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Curvature Calculations with Spacetime Algebra

David Hestenes

Abstract. A new method for calculating the curvature tensor is
developed and applied to the Scharzschild case. The method em-
ploys Clifford algebra and has definite advantages over conventional
methods using differential forms or tensor analysis.

1. INTRODUCTION

Spacetime algebra is a Clifford algebra representing the directional and metrical proper-
ties of spacetime. It was originally introduced (Hestenes, 1966) as a unified mathematical
language for physics, with applications to electrodynamics, quantum mechanics, and gravi-
tation. It has since been generalized and developed into a comprehensive geometric calculus
(GC) (Hestenes and Sobczyk, 1984) with a wide range of computational capabilities. This
paper shows how computational problems in gravitation theory can be simplified with GC.
Specifically, it presents an efficient method for computing the curvature tensor from a given
metric tensor, and illustrates the method by explicit computations from the Schwarzschild
metric.

This method should be compared with the method of differential forms presented by
Misner et al. (1973) in Chapter 14 of their book. They correctly point out that their
method is computationally more efficient than the standard method of tensor analysis.
But we shall see that unique features of GC provide even greater efficiency. Moreover, a
subsequent paper will show that unlike the method of differential forms, the present method
applies directly to the computation of gravitational precession for quantum mechanical as
well as classical particles.

The present computational method is a straightforward application of the general method
of fiducial frames developed in Chapter 6 of Hestenes and Sobczyk (1984). I will employ
their results without repeating the derivations. But first I review the basic definitions of
GC with slight changes in notation appropriate for the application to spacetime.

2. FRAMES

We represent spacetime by a four-dimensional vector manifold, as defined in Hestenes and
Sobczyk (1984). Let x = x(x0, x1, x2, x3) be a spacetime point parametrized by coordinates
xµ, where µ = 0, 1, 2, 3. A coordinate frame {gµ = gµ(x)} at each point x is defined by the
partial derivatives,

gµ = ∂µx (1)

The components of the metric tensor are given by the inner products

gµν = gµ · gν (2)
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A reciprocal coordinate frame {gµ = gµ(x)} is defined by the gradients of the coordinate
functions xµ = xµ(x):

gµ = xµ (3)

gµ · gν = gµαgαν = δµ
ν (4)

where gµα = gµ · gα.
The coordinate frame {gµ} is related to a fiducial frame {γµ} by a fiducial tensor h. The

fiducial frame is orthonormal, so
γµ · γν = ηµδµν (5)

where ηµ = γ2
µ is the signature indicator. Its reciprocal frame {γµ} is given by

γµ = ηµγµ (6)

so γµ · γν = δµ
ν . We may assume that both coordinate frame and fiducial frame are right-

handed, so
i = γ0γ1γ2γ3

where i = i(x) is the unit right-handed pseudoscalar for the spacetime manifold.
The fiducial tensor h is a symmetric tensor relating the coordinate and fiducial frames

by the linear transformation
gµ = h(γµ) = hν

µγν (8)

γµ = h(gµ) = hµ
νgν = hµ

ν xν (9)

The matrix elements of the fiducial tensor are

hµ
ν ≡ γµ · gν = γµ · h(γν) = h(γµ) · γν = gµ · γν (10)

The fiducial tensor is related to the metric tensor by

gµν = gµ · gν = h(γµ) · h(γν) = hα
µηαhα

ν (11)

The symmetry of the fiducial tensor allows us to write this in the form

gµν = γµ · h2(γν) ≡ γµ · g(γν) (12)

Thus, we can regard the metric tensor as a linear transformation g = h2 on the fiducial
frame, so the fiducial tensor h = g

1
2 is a square root of the metric tensor. This suggests

that, with suitable provisos, the fiducial tensor can be interpreted as a gravitational strain
tensor describing a distortion of flat space. But that theme will not be pursued here. I will
be content to note that for curvature computations the fiducial tensor is simpler than the
metric tensor.

2



3. DERIVATIVES

According to Hestenes and Sobczyk (1984), the fundamental differential operator on a
vector manifold is the derivative ∂ = ∂x with respect to a point x on the manifold. All
other differential operators can be expressed as algebraic functions of this operator. In
particular, coordinate derivatives are related to ∂ by

gµ · ∂ = hν
µγν · ∂ ≡ ∂/∂xµ (13)

Although it is best to define ∂ independently of coordinates, as done in Hestenes and
Sobczyk (1984), if the manifold (or some part of it) is parametrized by coordinates, the
point derivative ∂ can be obtained from the coordinate derivatives by

∂ = gµ∂µ (14)

For the directional coderivative we adopt the notation

µ = gµ · = hν
µγν · (15)

This differential operator is equivalent to the conventional covariant derivative. It is related
to the point coderivative by

= gµ
µ (16)

The coderivative is defined in terms of the derivative ∂ in Hestenes and Sobczyk (1984).
But it can be defined alternatively by specifying the coderivatives of a fiducial frame, as is
done below.

