 (∂b ∧ ∂a)[ a · D, b · D ] (264)
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gives

D ∧ D ∧ c = [ ∂b ∧ ∂a ∧ R(a ∧ b) ] · c + ∂a ∧ R(a ∧ c) . (265)

According to (256) the left side of this equation vanishes as a consequence of
vanishing torsion, and, because the terms on the right have different functional
dependence on the free variable c, they must vanish separately. Therefore

∂a ∧ R(a ∧ b) = 0 . (266)

This constraint on the Riemann curvature tensor is called the Ricci identity, or,
in recent literature, the Bianchi identity of the first kind.

The requirement (266) that the curvature tensor is protractionless has an
especially important consequence. The identity

∂b ∧ [B · (∂a ∧ R(a ∧ b)) ] = ∂b ∧ ∂aB · R(a ∧ b) − B · (∂b ∧ ∂a)R(a ∧ b) (267)

vanishes on the left side because of (266), and the right side then implies that

A · R(B) = R(A) · B . (268)

Thus, the curvature is a symmetric bivector function. This symmetry can be
used to recast (266) in the equivalent form

R
(
(a ∧ b ∧ c) · ∂e

)
· e = 0 . (269)

On expanding the inner product in its argument, it becomes

R(a ∧ b) · c + R(c ∧ a) · b + R(b ∧ c) · a = 0 , (270)

which is closer to the usual tensorial form for the Ricci identity.
As noted in (258), contraction of the curvature tensor defines the Ricci tensor

R(a) ≡ ∂b · R(b ∧ a) . (271)

The Ricci identity (266) implies that we can write

∂b · R(b ∧ a) = ∂bR(b ∧ a) , (272)

and also that the Ricci tensor is protractionless:

∂a ∧ R(a) = 0 . (273)

This implies the symmetry

a · R(b) = R(a) · b . (274)

An alternative expression for the Ricci tensor is obtained by operating on
(263) with (264) and establishing the identity

1
2 (∂a ∧ ∂b) · [R(a ∧ b) · c ] = R(c) . (275)
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The result is, in agreement with (257),

D ∧ D a = (D ∧ D) · a = R(a) . (276)

This could be adopted as a definition of the Ricci tensor directly in terms of the
coderivative without reference to the curvature tensor. That might lead to a
more efficient formulation of the gravitational field equations introduced below.

Equation (276) shows the fundamental role of the operator D ∧ D, but
operating with it on a vector gives only the Ricci tensor. To get the full curvature
tensor from D ∧ D, one must operate on a bivector. To that end, we take
M = a ∧ b in (260) and put it in the form

D ∧ D(a ∧ b) = D ∧ D × (a ∧ b) = 1
2 (∂d ∧ ∂c) × [R(c ∧ d) × (a ∧ b) ] .

Although the commutator product has the useful “distributive property” A ×
[B×C] = A×B +A×C, a fair amount of algebra is needed to reduce the right
side of this equation. The result is

D ∧ D(a ∧ b) = R(a) ∧ b + a ∧ R(b) − 2R(a ∧ b) , (277)

or equivalently

2R(a ∧ b) = (D ∧ Da) ∧ b + a ∧ (D ∧ Db) − D ∧ D(a ∧ b) . (278)

This differential identity is the desired expression for the curvature tensor in
terms of D ∧ D.

Contraction of the Ricci tensor defines the scalar curvature

R ≡ ∂aR(a) = ∂a · R(a) . (279)

Since R(a ∧ b), R(a), and R can be distinguished by their arguments, there is
no danger of confusion from using the same symbol R for each.

Besides the Ricci identity, there is one further general constraint on the
curvature tensor that can be derived as follows. The commutators of directional
coderivatives satisfy the Jacobi identity

[a · D, [ b · D, c · D ] ] + [b · D, [c · D, a · D ] ] + [c · D, [a · D, b · D ] ] = 0 . (280)

By operating with this on an arbitrary nonscalar multivector M and using (260),
we can translate it into a condition on the curvature tensor that is known as
the Bianchi identity:

a · DR(b ∧ c) + b · DR(c ∧ a) + c · DR(a ∧ b) = 0 . (281)

Like the Ricci identity (269), this can be expressed more compactly as

R̀[ (a ∧ b ∧ c) · D̀ ] = 0 , (282)
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where the accent serves to indicate that D differentiates the tensor R but not
its tensor arguments. “Dotting” by free bivector B, we obtain

R̀[ (a ∧ b ∧ c) · D̀] · B = (a ∧ b ∧ c) · (D ∧ R(B)) .

Therefore the Bianchi identity can be expressed in the compact form

D̀ ∧ R̀(a ∧ b) = 0 . (283)

This condition on the curvature tensor is the source of general conservation laws
in general relativity.

Contraction of (283) with ∂a gives

R̀(D̀ ∧ b) − D ∧ R(b) = 0 . (284)

A second contraction yields the differential identity

G̀(D̀) = R̀(D̀) − 1
2DR = 0 , (285)

where

G(a) ≡ R(a) − 1
2aR (286)

is the Einstein tensor.
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