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Conceptual Modeling 
in physics, mathematics and cognitive science

David Hestenes

Abstract:  Scientific thinking is grounded in the evolved human ability to freely create
and manipulate  mental models in the imagination. This  modeling  ability enabled early
humans to navigate the natural world and cope with challenges to survival. Then it drove
the design  and use of  tools  to  shape  and control  the  environment. Spoken language
facilitated  the  sharing of  mental  models  in  cooperative activities  like  hunting and in
maintaining tribal memory through storytelling. The evolution of culture accelerated with
the invention of written language, which enabled creation of powerful symbolic systems
and  tools to think with.  That includes deliberate design of mathematical tools that are
essential  for  physics  and engineering .  A mental  model  coordinated with a symbolic
representation  is  called  a  conceptual  model. Conceptual  models  provide  symbolic
expressions with meaning.

This essay proposes a Modeling Theory of cognitive structure and process. Basic
definitions, principles and conclusions are offered.  Supporting evidence from the various
cognitive sciences is sampled. The theory provides the foundation for a science pedagogy
called  Modeling Instruction,  which has been widely applied with documented success
and recognized most recently with an  Excellence in Physics Education award from the
American Physical Society.

The  Copernican  Revolution in  science  culminated  in  Newton‘s  Principia  (1687),  which
integrated astronomy and terrestrial physics into a single science of motion. Immanuel Kant (1787) saw
this as a striking union of mathematical theory with empirical fact that bridged the traditional divide
between  rationalism  and  empiricism.  So  he  proposed  a  comparable  “Copernican  Revolution”  in
philosophy to account for it [1]. Just as Copernicus shifted the center of the universe from earth to sun,
Kant shifted the focus of epistemology from structure of the external world to structure of mind. His
revolutionary insight was that our perceptions and thoughts are shaped by inherent structure of our minds.
He argued that the fundamental laws of nature, like the truths of mathematics, are knowable precisely
because they do not describe the world as it really is but rather prescribe the structure of the world as we
experience it.

Though the scientific revolution has expanded in spectacular fashion to integrate physics  and
astronomy  with  chemistry  and  biology,  Kant’s  revolution  in  philosophy has  hardly  progressed.  His
profound influence on the epistemology of physics is evident in the writings of Einstein and Bohr as well
as  many  other  scientists  and  philosophers.  However,  continued  debates  on  such  topics  as  the
interpretation  of  quantum mechanics  show no  signs  of  consensus,  and  they  have  overlooked recent
advances in cognitive science with high relevance to epistemology.  

My purpose here is to open a new stage in Kant’s revolution by explaining how findings of
cognitive  science can be marshaled to  create  a  new “science of  mind” with testable  predictions  and
explanations as required of any “true” science. I begin with a restatement of Kant’s primary question:
What  does  the  structure of  science and mathematics  tell  us  about  how the human mind works?  In
searching for answers my working hypothesis will be:  The primary cognitive activities in science and
mathematics  involve  making,  validating  and  applying  conceptual  models!  In  a  word,  science  and
mathematics are about MODELING –– making and using models!

This essay argues for a “MODELING THEORY of MIND” to guide the multifarious branches of
cognitive science in research on the nature of mind and brain, and the design of conceptual tools for
science and mathematics.  Core principles are explained and supporting evidence is  sketched,  but  the
brush is necessarily broad. More details are given in [2,3,4], especially for application to physics teaching
and learning. 



I. NEWTON’S MODELING GAME

Newton did much more than provide the first mathematical formulation of a scientific theory in
his  Principia;  he  also  demonstrated  how  to  relate  it  to  empirical  fact.  Though  Kant  recognized
revolutionary implications for epistemology in this impressive feat, physicists have overlooked it. The
issue  has  been  thoroughly  explicated  in  [5]  by  framing  Newtonian  theory  in  terms  of  models  and
modeling, so brief mention of key points is sufficient here. Newton could not make the crucial distinction
between model  and theory explicit  in his original formulation, because the concept of model  did not
emerge in scientific discourse until the nineteenth century. But [5] shows that he made it implicitly. The
point is that theoretical principles like Newton’s Laws cannot be tested or applied except by incorporating
them in models. Thus, models mediate between theory and experiment.  And Newton’s Laws can be
regarded as a system of design principles for making models to describe, to predict, to explain and to
control motions of material bodies.

 Kant’s insight can be explicated by noting that Newton linked up two distinct kinds of models:
theoretical and empirical. A theoretical model derived from Newton’s Laws predicts motions, while an
empirical model derived from data describes a motion. A match between them explains a motion. In this
way Newton explained Galileo’s law of falling bodies and Kepler’s three laws of planetary motion. Note
the distinction between a theoretical Law (with a capital L) and an empirical law (with a lowercase l), also
called an empirical model. 