Since a fiducial frame is orthonormal, it can only rotate when it is displaced along a curve
in the manifold. Therefore, the directional coderivatives of the fiducial vectors must have
the form

µγν = ωµ · γν (17)

where ωµ is the “angular velocity” of the rotation for a displacement in the gµ direction.
The four ωµ are bivectors determining a Riemannian connection for the manifold.

To describe the coderivative of any differentiable multivector field A = A(x), i.e., any
function with values in the spacetime algebra, it is convenient to introduce the fiducial
derivative dµ defined by

dµγν = 0 (18a)

and
dµφ = ∂µφ (18b)

for any scalar-valued function φ = φ(x). Then we can write

µA = dµA + ωµ × A (19)

where B × A ≡ (1/2)(BA − AB) is the commutator product. The commutator of the
coderivatives gives [

µ, ν

]
A = ωµν × A (20)
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where
ωµν = dµων − dνωµ + ωµ × ων = R(gµ ∧ gν) (21)

is the curvature tensor evaluated on the bivector gµ ∧ gν . By virtue of (18a) and (18b), the
fiducial derivatives in (21) can be computed from

dµων = 1
2 (∂µων

αβ) γα ∧ γβ (22)

where ων
αβ = γα · ων · γβ = ων · (γβ ∧ γα).

The curvature tensor R(B) is a linear symmetric bivector-valued function of a bivector
variable. By virtue of its linearity, (8) in (21) yields

ωµν = hµ
αhν

β ωαβ (23)

where
ωαβ = R(γα ∧ γβ) (24)

is the curvature tensor evaluated on the fiducial bivector γα ∧ γβ . The covariant tensor
components of the curvature tensor are given by

Rµναβ = R(gµ ∧ gν) · (gα ∧ gβ) = ωµν · (gα ∧ gβ) = (gµ ∧ gν) · ωαβ (25)

4. CURVATURE CALCULATIONS

As shown in Hestenes and Sobczyk (1984), (17) can be solved for the connection bivectors
ωµ, with the result

ωµ = 1
2 (γα ∧ ∧ γα) · gµ − hν

µ ∧ γν (26)

and the cocurls can be obtained from the fiducial tensor with

∧ γµ = ηµ( hµ
ν) ∧ gν (27)

where hµ
ν = ∂hµ

ν is the gradient of the scalar-valued hµ
ν .

One can calculate the curvature tensor from the fiducial tensor by using (26), (25), and
(21) to determine the following quantities in sequence:

hµ
ν → ∧ γµ → ωµ → ωµν

For orthogonal coordinates, the γµ are eigenvectors of the fiducial tensor, and one has the
simplifications

hµ
ν = hνδµ

ν (28)

γµ = ηµγµ = ηµhµ xµ = h−1
µ gµ (29)

ωµ = −hµ ∧ γµ = γµ ∧ hµ = γµ ∧ γα h−1
α ∂αhµ (30)

dµων = [ηα∂µ(h−1
α ∂αhν)] γν ∧ γα (31)
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Conventional calculations of curvature begin specifying the metric tensor by writing the
“line element”

dx2 = dx · dx = gµνdxµdxν (32)

with the gµν expressed as defined functions of coordinates xµ. We can determine the fiducial
tensor from (32) by using (11), so we can proceed from the conventional starting point to
calculate the curvature by the method of fiducial frames.

As an example of fundamental importance, one cannot do better than calculate the
curvature tensor from the Schwarzschild line element

dx2 = e2Φdt2 − e2λdr2 − r2(dθ2 + sin2 θdφ2)
= h2

t dt2 − h2
r dr2 − h2

θ dθ2 − h2
φ dφ2 (33)

where Φ = Φ(r, t) and λ = λ(r, t) are scalar functions independent of coordinates θ and φ.
Comparing (33) with (29), one can immediately write down

γt = eΦ t

γr = −eλ r

γθ = −r θ

γφ = −r sin θ φ

ht = eΦ

hr = eλ

hθ = r

hφ = r sin θ

(34)

The use of the same symbols t, r, θ, φ for indices, coordinates, and independent variables
should not cause confusion, as the distinction is clear from the context.

