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Consistency in the formulation of the Dirac,

Pauli, and Schrödinger theories

R. Gurtler and D. Hestenes

Abstract. Properties of observables in the Pauli and Schrödinger theo-
ries and first order relativistic approximations to them are derived from
the Dirac theory. They are found to be inconsistent with customary
interpretations in many respects. For example, failure to identify the
“Darwin term” as the s-state spin-orbit energy in conventional treat-
ments of the hydrogen atom is traced to a failure to distinguish between
charge and momentum flow in the theory. Consistency with the Dirac
theory is shown to imply that the Schrödinger equation describes not a
spinless particle as universally assumed, but a particle in a spin eigen-
state. The bearing of spin on the interpretation of the Schrödinger the-
ory discussed. Conservation laws of the Dirac theory are formulated in
terms of relative variables, and used to derive virial theorems and the
corresponding conservation laws in the Pauli-Schrödinger theory.

Introduction

In quantum mechanics three different equations are widely used to describe the motion of a single electron,
the Schrödinger, Pauli, and Dirac equations. Each of these equations must be supplemented by physical
assumptions which prescribe how to calculate observables from the electron wavefunction. The three wave
equations are intimately related; the Pauli equation being an approximation to Dirac equation for small
electron velocities, while the Schrödinger equation approximates the Pauli equation by neglecting magnetic
interactions of the spin.

Obviously, the observables associated with the three equations should be related to one another by the
same approximations. In fact, however, quite a few inconsistencies in this regard are to be found in the
literature. Consider, for example the usual expressions for probability density ρ and probability current in
the Schrödinger theory,

ρ = Ψ†Ψ , (1.1a)

ρuk = − ih̄

2m
{Ψ†∂kΨ − ∂kΨ†Ψ} − e

mc
AkΨ†Ψ . (1.1b)

In the Schrödinger theory, Eq. (1.1b) plays a triple role; besides the probability current ρuk it determines the
charge current eρuk associated with a charge density eρ and a kinetic momentum density mρuk associated
with a mass density mρ.

In the Pauli theory the same expressions (1.1a,b) are usually used for probability density and current,
Ψ being understood as the two component Pauli wavefunction instead of the Schrödinger wavefunction (e.g.,
Ref. 1). In both the Schrödinger and Pauli theories the wave-equation implies the conservation law

∂tρ + ∂k(ρuk) = 0 . (1.1c)

Though eρ is still interpreted as charge density, the Pauli theory differs from Schrödinger theory in that
eρuk must be supplemented by a “spin magnetization current” c∇× m to get the total charge current

j = eρu + c∇× m , (1.2a)

where
mk =

eh̄

2mc
Ψ†σkΨ (1.2b)

and the σk are the usual Pauli matrices. The fact that (1.2a) is the correct expression for the charge current
has been established for a long time,2 though its importance seems to be frequently unappreciated.
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Following history, textbooks show how to get from the Schrödinger theory to the Pauli theory by
heuristic arguments (e.g., Ref. 1). Reversing the procedure, the Schrödinger theory can be derived rigorously
(rather than heuristically) from the Pauli theory, with some consequences that seem to have been completely
overlooked. When the magnetic field is small or zero, the Pauli wave equation is identical to the Schrödinger
equation and possesses solutions of the form

Ψ =
(

φ
0

)
. (1.3)

So from (1.1a) we have ρ = Ψ†Ψ = φ†φ and from (1.1b) we get an expression for ρuk with φ replacing Ψ.
Since φ is a complex function satisfying the Schr̈odinger equation, and since its relation to the probability
density and current has been derived, it would seem that we have arrived at the Schrödinger theory.

But here’s the rub! we must take account of fact that Eq. (1.3) means that the electron is in an
eigenstate of the spin. So what we have proved is that the Schrödinger theory is identical to the Pauli theory
when the electron is in an eigenstate of the spin. Of course, this is at variance with the usual view that the
Schrödinger theory describes a particle without spin, but it is a rigorous consequence of requiring that the
theory be derivable from the Pauli theory. The difference is important! Though Eq. (1.3) yields some of the
usual features of the Schrödinger theory, it also implies nonvanishing values for (1.2b), specifically, if σ3 is
diagonal as usual, then

m3 =
eh̄

2mc
φ†φ =

eh̄

2mc
ρ , m1 = m2 = 0 . (1.4)

Equation (1.4) leads to nonvanishing values for the magnetization current ∇×m. Hence, the expression for
the charge current j given by (1.2a) does not reduce to eρu when the passage to the Schrödinger theory is
made. That is, the usual expression for charge current in the

Schrödinger theory obtained by multiplying (1.1b) by the charge e is inconsistent with the assumption
that the Schrödinger theory is derivable from the Pauli theory To put it bluntly, everyone to date has been
using the wrong expression for charge current density in the Schrödinger theory. Of course there is no way
that this error could be revealed directly by experiment, because the only direct experimental means of
testing for the existence of a magnetization current is by introducing a magnetic field. But in that case
everyone knows enough to discard the Schrödinger theory and use the Pauli or Dirac theories however,
the existence of a magnetization current has important bearing on the interpretation of the Schr̈odinger
theory even in the absence of a magnetic field For instance, it implies that there is a nonvanishing charge
current in the s-states of hydrogen, eliminating one of the reputedly fundamental differences between the
Schrödinger and Bohr theories. It also leads to the conclusion that the appearance of complex number in
the Schrödinger theory is inseparably related to the existence of the spin, the factor ih̄ being significant in
the theory only because 1

2 ih̄ is an eigenvalue of the matrix representing the spin. This is difficult to reconcile
with conventional interpretations of the uncertainty principle.

Though it is supported experimentally, the expression (1.2a) for the charge current was originally intro-
duced into the Pauli theory as an ad hoc assumption. So it is important to know that it can be justified on
deeper theoretical grounds. The charge current in the Dirac theory is given by the well-known expression

jµ = e ΨγµΨ , (1.5)

where Ψ now the four component Dirac wavefunction. The Dirac equation implies the conservation law

∂µjµ = 0 , (1.6)

as well as the decomposition
jµ =

e

mc
kµ + ∂νMµν , (1.7a)

where

kµ =
ih̄

2
{Ψ∂µΨ − (∂µ Ψ)Ψ} − e

mc
Aµ ΨΨ (1.7b)
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is the so-called Gordon current,3 and

Mµν = jµ =
ieh̄

2mc
Ψ 1

2 [γν , γµ ]Ψ (1.7c)

is interpreted as the magnetic moment density due to the electron spin. In the nonrelativistic limit, the
time and space components of (1.7b) reduce, respectively, to (1.1a) and (1.1b), while the nonvanishing
components of (1.7c) are given in (1.2b), so the space components of (1.7a) reduce exactly to Eq. (1.2a).
Thus, the expression (1.2a) for the charge current in the Pauli theory is fully justified by the requirement of
consistency with the Dirac theory. It is important to realize that the particular combination of currents in
(1.7a) is a consequence of the Dirac equation, whereas the limiting result (1.2a) is not a consequence of the
Pauli equation.

The interpretation of the Dirac current (1.5) as a charge current is well established experimentally. But
the Dirac current is also interpreted as a probability current by dropping the charge e. Here we run into
another inconsistency with the Schrödinger theory, for the Schrödinger current (1.1b), which is supposed to
be a probability current, corresponds to the Gordon current (1.7b) and not, as we have seen, to the Dirac
current One way to resolve this difficulty might be to identify the Gordon current as the probability current
in the Dirac theory. The required conservation law

∂µkµ = 0 (1.8)

is indeed satisfied, but then new problems of normalization and interpretation arise in the Dirac theory.
The only alternative is to conclude that (1.2a) rather than (1.1b) determines the correct probability current
as well as the charge current. This does not mean that the Schrödinger current should be dispensed with.
Indeed, comparison with the Dirac theory, it can be shown to be proportional to the momentum density
(1.2a) suggests it can be interpreted l . convective charge

The main objective of this paper is to establish a consistent identification of observables in Dirac, Pauli,
and Schrödinger theories. This will be accomplished by beginning with the formulation of the Dirac theory
in terms of local observables as given in Refs. 4 and 5, and obtaining the corresponding formulation of the
Pauli and Schrödinger theories as limiting cases. The unusual formulation of quantum theory employed here
is fully equivalent mathematically to the conventional one. However, it brings to light certain problems in
physical interpretation which, as already argued in Ref. 4, may require for their resolution some modification
of current theory. No such modification of quantum theory will be attempted here. But we cannot resist
expressing the opinion that the Dirac theory is best interpreted as describing statistical ensemble of particle
motions and pointing out from time to time how this may help the understanding of mathematical relations
in the theory. Though some of the unusual physical interpretations we suggest are open to dispute and
hopefully at some time to experimental test, the mathematical steps alone show what is required to establish
consistency among the Dirac, Pauli, and Schrödinger theories.