Comparison between theoretical and empirical models is such a standard practice of physicists
since Newton that they seldom consider its profound epistemological implications.  At its  simplest,  it
involves creating an empirical model from data with a procedure often called “curve fitting.” That’s how
Kepler’s laws were derived. It is an important technique in the search for empirical regularities that are
both quantifiable and reproducible. In high energy physics data analysis has become so complex that a
new research specialty has emerged to handle it. That research, often called “phenomenology,” is thus
intermediate between theory and experiment.

For future analysis, it is worth noting that scientific work in all three domains is governed by
definite  but  different  rules;  from  mathematical  rules  for  theorists,  to  measurement  standards  for
experimentalists, to probability theory for phenomenologists. As Kant recognized, scientific objectivity
requires strict adherence to rules. The question is: Where do the rules come from?

II. FROM COMMON SENSE TO SCIENTIFIC THINKING

As we grow and learn through everyday experience, each of us develops a system of  common
sense (CS) concepts about how the world works. To evaluate introductory physics instruction, the Force
Concept Inventory (FCI) was developed to detect differences (in student thinking) between CS concepts
and Newtonian concepts about motion and its causes [6].  Results from applying the FCI were stunning
from the get-go! First, the differences were huge before instruction. Second, the change was small after
instruction.  Third,  results  were independent  of the  instructor’s  experience,  teaching method and peer
evaluation. These results have been replicated thousands of times from high school to Harvard and in 25
different languages. The FCI is by far the most cited reference in the physics education literature, and it is
widely used today to evaluate the effectiveness of teaching reforms.

Here we are interested in what the FCI tells us about human cognition. The FCI is based on a
taxonomy of 35 CS concepts in 5 major categories [6].  These concepts are overlooked or summarily
dismissed as misconceptions by most physicists. However, they are common outcomes from everyday
experience,  and  they  are  quite  serviceable  for  dealing  with  physical  objects.  Moreover,  central  CS
concepts in the 5 categories have been clearly articulated and discussed by major intellects of the pre-
Newtonian age, including Newton himself before the Principia [7].  So CS concepts should be regarded
as  alternative  hypotheses  about  the  physical  world  that,  when  clearly  formulated,  can  be  tested
empirically. 

For  example,  the  CS  concept:  “a  moving  object  implies  existence  of  a  force  (a  mover)”
contravenes Newton’s First Law.  The Second Law is contravened by the concept that forces are due to
“active agents” (usually living things), so there are no passive forces, although motion is deflected by
passive objects called “barriers.”  The Third Law is contravened by the common metaphorical notion that
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“interaction is like war” so in the “struggle between forces” “victory goes to the stronger.” In fact, CS
thinking is shot through with metaphorical notions. One consequence of all this is that in a conventional
physics course students systematically misinterpret what they hear and see in class, which goes a long
way to account for the typical disastrous student performance on exams.

Ability to distinguish between CS concepts and scientific concepts in the FCI or elsewhere is not
a matter of intelligence but of experience.  It is acquired only by engagement with science itself, usually
through academics. Remarkably, physicists seldom recall any event in their own transitions to Newtonian
thinking. Typically, they presume that the world of classical physics is given directly by experience, in
contrast to the subtlety and weirdness of quantum mechanics. They are blind to the subtle revolution in
their own thinking that came from learning physics; for the FCI tells us that classical physics differs from
common sense in almost every detail. 

These  facts  suggest  that  the  transition  from  common  sense  to  scientific  thinking  is  not  a
replacement  of  CS  concepts  with  scientific  concepts,  but  rather  a  realignment  of  intuition  with
experience. Science does not replace common sense. Rather, as Modeling Theory aims to show, science is
a refinement of common sense differing in respect to:

 objectivity – with explicit rules & conventions for observer-independent inferences,
 precision  – in measurement, in description and analysis,
 formalization  – for mathematical modeling and analysis of complex systems,
 systematics  – coherent, consistent & maximally integrated bodies of knowledge,
 reliability – critically tested & reproducible results,
 skepticism – about unsubstantiated claims.

III. “What, precisely, is thinking?” –– Einstein

Kant is unsurpassed in using introspection to analyze his own thinking. But introspection was
dismissed  as  subjective  and  unreliable  by  behaviorists  in  the  twentieth  century,  who  claimed  that
scientific  objectivity  requires  psychology to  take its  data  from observable  behavior  under  controlled
conditions. However, the behaviorist straight jacket has been cast off in recent decades by the emergence
of  cognitive science,  which draws its  data and insights from many independent academic disciplines.
Disciplinary  barriers  are  crossed  with  increasing  frequency,  largely  due  to  the  speed  and  ease  of
electronic communication.     