Using (34) in (30), one obtains easily

ωt = −γt ∧ γr Φre
Φ−λ

ωr = γr ∧ γt λte
λ−Φ

ωθ = −γθ ∧ γr e−λ

ωφ = −γφ ∧ (γre
−λ sin θ + γθ cos θ)

(35)

where subscripts on Φ and λ indicate derivatives, that is, Φr = ∂rΦ and λt = ∂tλ.
The simple computation of ωµ in (35) may be compared with the corresponding com-

putation from the Friedmann metric in Misner et al. (1973, pp. 356). Skillful guessing
with differential forms is advocated by Misner et al., while we merely apply equation (30),
which has no counterpart in Misner et al. Indeed, application of (30) is easier as well as
more straightforward than guessing, because the effort needed to check each guess has been
expended once and for all in the derivation of (30).

It should be noted that the “wedges” in (35) are actually unnecessary because the γµ are
orthogonal. This greatly simplifies the evaluation of commutators ωµ × ων , and one easily
determines that the nonvanishing commutators have the values

ωt × ωθ = γt ∧ γθ Φre
Φ−2λ

ωt × ωφ = γt ∧ γφ Φre
Φ−2λ sin θ

ωr × ωθ = γθ ∧ γt λte
−Φ

ωr × ωφ = γφ ∧ γt λte
−Φ sin θ

ωθ × ωφ = (γre
−λ cos θ − γθe

−2λ sin θ) ∧ γφ

(36)
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Using (31) to compute the relevant fiducial derivatives from (35), one finds that the
nonvanishing terms are

drωt = −γt ∧ γr (Φrr + Φ2
r − Φrλr)eΦ−λ

dtωr = γr ∧ γt (λtt + λ2
t − λtΦt)eλ−Φ

dtωθ = γθ ∧ γr λt e
−λ

dtωφ = γφ ∧ γr λt e
−λ sin θ

drωθ = γθ ∧ γr λre
−λ

drωφ = γφ ∧ γr λr e−λ sin θ

dθωφ = (γre
−λ cos θ − γθ sin θ) ∧ γφ

(37)

Finally, one obtains the curvature bivectors by inserting (36) and (37) into (21). I
display the result to show both the coordinate components and the fiducial components
ωµ̂ν̂ ≡ R(γµ ∧ γν)

ωtr = eΦ+λ ωt̂r̂

= eΦ+λ γr ∧ γt [(λtt + λ2
t − λtΦt)e−2Φ − (Φrr + Φ2

r − Φrλr)e−2λr ]

ωtθ = eΦrωt̂θ̂

= eΦrγθ ∧ [γrλtr
−1e−Φ−λ + λtΦrr

−1e−2λ]

ωtφ = eΦr sin θ ωt̂φ̂

= eΦr sin θ γφ ∧ [γrλtr
−1e−Φ−λ + λtΦrr

−1e−2λ]

ωrθ = eλr ωr̂θ̂

= eλrγθ ∧ [γrλrr
−1e−2λ − γtλtr

−1e−Φ−λ]

ωrφ = eλr sin θ ωr̂φ̂

= eλr sin θ γφ ∧ [γrλrr
−1e−2λ − γtλtr

−1e−Φ−λ]

ωθφ = r2 sin θ ωθ̂φ̂

= r2 sin θ γθ ∧ γφr−2(e−2λ − 1)

(38)

Of course, if we had so desired, we could have computed any one of these bivectors inde-
pendently of the others. Also, many of the coefficients in (38) are equivalent because of the
symmetry property of curvature, A · R(B) = B · R(A). This redundancy provides a check
on the computations.

The orthogonality of the γµ makes it especially easy to contract (38) to get the Ricci
tensor

R(γµ) = γν · R(γν ∧ γµ) = γν · ων̂µ̂

We obtain

R(γt) = 2γrλtr
−1e−Φ−λ + γt

[
(λtt + λ2

t − λtΦt)e−2Φ (39a)

−(Φrr + Φ2
r − Φrλr − 2Φrr

−1)e−2λ
]
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R(γr) = 2γrλtr
−1e−Φ−λ + γr

[ − (λtt + λ2
t − λtΦt)e−2Φ (39b)

+(Φrr + Φ2
r − Φrλr + 2λrr

−1)e−2λ
]

R(γθ) = γθ[(λt − Φr)r−1e−2λ + (1 − e−2λ)r−2] = γφγθR(γφ) (39c)

Setting R(γµ) = 0 to find the “free space” gravitational field according to Einstein’s theory,
we see immediately that (39a) and (39b) imply that Φt = λt = 0 and Φ = −λ, so (39c)
reduces to the equation

rλr + e−λ − 1 = 0

This integrates to the famous Schwarzschild solution

e−λ = 1 − 2κ

r
= eΦ (40)

where κ is a constant.
We can substitute (40) into (35) to get the ωµ as an explicit function of the coordinates.

The result can be used to describe the motion of a test body, as explained in a subsequent
paper.
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