A formulation of the Dirac theory in terms of local observables like the one given in Ref. 4 is sometimes
called a “hydrodynamic formulation” of quantum theory. Hydrodynamics provides a ready-made terminology
for the description of continuous distributions and flows of mechanical quantities such as energy; momentum,
angular momentum, and charge; as such it is useful in quantum theory, but it should be understood that
the use of hydrodynamic terminology does not imply that any classical model or interpretation has been
presumed. A hydrodynamic formulation of Schrödinger theory was first given by Madelung7: it has been
discussed since by numerous authors, recently, for example, by Wilhelm.8 Complete hydrodynamic formula-
tions of the Pauli and Dirac theories were first given by Takabayasi,9 though other authors, notably Costa
de Beauregard,10 achieved partial results earlier. These formulations of the Schrödinger, Pauli, and Dirac
theories, though fully consistent with more conventional formulations of quantum theory are inconsistent
with one another in their identifications of observables. In Ref. 6 it was shown that if the Schrödinger theory
is regarded as an approximation to the Pauli theory, then it necessarily contains spin (albeit in a degenerate
form). Her we show how the identification of observables in Ref. 5 must be adjusted to be consistent with
the more fundamental formulation of the Dirac theory in Refs. 4 and 5.

Section 2 obtains the Pauli theory as the nonrelativistic approximation to the Dirac theory and discusses
relativistic corrections. The usual physical interpretation of these results is held to be incorrect because of
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insufficient attention to the identification of observables, especially failure to bring the nonrelativistic limit
of the Dirac (charge) current into the discussion and distinguish it from the momentum density. The Darwin
term in the energy is proved to be a spin-orbit energy for s-states in exact accordance with the original
argument of Thomas.

Section 3 summarizes the definitions and interrelations of observables in the Pauli-Schrödinger theory
which are required for the sake of consistency with the Dirac theory. Some implications of the consistency
requirement for the Schrödinger hydrogen atom are pointed out to show that the conventional interpretation
of the Schrödinger theory must be drastically revised, but no attempt is made to carry any such revision to
completion.

Section 4 expresses the hydrodynamic equations of the Dirac theory in terms of relative observables,
uses them to derive a virial theorem, and obtains their non-relativistic limit.

The nomenclature and results of Refs. 4, 5, and 11 are used throughout this paper. The reader is advised
to become familiar especially with Ref. 5 before attempting to follow the arguments here in any detail.

2. Nonrelativistic Approximations to the Dirac Theory

In the literature two methods have been widely used to generate nonrelativistic approximations to the Dirac
theory, namely, separation of the Dirac wavefunction into large and small components,12,13,14 and the F-W
transformation.15 To facilitate comparison with our approach, we translate the first of these methods into
multivector language. Then we criticize the physical interpretation usually accorded to the method and
give reasons for interpreting it differently. Our arguments also have bearing on the F-W transformation and
suggest rather different mathematical methods for generating relativistic corrections, but we do not pursue
either of these points in any detail. Our objective is only to show in multivector language how the Pauli
equation and relativistic corrections to it can be obtained from the Dirac equation and provided with a
consistent physical interpretation.

The definition of electron energy in the Dirac theory differs from the definition in the nonrelativistic
theories by including the rest energy. We can remove the rest energy while retaining the definition of the
energy in terms of the wavefunction by changing the wave equation with the transformation

ψ → ψ exp {−iσ3mc2t/h̄} , (2.1)

whereupon the Dirac equation (3.11) of Ref. 5 becomes

h̄ ψiσ3 + mcψγ0 = mcγ0ψ +
e

c
Aψ . (2.2)

To express (2.2) in terms of relative variables we multiply it by cγ0 and, recalling the definitions (6.4) and
(6.22) of Ref. 5, obtain

h̄(∂t + c∇)ψiσ3 = mc2(ψ∗ − ψ) + (V − eA)ψ , (2.3)

where
ψ∗ = γ0ψγ0 . (2.4)

The wavefunction ψ can be expressed as the sum of an even part ψe and an odd part ψo, that is,

ψ = ψe + ψo . (2.5a)

where distinction between “even” and “odd” is best made by the equation

ψ∗ = ψe − ψo . (2.5b)

As is easily shown by the method of Appendix A in Ref. 4, this separation of ψ into even and odd multivector
parts is exactly equivalent to the usual separation of the wavefunction into large and small components in the
matrix version of the Dirac theory, but we shall see only later what this separation means physically. After
substituting (2.5) into (2.3) and separately equating even and odd parts, we obtain the coupled equations:
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h̄∂tψeiσ3 =
{
h̄∇ψoiσ3 +

e

c
Aψo

}
+ V ψe , (2.6a)

h̄∂tψoiσ3 − V ψo + 2mc2ψo = −c
{
h̄∇ψoiσ3 +

e

c
Aψe

}
. (2.6b)

Equations (2.6) can be solved to lowest order by neglecting the first two terms in the left of (2.6b) in
relation to the third, yielding

ψo = − 1
2mc

{
h̄∇ψeiσ3 +

e

c
Aψo

}
. (2.7a)

If we use this to eliminate ψo from (2.6a), then after expanding, simplifying and using the identity

Aψe + ∇(Aψe) = (∇A · ∇)ψe = (iB + 2A · ∇)ψe ,

we arrive at the Pauli equation

h̄∂tψeiσ3 =
1

2mc

{
− h̄2∇2 +

e2

c2
A2

}
ψe

+
eh̄

2mc

{
iB + 2A · ∇

}
ψeiσ3 + V ψe . (2.7b)

For readers who are still not completely at home with the multivector algebra used here, we prove that (2.7)
is equivalent to the usual matrix form of the Pauli equation. This is most easily done by replacing each
vector σk in (2.7) by a corresponding Pauli matrix σk according to the rules

σ1 → σ1 =
(

0 1
1 0

)
,

σ2 → σ2 =
(

0 −i′

i′ 0

)
, (2.8)

σ3 → σ3 =
(

1 0
0 −1

)
.

The i′ here is a mathematical square root of −1 with no geometrical interpretation; however, i′ multiplied
by the unit matrix is a matrix representation of the pseudoscalar i, a fundamental geometrical entity. This
follows from (2.8), thusly:

i = σ1σ2σ3 → σ1σ2σ3 = i′
(

1 0
0 1

)
.

By (2.8) ψe corresponds to a matrix ψ′
e which becomes a column matrix Ψe by operating on an eigenmatrix

u1 of σ3; so we make the correspondence

ψe → ψ′
e , Ψe → ψ′

eu1 where u1 =
(

1
0

)
. (2.9a)

From (2.8) we also have
B = σiB

i → σiB
i ≡ σ · B . (2.9b)

Hence regarding (2.7) as a matrix equation and multiplying it on the right by u1, we get, by (2.8) and
(2.9), the Pauli equation in its usual matrix form

i′h̄∂tΨe =
1

2m

{
− h̄2∇2 +

e2

c2
A2

}
Ψe

+
eh̄

2mc

{
− σ · B + 2i′A · ∇

}
Ψe + V Ψe . (2.10)

Now we return to the multivector formalism and the coupled equations (2.6a,b).
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To obtain higher order approximations to (2.6a,b) in a systematic way and to discuss the usual physical
interpretation of the results, it is convenient to introduce operators K̂, p̂, and p̂k defined by

K̂ψ ≡ h̄∂tψiσ3 − V ψ , (2.11)

p̂ψ ≡ −h̄∇ψiσ3 − e

c
Aψ , (2.12a)

p̂kψ ≡ −h̄∂kψiσ3 − e

c
Akψ ≡ σk · p̂ψ . (2.12b)

The Pauli equation (2.7b) can then be written

K̂ψe =
1

2m
p̂2ψe =

1
2m

p̂2ψe − eh̄

2mc
Bψeσ3 , (2.13)

where we have used the obvious operator notation

p̂2 ≡ p̂ · p̂ = p̂k · p̂k . (2.14)

Equations (2.6a,b) can be put in the form

K̂ψe = c p̂γ0 , (2.15a)

(1 + K̂/2mc2)ψo = (1
2mc)p̂ψe . (2.15b)

Assuming | K̂ψ | << 2mc2|ψ |, (2.15b) can be solved for ψ0 in the form

Ψo =
1

2mc
(1 + K̂/2mc2)−1 p̂ψe

≈ 1
2mc

(1 − K̂/2mc2) p̂ψe . (2.16)

Substituting this into (2.15a) and using the identity

(K̂p̂ − p̂K̂)ψ = h̄
(
− e

c
∂tA −∇V

)
ψiσ3 = eh̄Eψiσ3 ,

we get

K̂ψe =
1

2mc
p̂2ψe − 1

4m2c2

(
p̂2K̂ψe + eh̄ p̂(Eψe)iσ3

)
. (2.17)

Using (2.13) in the first and second terms on the right-hand side of this equation and the identity

eh̄p̂(Eψe)iσ3 = eh̄2(∇E)ψ + eh̄(E · p̂ − iE × p̂)ψiσ3

in the third term, we arrive finally at the first order correction to the Pauli equation:

K̂ψe =
1

2mc
p̂2ψe − eh̄

2mc
Bψeσ3 − 1

8m3c2
p̂2ψe

− eh̄2

4m2c2
(∇ · E + i∇× E)ψe − eh̄2

4m2c2
E · p̂ψeiσ3

− eh̄

4m2c2
E × p̂ψeσ3 . (2.18)

With (2.8) and (2.9) it is easy to show that (2.18) is equivalent to the usual matrix equation obtained in
Refs. 12–14 as the first order relativistic correction to the Pauli equation. The usual physical interpretation of
(2.18) proceeds by identifying p̂k as a “kinetic momentum operator” and, neglecting the difference between
p̂2 and p̂2 given by (2.13), interpreting the first and third terms of (2.18) as the first two terms in the
expansion of a relativistic “kinetic energy operator”

(p̂2 + m2c4)1/2 − mc2 =
p̂2

2m
− p̂4

8m3c2
+ · · · . (2.19)
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The second and last terms of (2.15) are interpreted as spin precession energies, with the latter (spin-orbit)
term being reduced in magnitude by a factor of 1

2 attributed to the Thomas precession. The ∇ × E term
is usually neglected in any case it does not contribute to the energy directly. With neglect of the vector
potential, the E · p̂ term in (2.18) can be shown to contribute to the energy the negative of half the amount
of the ∇·E term. So, for the purpose of calculating the energy, these two terms in (2.18) can be replaced by
a single term (−eh̄2/8m2c2)(∇·E)ψe, the so-called “Darwin term,” which is usually regarded as a quantum-
mechanical effect without classical interpretation. The contributions of the last four terms in (2.18) to
the energy levels of hydrogen can be evaluated by perturbation theory from the hydrogen solutions to the
Schr̈odinger equation; it has been (2.14) found16 that, as one might expect, they combine to give the α4

term in the expansion of the Sommerfeld fine structure formula.
To sum up, the usual interpretation regards (2.18) as an approximate separation of the Dirac energy

into kinetic and interaction energies. Simple and natural as this interpretation appears from the operator
formulation of (2.18), it is inconsistent with the identification of kinetic energy and momentum already made
in the exact Dirac theory. Nothing in the Dirac theory justifies the interpretation of (2.19) as a “kinetic
energy operator.” Indeed, if the operator p̂k is to be interpreted as the “kinetic momentum operator,” then
on the basis of “relativistic invariance” alone, the operator K̂ defined by (2.11) must be regarded as the
“kinetic energy operator,” which is certainly inconsistent with the interpretation of (2.18) reviewed above.

Nevertheless, the “Schrödinger approximation” to be discussed later, K̂ψe = (2m)−1p̂2ψe, showing at
least that the usual interpretation of (2m)−1p̂2 as an approximate kinetic energy-operator is consistent with
the Dirac theory.

Section 6 of Ref. 5 gave an exact derivation of the Larmor precession energy and found that it arises
from the electron mass density. Of course, in a statistical theory it is possible to identify in the mass density
contributions from the kinetic and interaction energies of the statistical ensemble, but this is not allowed in
the conventional Dirac theory, where the best that can be done is to determine how the mass is affected by
external fields. New interpretations cannot emerge from approximations to an exact theory.

It will also shown that the Thomas precession energy came from the kinetic momentum, and to identity
it the kinetic momentum was separated into two parts in Eq. (6.48) of Ref. 5. Heretofore, no one has
paid attention to the fact that a similar separation was mad implicitly in the derivation of (2.18). So much
emphasis is laid on the correspondence between operators and observables that it is sometimes overlooked that
an operator must act on a wavefunction to produce an observable quantity. This simple fact obviously implies
that a change in the wavefunction while an operator is kept fixed will generally change the correspondence
with observables. Exactly this kind of change was made in arriving at (2.18). The operator p̂k introduced
in (2.12) can indeed (with clue attention to its relation of the energy-momentum tensor) be regarded as
a momentum operator when it acts on the Dirac wavefunction ψ. It follows that the operator equation
p̂kψ = p̂kψe + p̂kψo corresponds to a

separation of the momentum into two parts. But only p̂kψe is associated with momentum in (2.12) and
(2.18), though p̂kψo is negligible only in the zeroth order (Pauli) approximation; this amounts to a change
in the interpretation of the theory by identifying a different quantity as momentum. As a result, the Larmor
and Thomas precession energies appear (magically) as interaction terms. Of course, as long as only the
total energy is being measured experimentally it does not matter what part of it is called kinetic; only the
coupling with external fields is important. However, the spin and momentum are related to one another by
the angular momentum conservation law, and the interpretation of one cannot be changed without affecting
the other. When this is taken into account, arbitrariness in the interpretation of various contributions to
the energy is eliminated.

Before (2.18) can be correctly interpreted, the relation of ψe to the Dirac observables must be determined.
The physical meaning of the decomposition ψ = ψe + ψo is revealed by the decomposition

ψ = ρ1/2 exp (iβ/2)LU (2.20)

obtained from Eqs. (4.2) and (6.15) of Ref. 5. The spinor L can be expressed in terms of the relative velocity
v by taking the square root of (6.1c) in Ref. 5 to obtain (e.g., Eq. (18.14) of Ref. 17)

L =
v
1/2
0√
2

( 1
α

+
αv

c

)
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where α =
v
1/2
0

(v0 + 1)1/2
and v0 = (1 − v2/c2)1/2 . (2.21)

Hence (2.20) can be written

ψ =
exp (iβ/2)√

2

(
1
2 +

αv
c

)
ρ
1/2
0 U , (2.22)

where of course ρ0 = ρv0. The separation of (2.22) into even and odd parts is easily accomplished by noting
that v and i are odd (i.e., γ0vγ0 = −v and γ0iγ0 = −i), while U is even (i.e., γ0Uγ0 = U); hence

ψe =
1√
2

(cos 1
2β

α
+ i

vα

c
sin 1

2β
)

ρ
1/2
0 U , (2.23a)

ψo =
1√
2

( i sin 1
2β

α
+

vα

c
cos 1

2β
)

ρ
1/2
0 U . (2.23b)

For |v/c | << 1, α ≈ (2)−1/2 in which case it is clear from (2.23) that |ψo | << |ψe | only if β is simultaneously
small (modulo π of course). Thus β small is a prerequisite for the Pauli equation to obtain as the N. R. limit
of the Dirac equation. We do not attempt to explain this fact here, we merely record it as another clue to
the physical interpretation of the mysterious parameter β, and we note that (2.23) shows exactly how the
separation of ψ into even and odd parts depends on v/c, a fact which we now exploit.

Expanding (2.23a,b) in β and |v |/c and keeping terms of first order only in both quantities, we get

ψe ≈ ρ1/2U ≈ ρ
1/2
0 U ≡ χ , (2.24a)

ψo ≈ 1
2 (iβ + v/c)χ . (2.24b)

Substituting these in (2.7a) and multiplying on the right by 2χ̃, we obtain

(
iβ +

v
c

)
ρ = − 1

2mc

{
h̄∇χiσ3 +

e

c
Aχ

}
χ̃ =

1
2mc

(p̂χ)χ̃ . (2.25a)

Separating this into relative vector and pseudovector parts, we get

v = − h̄

mρ
[∇χiσ3χ̃ ](1) − e

c
A (2.25b)

and

β = − h̄

mcρ
[∇χσ3χ̃ ](0) = − 1

mc

h̄

2
∇ · (χσ3χ̃) = − 1

mcρ
∇ · (ρs) , (2.25c)

where we have used (6.16) and (7.3a) of Ref. 5 to identify the relation of the spin to the Pauli wavefunction
χ as

ρs = 1
2 h̄ρUσ3Ũ = 1

2 h̄χσ3χ̃ . (2.26)

The result (2.25c) is just an approximate derivation of (7.3a) in Ref. 5, which has already been shown to
hold under more general assumptions. Equation (2.25b) is the correct expression for the electron velocity in
terms of the Pauli wavefunction. This reveals the physical significance of Eq. (2.7a) in the Pauli theory.

We are now in a position to examine the physical significance of the spin-electric coupling terms in
(2.18) by expressing them in terms of local observables. The last three terms in (2.18) are equivalent to the
single term in (2.17)

− eh̄

4m2c2
p̂(Eψe)iσ3 = − eh̄2

4m2c2
∇(Eψe)

= − eh̄2

4m2c2
[ (∇E)ψe + 2E · ∇ψe − E∇ψe ] , (2.27)
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which we have reexpressed by using (2.12a) and neglecting the vector potential A. In the present approxi-
mation, we can replace ψe in (2.27) by the Pauli wavefunction χ = ρ1/2U , whereupon, after multiplication
on the right by χ̃, (2.27) becomes

− eh̄

4m2c2
(p̂Eχ)iσ3χ̃ = − eh̄2

4m2c2

(
ρ∇E + E · ∇ρ + 2(E · ∇U)Ũ

)
+

e

2mc
E

( h̄2

2mc
(∇χ)χ̃

)
. (2.28)

But if (2.25a) is multiplied by is and (2.26) is used, one finds, neglecting A,

h̄2

2mc
(∇χ)χ̃ =

(
i
v
c
− β

)
ρs . (2.29)

Noting that s2 = 1
4 h̄2, that (E · ∇U)Ũ is a bivector, and that iEvs = E · vis − (E × v)s, we obtain, on

substituting (2.29) and (2.28) and taking the scalar part,

− eh̄

4m2c2
[ (p̂Eχ)iσ3χ̃ ](0) = − es2

m2c2
∇E · (ρE)

− e

2mc2
ρs · (E × v) − e

2mc
s · Eρβ . (2.30)

Of course, the perfect divergence ∇ · (ρE) in (2.30) has a vanishing contribution to the total energy so, with
sin β = β, (2.30) is seen to differ from the expression (7.14) of Ref. 5 for the spin-electric energy density
essentially by a factor 1

2 in the last term. We shall not look into the reason for this discrepancy, because it
does not affect matters of interpretation which concern us now.

The importance of the last term in (2.30) depends on the magnitude of β relative to |v/c |, and that can
be determined only by computation from the solution to the wave equation. The hydrogen atom solutions to
the Pauli equation gives s constant, in which case (2.25c) gives β = −(mc)−1s ·∇ ln ρ; so if ρ is a sufficiently
slowly varying function of position, we have β << |v/c |, and (2.30) is equivalent to (7.14) and (7.17) in Ref.
5, giving us in this approximation

ρESE = − e

2mc2
ρs · (E × v)

= − e

2m2c2
{ρs · (E × p) + s2

(
ρ∇ · E −∇ · (ρE)

)} . (2.31)

This shows that the hydrogen spin-electric energy given by (2.18) is identical to the one arrived at by Thomas
from purely classical considerations (see Ref. 1). This fact is disguised in (2.18) by the use of operators and
the failure to distinguish between velocity and momentum.

The mysterious Darwin term is completely explained by (2.31). Since ∇ · E is proportional to a delta
function vanishing everywhere except at the origin and ρ is nonvanishing at the origin only for s-states, the
Darwin term contributes only to s-states. But p = 0 for s-states, so (2.31) shows that the Darwin term gives
the entire spin-orbit coupling for s-states. Even though the momentum density ρp vanishes for s-states,
spin-orbit coupling is possible because the charge current eρv = em−1∇ × ρs is finite. The numerical
coefficient of the Darwin term is notable: as (2.31) shows a factor h̄2/8 arises from the “Thomas factor” 1

2

and the spin s2 = 1
4 h̄2.

For other than s-states the distinction between velocity and momentum is not so important, being
responsible only for a term −1

2em−2c−2E · ss · ∇ρ which was neglected in relating (7.17) of Ref. 5 to (2.31)
here. This is to say that the magnetization current makes an important contribution to the energy only for
s-states, where it is the entire current.

The identification of Thomas precession in the Dirac theory is justified in current textbooks solely by
noting the factor 1

2 in the spin orbit term of (2.18) which remains after associating a factor 1
2 h̄ with the

spin. The identification of the “Thomas factor” is correct, as we have shown by the same general argument
as Thomas. based primarily on the fact that the proper spin S is always orthogonal to the proper particle
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velocity v. But its appearance in (2.18) is rather fortuitous, because the separation of the Dirac momentum
into p̂kψk + pkψ0 which makes the Thomas precession explicit in (2.18) is equivalent to the exact separation
made in (6.48) of Ref. 5 only to first order. It must be remembered that, as cautioned in Ref. 5, it is possible
to talk of the Thomas precession only when Σ = Uiσ3Ũ is taken to be the spin.

3. Observables in the Pauli-Schrödinger Theory

In the introduction we pointed out that the interpretation of the Schrödinger theory is a theory of an electron
without spin is inconsistent with the view that it is an approximation to the Dirac theory. Consistency
requires that the Schrödinger theory be regarded as describing an electron in an eigenstate of spin. Here the
term “eigenstate” can be taken in the usual sense. But we think that the sense suggested in Sec. 5 of Ref. 5
is more revealing. Accordingly, we say that an electron is in an eigenstate of the spin if and only if the local
spin vector s = U σ3Ũ is uniform, i.e., constant in time and homogeneous in space.

To emphasize the fact that the Schrödinger theory is identical to the Pauli theory for an electron in
an eigenstate of spin, we speak of the “Pauli-Schrödinger (P-S) theory.” The P-S theory has already been
discussed in Ref. 6, and everything mentioned there is consistent with the Dirac theory. But the derivation
of the P-S theory from the Dirac theory which has been carried out in the preceding sections reveals some
important features of the P-S theory which were not mentioned in Ref. 6. This has particularly significant
consequences for the interpretation of the Schrödinger theory.

Let us summarize the assumptions of the P-S theory which we have derived from the Dirac theory in
Section 2. The P-S wavefunction χ can be written in the form

χ = ρ 1
2U , (3.1a)

where

UU† = 1 (3.1b)

U† ≡ γ0Ũγ0 = Ũ (3.1b)

and

ρ = χ†χ = χχ† (3.2a)

is a scalar to be interpreted as the probability density. The wavefunction χ is determined by assuming that
it is a solution of the Pauli equation (2.7b) or (2.13) or emphasized in Ref. 6, the Pauli equation reduces
to the Schrödinger equation when the magnetic field is sufficiently small. Besides the probability density
(3.2a), the fundamental observables of the P-S theory are the energy density ρE, the momentum density
ρp, the spin density ρs, the charge current j = eρv; they are expressible in terms of the wavefunction by
the equations

ρE = h̄(∂tχiσ3χ̃)(0) = h̄(∂tUiσ3U
†)(0)U , (3.2b)

ρs =
h̄

2
χσ3χ̃ =

h̄

2
ρUσ3U

† , (3.2c)

(p̂kχ)χ† ≡ −
{

h̄∂kχiσ3 +
e

c
Akχ

}
χ† = ρpk − i∂k(ρs) , (3.2d)

m−1(p̂χ)χ† ≡ −m−1
{

h̄∇χiσ3 +
e

c
Aχ

}
χ† = ρ(v + icβ) . (3.2e)

This completes the list of assumptions derived for the P-S theory.
For purposes of comparison, we use (2.8) and (2.9) to express the observables (3.2) in the usual matrix;

notation. Writing Ψ = χu1, as in (2.9a), for the matrix wavefunction, introducing p̂kΨ ≡ −(i′h̄∂k +
(e/c)Ak)Ψ and using “Re” to denote “real part,” we get

ρ = χ†χ = (χ†χ)(0) = Ψ†Ψ , (3.3a)

ρE = h̄(χ†∂tχiσ3)(0) = Re{i′h̄Ψ†∂tΨ} , (3.3b)
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ρsk = ρs · σk = 1
2 h̄(σkχσ3χ

†)(0) = 1
2 h̄Ψ†σkΨ , (3.3c)

ρpk = ρ(U†p̂kU)(0) = (χ†p̂kχ)(0) = Re{Ψ†p̂kΨ} , (3.3d)

ρvk = ρv · σk = (χ†p̂kχ)(0) = m−1Re{Ψ†σkσj p̂jΨ} . (3.3e)

Equations (3.3) can be used instead of (3.2) to relate observables to the wavefunction, but (3.2) is easier
to work with. For example using m−1p̂ = m−1σkp̂k, we get immediately from (3.2d) and (3.2e)

ρp − i∇(ρs) = mρ(v + icβ) . (3.4a)

Since ∇(ρs) = ∇ · (ρs) + i∇× (ρs) the vector part of (3.4a) is

mρv = ρp + ∇× (ρs) , (3.4b)

while the pseudovector part gives
mcρβ = −∇ · (ρs) . (3.4c)

In Sec. 7 of Ref. 5 the fundamental relation (3.4b) was derived from a “constitutive equation” determined by
the Dirac equation. In Sec. 2 we saw that a decoupling of (3.4b) from the wave equation was brought about
by the separation of the Dirac wavefunction into large and small components. So (3.4b) must be introduced
into the P-S theory as an assumption independent of the P-S wave equation. It has already been pointed out
in Sec. 7 of Ref. 5 that (3.4b) expresses the separation of the total charge current j = eρv into a convection
current em−1ρp and a magnetization current ∇× (em−1ρs) written as Eq. (1.2) in the introduction. The
physical significance of (3.4c) is not is obvious as that of (3.4b). Indeed, since the function β is given in terms
of ρ and s by (3.4c), it need not be introduced into the theory at all. However, we have already observed
the peculiar role of β in the Dirac theory, so it should be interesting to see how it enters the P-S theory.

From the set of basic observables (3.2) other observables can be constructed. Chief among these are the
“orbital angular momentum density”

ρL ≡ x × (ρp) = ρx × p . (3.5)

and the “total angular momentum density”

ρJ ≡ ρ(L + s) . (3.6)

Since, according to (3.4b), p �= mv, the moment of charge differs from the moment of momentum. To
express this difference we introduce the orbital momentum density

ρL∗ ≡ x × (ρmv) = mρx × v . (3.7)

By virtue of (3.4b), the relation between the two orbital moment densities can be put in the form

ρL∗ = ρL + 2ρs + ∂k{ρx × (σk × s)} . (3.8)

Other important observables appear when we use the Pauli equation to derive equations of motion for
the local observables. With p and v related to the wave equation by (3.2d,e), it is easy to show that the
Pauli equation implies the conservation laws

∂tρ + ∇ · (m−1ρp) = 0 , (3.9)

∂tρ + ∇ · (ρv) = 0 . (3.10)

Indeed, either of these equations follows from the other by virtue of (3.4b). Equation (3.9) implies the
existence of momentum streamlines. We can always write the equation for momentum conservation on such
a streamline in the general form

ρDtp ≡ ρ
(
∂t + (p/m) · ∇)

p = ρf ′ − ∂kN′
k . (3.11a)

11



This introduces the force density ρf ′ and the stress N′
k on a volume element moving with the streamline as

local observables. In Ref. 6. the Pauli equation was shown to lead to the specific expressions

f ′ = e{E + (p/mc) × B} + (e/mc)σks · ∂kB , (3.11b)

N′
k = −M−1ρσjs · (∂j∂ks + s∂j∂k ln ρ) , (3.11c)

for f ′ and N′
k in terms of the basic local observables (3.2).

On the other hand, Eq. (3.10) rather than (3.9) is the charge conservation equation, and momentum
conservation along a charge (or velocity) streamline has the general form

ρdtp ≡ ρ(∂t + v · ∇)p = ρf − ∂kNk . (3.12a)

By the method of Ref. 6 it can be shown that the Pauli equation leads to the expressions

f = e{E + (v/c) × B} , (3.12b)

Nk = ρcσk · s∇β + σjs · (σk × ∂jv) . (3.12c)

We will not carry out the derivation here, because in Sec. 4 the same results will be obtained from the
hydrodynamic formulation of the Dirac theory. The corresponding conservation laws for angular momentum
will also be obtained. Our object here is only to compare the conservation law (3.11) and (3.12) on the
momentum and charge streamlines.

The structure of the stress terms (3.11c) and (3.12b) appears to be difficult to understand. But (3.12b)
shows that the force on a charge streamline is exactly the classical “Lorentz force”; this by itself is nearly
sufficient to show that the electromagnetic interaction in quantum theory is the same as in classical theory.
On the other hand, (3.11b) shows that the force on a momentum streamline consists of a “Lorentz force”
supplemented by a “Stern-Gerlach force.” In the light of (3.12b), we conclude that the “Stern-Gerlach force”
arises from the circulation of charge relative to the momentum streamlines. The same general conclusion
was reached in Ref. 4 by an examination of the hydrodynamic formulation Dirac theory. But it should be
recalled that the analysis there is complicated by the fact that there are no momentum streamlines in the
exact Dirac theory though there are streamlines generated by the Gordon current.

We have summarized how observables are brought into the P-S theory. A basic set such as (3.2) must
be defined in terms of the wavefunction, while the remaining observables arise when the wave equation is
used to construct the conservation laws. In this connection it is well to recall that, as shown in Ref. 6, even
the spin does not have to be introduced by definition in the Dirac theory,, because it is determined by the
conservation laws. The conservation laws are equations of motion for the observables, and as we have seen
with (3.11) and (3.12) they have properties which can be interpreted physically. In this way the physical
consequences of the wave equation are revealed.

So far we have discussed only local observables in the P-S theory. The “average” (or “global”) observables
obtained by averaging local observables over spaces are easier to study experimentally, so we now ascertain
some of their properties.

The average momentum has the classical relation to the average velocity

〈p 〉 ≡
∫

d3xρp = m〈v 〉 . (3.13)

This follows from (3.4b) since the contribution of the “spin current” vanishes by Gauss’s theorem. However,
by integrating (3.8) we find that the angular momentum differs from the average moment of charge according
to the formula

〈L∗ 〉 = 〈L 〉 + 2〈 s 〉 . (3.14)

Multiplying the Pauli equation taking the scalar part and integrating we get the expression for the average
kinetic energy

〈 K̂ 〉 =
〈

p̂2

2m

〉
− e

mc
〈B · s 〉 = 〈E 〉 − 〈V 〉 , (3.15)

where, in particular,
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〈 p̂2 〉 =
∫

d3x(χ†p̂2χ)(0) , (3.16)

〈B · s 〉 =
∫

d3xρB · s . (3.17)

The “operator expectation” (3.16) can be reexpressed in terms of the velocity, with the striking result

〈 K̂ 〉 = 〈 1
2mv2 〉 + 〈 1

2mc2β2 〉 . (3.18)

In Sec. 4 this result will be obtained from an exact relation holding, in the Dirac theory
According to (2.15) the operator (2m)−1p̂2 can be interpreted as the kinetic energy operator only

if 〈B · s 〉 = 0, that is, in the Schr̈odinger approximation to the Pauli theory. The expression 〈 p̂2 〉 is
unsatisfactory from our point of view, because it has not been expressed in terms of the basic local observables
in (2.2). We can easily reexpress it in terms of the momentum (2.3d) by using Eq. (4.11) of Ref. 6, which
shows us that

(χ†p̂2χ)0 = ρ
{
p2 − s2[2∇2 ln ρ + (∇ ln ρ)2 ] − s · (∇2s)

}
. (3.19)

Hence
〈 p̂2 〉 = 〈p2 〉 − 〈 s2[2∇2 ln ρ + (∇ ln ρ)2 ] − s · (∇2s) 〉 . (3.20)

Equation (3.20) shows, at least, that 〈 p2/2m 〉 does not give the entire contribution to the kinetic energy, so,
on the basis of general principles of continuum mechanics, one is tempted to interpret the spin and density
terms in (3.20) as a kind of heat energy associated with the local angular momentum flux, but it is difficult
to account for the specific form of the terms on the basis of this idea.

Obviously, the kinetic energy is much more simply expressed in terms of the velocity by (3.18) than in
terms of the momentum. Notice that, in contrast to (3.15), (3.18) displays no explicit interaction with the
magnetic field. This is entirely in accordance with the idea that the spin arises from a circulation of charge.
But the problem remains to understand the β2 term in (3.18). We shall comment on this later.

A virial theorem for the P-S theory is easily derived with the help of (3.12) but not by using (3.11)!].
Since, in Sec. 4 we will obtain a more general theorem from the Dirac theory by a similar method, we do
not give the derivation. Looking ahead, we merely note that from Eqs. (4.20)–(4.23) we get, recalling that
the rest energy is omitted from the Pauli theory, the general virial theorem for stationary states

〈E 〉 = −〈 1
2mv 〉 − 〈 1

2mc2β2 〉 + 〈V 〉 − e〈x · (E + c−1x × B) 〉 , (3.21)

which for a Coulomb field alone reduces to

〈E 〉 = −〈 1
2mv 〉 − 1

2mc2〈β2 〉 . (3.22)

Equating this to 〈E 〉 + 〈K 〉 + 〈V 〉 and using (3.18), we get the alternative form of the virial theorem

〈v2 〉 + mc2〈β2 〉 + 〈V 〉 = 0 . (3.23)

Let us consider some implications of the above relations among observables for the interpretation of the
Schrödinger solution of the hydrogen atom. As has been explained, we get the Schrödinger theory with spin
by taking s constant. This determines a preferred direction in the theory, so it is convenient to write

s = 1
2 h̄σ3 . (3.24)

Obviously,
〈 s 〉 = s = 1

2 h̄σ3 (3.25)

for any solution of the Schrödinger equation. From the Schrödinger wavefunctions for the hydrogen atom
we get

〈L 〉 = mh̄σ3 = 2ms , (3.26)

where m is the magnetic quantum number. This is identical to the usual result

〈 L̂3 〉 = mh̄ , 〈 L̂1 〉 = 0 = 〈 L̂2 〉 ,
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where the L̂k the usual angular momentum operators, that is,

〈 L̂k 〉 = σk · 〈L 〉 = 〈σk · L 〉 .

The total angular momentum is clearly

〈J 〉 = (m + 1
2 )h̄σ3 = (2m + 1)s . (3.27)

The spin is coupled to other observables by Eq. (3.46), which, in the Schrödinger theory can be written

mρv = ρp − s ×∇ρ . (3.28)

For s-states the Schrödinger wavefunctions imply p = 0, but (3.28) shows that v �= 0. In fact, since ρ is
spherically symmetric ∇ρ is directed radially, so (3.28) implies that the charge streamlines circulate about
the spin axis. Thus, the the charge distribution of an s-state is not static as it is usually supposed to be
when (e/m)p is wrongly assumed to describe the charge flow. It must be emphasized that this conclusion
is solely a consequence of requiring that the Schrödinger theory be a consistent approximation to the Dirac
theory. Of course, we have already seen that the charge current in the s-state, gives the “Darwin spin-orbit
energy” when the first order relativistic correction is included.

The correspondence between Schrödinger and Bohr theories of hydrogen is significantly improved by
corresponding v rather than p/m with the velocity of the electron in the Bohr theory. All observables can
be expressed in terms of v rather than p/m by using (3.28). The angular momentum to compare with the
Bohr theory is therefore L∗ defined by (3.7) rather than L. Indeed, substitution of (3.25), (3.26) into (3.14)
yields

〈L∗ 〉 = (m + 1)h̄σ3 . (3.29)

As in the Bohr theory, (3.29) associates a finite angular momentum with the s-states. Since spin is separately
conserved it appears that we can just omit it from the angular momentum balance. But a deeper analysis
may show that the half-integral values of the “azimutal quantum number” in the Schrödinger theory are
related to the spin.

It is tempting to suppose that the Schrödinger theory describes some sense a statistical ensemble of
Bohr-like orbits. The expression (3.18) for the kinetic energy seems to be very close to what one might
expect in such a case. Consider the strange quantity β which appears there. From (3.4c) we have

β = − 1
mc

∇ · (ρs) = − h̄

2mc
σ3 · ln ρ , (3.30)

so in the Schrödinger theory (3.12) can be written

〈 K̂ 〉 = 1
2m〈v2 〉 +

s2

2m

〈 (∂ ln ρ

∂z

)2
〉

. (3.31)

Thus the contribution of P to the energy is determined by by the derivative of the density along the “axis
of quantization.” But the Bohr orbits are confined to a plane, while the Schr̈odinger v-orbits are distributed
throughout space, though they too circulate about a preferred axis. Perhaps the last term in (3.31) is only
needed to compensate for this difference or perhaps it represents the entire contribution of the spin to the
energy. Perhaps the biggest difference between the Bohr and Schrödinger theories is that the latter contains
spin. No doubt the last word on the subject has not been spoken.

4. Hydrodynamic Equations for Relative Observables

In Sec. 6 of Ref. 5 the fundamental relative local observables, velocity, spin, energy, and momentum were
introduced and the basic constitutive relations among them were ascertained and discussed. This section
derives the relative equations of motion for these quantities. The resulting equations are exact but probably
too complicated to be of practical interest. We use them only to derive a virial theorem and to find the
corresponding hydrodynamic equations of the Pauli-Schrödinger theory in the nonrelativistic limit. However,
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it may be possible to use these equations to compute relativistic dynamical corrections to the Pauli theory,
a problem which is difficult to handle with a wave equation.

Let us recall the dynamical conservation laws of the Dirac theory. According to Eqs. (2.26) and (3.22)
of Ref. 4, the energy-momentum conservation law can be written

ρdτp =
e

c
ρF · v − ∂µNµ , (4.1a)

where
N(γµ) = Nµ = γνρ(v ∧ γµ) · W = −ρsµ β + γνρ [vγµ∂νS ](0) . (4.1b)

Note that N(v) = vµNµ = 0, =0, so N(n) can be identified as the proper stress tensor, describing the flux
of momentum through a hypersurface with normal n into a particle streamline. Equation (4.1a) says that
the Lorentz force is the only body force on the electron; the “Stern-Gerlach” force does not appear explicitly
in (4.1a) because it is not a body force, rather it has been shown in 4 to arise from the term ∂µNµ, so it
expresses the influence of the external field on the local momentum flux.

According to Eqs. (2 34) and (2.33) of Ref. 4, angular momentum conservation in the Dirac theory can
be expressed by the equation

ρdτS = −∂µMµ + ρv ∧ p + γµNµ (4.2a)

where
M(γµ) ≡ Mµ = ρS · γµv = ρ 1

2 [S, γµ ∧ v ] . (4.2b)

The last two terms of (4.2a) describe the coupling of the spin to the energy-momentum density a flux via the
skew-symmetric part of the energy-momentum tensor. Also M(v) = 0 so the tensor M(n) gives the flux of
angular momentum in the direction n onto a streamline Thus (4.2a) says that the spin is subject to no body
torques: the “Larmor term” does not appear explicitly in (4.2a), because, as shown in Ref. 4, it describes
the influence of the external field on the local angular momentum flux.

The main task of this section is to reexpress the conservation laws (4.1) and (4.2) in relative form. This
work completes the job of expressing the Dirac theory in terms of relative variables which was begun in Sec.
6 of Ref. 5, so familiarity with the characterization of relative variables developed here is presumed.

Consider first the conservation Eq. (4.1a) for energy-momentum. Using (6.6) and (6.7) of Ref. 5, we
write

ρdτpγ0 = v0c
−1ρ0dt

( ε

c
+ p

)
. (4.3)

Also it is easy to show that [Eq. (2.15) of Ref. 11]

F · vγ0 = v0[c−1E · v + c−1v × B ] . (4.4)

Hence after multiplication by γ0, Eq. (4.1a) can be separated into the two equations

ρ0dtε = ρ0 eE · v − ∂µNµ
0 , (4.5a)

ρ0dtp = ρ0 e(E − c−1v × B) − ∂µNµ , (4.5b)

where we have introduced the notation

Nµ
0 = c2Nµ · γ0 , Nµ = cNµ ∧ γ0 .

To get the flux terms expressed in terms of relative local observables, we use (4.26).
Introducing the frame of relative vectors

σk ≡ γkγ0 = −γ0γk = γ0γ
k (k = 1, 2, 3) ,

and recalling (6.4b) of Ref. 5, we have

c−1Nµ
0 = −ρ0 sµ∂tβ + ρ0 [vγµ∂tS ](0) , (4.6a)
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c−1Nµ = ρ0 sµ∇β − σjρ0 [vγµ∂jS ](0) , (4.6b)

and, recalling (6.1) and (6.12a) of Ref. 5, we have

[vγ0∂νS ](0) =
v0

c
[v∂ν(s1 + S2) ](0) =

v0

c
v · ∂νs1

[vγk∂νS ](0) = [vγ0γ0γ
k∂νS ](0)

= v0[ (1 + v/c)σk∂ν(s2 + S2) ](0)
= v0

{
∂ν(σk · s1) + c−1(v ∧ σk) · ∂νS2

}
.

Hence,

N0
0 = −cρs0∂tβ + ρ0v · ∂ts1 , (4.7a)

Nk
0 ≡ N0k = −cρsk∂tβ + ρ0

{
c∂ts1 · σk + (v ∧ σk) · ∂tS2

}
, (4.7b)

N0 = cρs0∇β − ρ0σjv · ∂js1 , (4.7c)

Nk ≡ Nk = cρsk∇β − ρ0

{
c∇s1 · σk + σj(v ∧ σk) · ∂jS2

}
. (4.7d)

It will be noted that these flux term, are expressed in terms of several quantities which are not independent
of one another. By (6.12), (6.18), (6.19) of Ref. 5 and (2.18) of Ref. 4, s0, s, s1, S0, and β can all be
expressed in terms of σ and v. In terms of σ the flux terms (4.7) appear very much more complicated, but
simplify considerably if one retains only first order relativistic corrections. Equations (4.5) for energy and
momentum coupled to the equation of motion (6.38) of Ref. 6 for σ are appropriate equations to study if one
is interested in the dynamical role of the Thomas precession. Instead, however, we here obtain equations of
motion for s1 and S2, because they have the general form of conservation laws. To keep the general features
of the equations apparent, we do not express sµ and β in terms of s1 and S2, as would be necessary if we
were looking for solutions. Therefore, we regard (4.7) as a satisfactory expression of the flux in terms of
local observables. So substituting (4.7) into (4.5), we get

ρ0dtε = ρ0eE · v + ∂t

{
ρs0∂tβ − c−1ρ0v · ∂ts1

}
−∂k

{ − cρsk∂tβ − cρ0∂ts · σk + ρ0 (v ∧ σk) · ∂tS2

}
, (4.8a)

ρ0dtp = ρ0e(E + c−1v × B) + ∂t

{ − ρs0∇β + c−1σjv · ∂js1

}
+∂k

{
cρsk∇β + cρ0∇s1 · σk + ρ0σj(v ∧ σk) · ∂jS2

}
, (4.8b)

We now get equations of motion for s1 and S2 by taking the relative vector and bivector parts of (4.2a) to
get

ρdτs1 = −∂µ[Mµ ]1 + ρ [v ∧ p ]1 + [γµ ∧ Nµ ]1 , (4.9a)

ρdτS2 = −∂µ[Mµ ]2 + ρ [v ∧ p ]2 + [γµ ∧ Nµ ]2 . (4.9b)

Now to express the right side of (4.9) in relative observables. In the process we keep in mind the facts that
σk · s = sk and σk · ∇ = ∂k follows from the definitions of s and ∇ in (6.11) and (6.4) of Ref. 5:

cγµ ∧ Nµ = c [γµNµ ]2 = [γµγ0(c−1Nµ
0 − Nµ) ]2

= −N0 + c−1σkNk
0 − σk ∧ Nk .

So from (4.7),

[γµ ∧ Nµ ]1 = −c−1N0 + c−2σkNk
0

= −ρs0∇β + c−1ρ0σjv · ∂js1

− c−1ρs∂tβ + c−1ρ0{∂ts1 − c−1v · ∂tS2)} , (4.10a)
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[γµ ∧ Nµ ]2 = −c−1σk ∧ Nk = −c−1σk ∧ Nk

= −ρs ∧∇β − ρ0∇∧ s1 + c−1ρ0σj ∧ (v · ∂jS2) . (4.10b)

Also

v ∧ p = [v0(1 + v/c)(ε/c − p) ](1)+(2)

= v0

( ε

c2
v − p

)
− v0

c
v ∧ p . (4.11)

From (4.2b) we get

M0 = ρ1
2 [s1 + S2, γ

0 ∧ v ] = ρv0{ 1
2 [v, s1 ] + 1

2 [v, S2 ]}
= ρ0 {v ∧ s1 = v · S2} , (4.12a)

and, since
γk ∧ v = [γ0γ0γ

kv ]2 = −[σkv0(1 − v/c) ]2 = −v0{σk − c−1σk ∧ v} ,

we also get from (4.2b),

Mk = −ρ1
2 [s1 + S2,σk − c−1iσk × v ]

= ρ0 {σk ∧ s1 + σk · S2 − c−1s1 × (σk × v) − c−1 1
2 [σk ∧ v, S2 ]} . (4.12b)

Hence,

c∂µ[Mµ]1 = ∂t(ρ0v · S2) + c∇ · (ρ0S2) − ∂k

(
ρ0s1 × (σk × v)

)
,

c∂µ[Mµ]2 = ∂t(ρ0v ∧ S2) + c∇∧ (ρ0s1) − ∂k

(
ρ0

1
2 [σk ∧ v, S2 ]

)
.

So, at last Eqs. (4.9a,b) can be written

ρ0dts1 = −∂t(ρv · S2) − c∇ · (ρ0S2) + ∂k

(
ρ0s1 × (σk × v)

)
+ ρ0(c−1εv − cp) − cρs0∇β + ρ0σjv · ∂js1

− ρs∂tβ + ρ0∂ts1 − c−1ρ0v · (∂tS2) , (4.13a)
ρ0dtS2 = −∂t(ρ0v ∧ s1) − c∇∧ (ρ0s1) + ∂k

(
ρ0

1
2 [σk ∧ v, S2 ]

)
− ρ0v ∧ p − cρs ∧∇β − cρ0∇∧ s1

+ ρ0σj ∧ (v · ∂jS2) . (4.13b)

With Eqs. (4.8a,b) and (4.13a,b) we have completed the formulation of the Dirac hydrodynamic equa-
tions in terms of relative observables. No one can fail to notice how much more complicated these equations
are than their proper counterparts (4.1a,b) and (4.2a,b). So, for most purposes it is clearly best to deal with
the proper equations.

The relative hydrodynamic equations become much simpler in the N. R. limit. To attain this limit, as
we saw in Sec. 7 of Ref. 5, we need only express all spins in terms of S or s with the identifications

S2 = S = is , cs1 = v · S, cs0 = s · v ,

take ρ0 = ρ, and regarding c|β | ≈ |v |, neglect all terms of relative order c−1 or less. Then from (4.8b) we
easily get the momentum conservation equation

ρdtp = ρe(E + c−1v × B) − ∂kNk , (4.14a)

where the momentum flux Nk is the limit of (4.7d)

Nk = ρcsk∇β + σjρS · (∂jv ∧ σk) , (4.14b)
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and from (4.9b) we get the angular momentum conservation equation in terms of the spin

ρdtS = ρp ∧ vσk ∧ Nk − ∂kMk , (4.15a)

where the spin flux Mk is given by

Mk ≡ ρ 1
2 [S, σk ∧ v ] − ρσk ∧ (S · v) . (4.15b)

In addition, from (4.8a) we get the energy conservation equation

ρdtS = eρE · v + ∂k

{
cρsk∂tβ − S · (∂tv ∧ σk)

}
. (4.16)

As already mentioned in the last section, these are the hydrodynamic equations of the Pauli theory.
As an application of the relative hydrodynamic equations we derive a virial theorem for the Dirac theory,

though actually it is hardly more difficult to derive the theorem directly from the proper hydrodynamic
equations. Differentiating x · p and using (4.5b), we get

dt(x · p) = v · p + x · [e(E + c−1v × B) − ρ−1
0 ∂µNµ ] .

But, by (4.7d)

−x · (∂µNµ) = −∂µ(x · Nµ) + σk · Nk

= −∂µ(x · Nµ) + σk · Nk + cρs · ∇β − ρv0

(
c∇ · s1 + v · (∇ · S2)

)
.

So
ρ0dt(x · p) = ρ0v · p + eρ0x · (E + c−1v × B)∂µ(x · Nµ)

ρ0

( c

v0
s · ∇β − c∇ · s1 − v · (∇ · S2)

)
,

and since ∫
d3xρ0dt(x · p) = ∂t

∫
d3xρ0x · p = ∂t〈x · p 〉 ,

we have

∂t〈x · p 〉 = 〈v · p 〉 + e〈x(E + c−1v × B) 〉 − ∂t

〈 (x · N0

cρ0

) 〉

+
〈 ( c

v0
s · ∇β − c∇ · s1 − v · S2

) 〉
. (4.17)

Hence, for stationary states we have

〈v · p 〉 + e〈x(E + c−1v × B) 〉 = −
〈 ( c

v0
s · ∇β − c∇ · s1 − v · (∇ · S2)

) 〉
. (4.18)

This can be related to the energy by taking the expectation value of (6.30) in Ref. 5 to get

〈E 〉 =
〈

c
Ω · S
v0

〉
+ mc2

〈
cos β

v0

〉
+ 〈v · p 〉 + 〈V 〉 . (4.19)

Now we recall from (6.27a) in Ref. 5 that Ω = − ∧ v + v · (i β). To express Ω · S in terms of relative
variables, note that the divergence of v · S = 0 gives

( ∧ v) · S = (v ∧ ) · S = (v S)(0) .

18



Hence
−( ∧ v) · S = −v0[ (1 + v/c)(∂0 + ∇)(s1 + S2) ](0)

= −v0

c
[v · ∂0s1 + c∇ · s1 + v · (∇ · S2) ] .

Also,
S · (v · (i β)

)
= [Svi β ](0) = s · β = s0∂0 + s · ∇β .

Hence, we have the general formula,

cρΩ · S = ρ0

{cs0

v0
∂0β − v · ∂0s1 +

c

v0
s · ∇β − c∇s1 − v · (∇ · S2)

}
. (4.20)

Taking the expectation value of (4.20) and comparing with (4.18), we find for stationary states Hence, for
stationary states we have〈

cΩ · S
v0

〉
=

〈 ( c

v0
s · ∇β − c∇ · s1 − v · (∇ · S2)

) 〉

= −〈v · p 〉 − e〈x · (E + c−1v × B) 〉 =
〈

cωL · Σ
v0

〉
. (4.21)

Recalling that the last term in (4.21) is equal to the first by (6.17) and (6.49) of Ref. 5; the factor c/v0

would be missing, as (6.38) of Ref. 4 shows, if ωL were defined as the angular velocity corresponding to the
total time derivative instead of the proper time derivative. Thus, (4.21) is exactly a virial theorem for the
generalized Larmor precession energy, or as it was called in Sec. 6 of Ref. 4, the internal energy.

Substituting (4.21) in (4.19), we obtain the result that for any stationary state in the Dirac theory

〈E 〉 = mc2

〈
cos β

v0

〉
+ 〈V 〉 − e〈x · (E + c−1v × B) 〉 . (4.22)

A Coulomb field has the special property that

ex · E = −x · ∇V = V . (4.23)

Hence for a Coulomb field alone, (4.22) reduces to the simple form

〈E 〉 = mc2

〈
cos β

v0

〉
+ 〈V 〉 = mc2

∫
d3xρ cos β . (4.24)

This ought to tell us something important about the interpretation of β but we do not know what. At least
we can use it as additional support for our contention that β must, on the average, be a small quantity. Thus,
if 〈E 〉 does not deviate much from mc2, then, since v0 ≥ 1 everywhere, (4.29) implies that 〈 cos β 〉 ≈ 1.
This being true, tI-Uf, we can expand v0 and cos β in (4.24) to get the approximate expression

〈E 〉 − mc2 ≈ −〈 1
2mv2 〉 − 1

2mc2〈β2 〉 . (4.25)

This, as should be expected, is just the virial theorem one obtains by using the Pauli theory. It should be
compared with

〈E 〉 − mc2 ≈ 〈 1
2mσ2 〉 + 〈 1

2mc2β2 〉 + 〈V 〉 . (4.26)

which is obtained immediately by integrating (7.5) of Ref. 5.

∗Some of this work appeared in a thesis, Arizona State University, 1972.

1D. Blokhgintsev, Principles of Quantum Mechanics (Allyn and Bacon, Boston, 1964), Sec. 61.
2G. Breit, Phys. Rev. 53, 153 (1938).
3W. Gordon, Z. Phys. 50, 360 (1928).

19



4D. Hestenes, J. Math. Phys. 14, 893 (1973). [By an error in proof, the physical interpretations of the Dirac and
Gordon currents in (5.6) of this reference got interchanged in the subsequent sentence.]

5D. Hestenes, J. Math. Phys. 16, 556 (1975). Preceding paper.
6D. Hestenes and R. Gurtler, Am. J. Phys. 39, 1028 (1971).
7E. Madelung, Z. Phys. 40, 322 (1926).
8W. Wilhelm, Phys. Rev. D 1, 2278 (1970).
9T. Takabayasi, Prog. Theor. Phys. 14, 228 (1955); Suppl. Prog. Theor. Phys. (4), 1 (1957).
10O. Costa de Beauregard, J. Math. Pures Appl. 22, 85 (1943).
11D. Hestenes, J. Math. Phys. 15, 1768 (1974).
12E. Hill and R. Landshoff, Rev. Mod. Phys. 10, 87 (1938).
13H. Bethe and E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957),

p.54.
14R. Feynman, Quantum Electrodynamics (Benjamin, New York, 1961), p. 51.
15L. Foldy and S. Woutheysen, Phys. Rev. 78, 29 (1950).
16W. Barker and F. Glover, Phys. Rev. 99, 317 (1955).
17D. Hestenes, Space-Time Algebra (Gordon and Breach, New York, 1966).

20