Human  perception,  memory  and  cognition  are  being  studied  in  many  different  ways.  The
problem, as ever in science, is to identify reproducible patterns in the results. Here follows a sampling of
approaches and results with high relevance to Modeling Theory.

The Learning Sciences: Research on teaching and learning is emerging as a coherent science with
independent branches like physics education research (PER) devoted to a single discipline. The most
robust finding in the field is that effective teaching requires matching the method to the subject matter,
and that requires research embedded within each discipline.

An outstanding example of PER is Andy diSessa’s probing study into common sense notions of
force [8]. He identifies a structure in common sense intuition that he calls Ohm’s p-prim. As he explains, 

Ohm’s  p-prim comprises “an  agent that is the locus of an  impetus that acts against a
resistance to produce a result.” 

Evidently this  intuitive structure is  abstracted from experience in  pushing objects.  It  is  an important
characterization  of  the  central  Force-as-Action  metaphor  identified  by  the  FCI.  It  also  seems  to  be
fundamental in the intuition of physicists, who often declare “A force is a push or a pull,” although they
have extracted that from human action.

More generally,  diSessa argues that this  structure is fundamental  to qualitative reasoning.  He
notes that the logic of Ohm’s p-prim is

the qualitative proportion:      more effort  more result,
and the inverse proportion:     more resistance  less result.
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This reasoning structure is often evoked for explanatory purposes in everyday experience. 
As disclosed in Ohm’s p-prim, the concept of (causal) agency entails a basic

Causal syntax:    agent  (kind of action)  on patient  result.

DiSessa notes that this provides an interpretative framework for F = ma, and he recommends exploiting it
in teaching mechanics. However he does not recognize it as a basic aspectual schema for verb structure,
which has been studied at length in cognitive grammar [9]. Aspectual concepts are generally about event
structure, where events are changes of state and causes (or causal agents) induce events. 

All this has direct  bearing on Kant’s  Critique.  He said Hume woke him from his “dogmatic
slumber” with his argument that no amount of empirical data can establish a cause-effect relation between
events with certainty.  Claiming that Newton’s Laws do establish causality with certainty, Kant argued
that it must therefore be known prior to experience (“synthetic a priori”). One can argue instead that the
fundamental Laws and Principles of science are discovered as general patterns in experience and simply
adopted as postulates in our theories. But Ohm’s p-prim shows that causality is imbedded in the way we
think and so it may be a precondition for recognizing causal patterns. In this sense, at least, cognitive
science supports Kant’s view.

All  this  has  bearing  on  other  domains  of  cognitive  science,  for  example,  the  psychology of
perception. In particular, it provides more support for the view that there is no such thing as “passive
perception.”  All perception is part of a “perception-action cycle.” Even viewing a static visual scene is
impossible without rapid movements of the eyeballs (saccades) to sample the visual input. In general, we
learn about the world around us from our interactions (perception-actions) with it. 

Note  that  the  intuitive  causal  syntax  discussed  above  can  be  construed  (by  metaphorical
projection at least) as

Operator syntax:    agent  (kind of action)  on patient  result,

where the action is on symbols (instead of material objects) to produce other symbols. When the symbols
are words, this provides an intuitive base for verb structure expressing the action of mental agents on
mental objects. The same idea has emerged independently in cognitive linguistics (see below). Also, the
operator syntax provides an intuitive base for the mathematical concept of function (though probably not
the only one). 

Narrative  Comprehension:  Readers  of  stories  construct  mental  models  of  the  situation  and
characters described [10]. They infer causal connections relating characters' actions to their goals. They
also focus attention on characters' movements, thereby activating nearby parts of the mental model. This
activation is revealed in readers' faster answering of questions about such parts, with less facilitation the
greater their distance from the focus. Recently visited as well as imagined locations are also activated for
several seconds. These patterns of temporary activation facilitate comprehension.  

Evolutionary Psychology [11] tells us that human brains evolved adaptively to enable navigation
to find food and respond to threats. Successful hunting required a number of cognitive abilities: To create
mental maps of the environment and plan actions, to design helpful tools, to “read” subtle clues in natural
surroundings; and, finally to communicate and cooperate with other humans.

There can be little doubt that narrative emerged in human prehistory. The practice of storytelling
is ancient, pre-dating not only the advent of writing, but of agriculture and permanent settlement as well.
Language, an obvious prerequisite for storytelling, is likely to have emerged between 50,000 and 250,000
years ago. Cognitive linguistics (see below) aims to ascertain what language can tell us about evolved
cognitive abilities.

Cognitive Psychology:  Psychologist Philip Johnson-Laird [12] is a pioneer in studying human
inference by manipulating mental models. His research supports the claim that  most human reasoning is
inference from mental models. We can distinguish several types of model-based reasoning:

 Abductive, to complete or extend a model, often guided by a semantic frame in which the model
is embedded.

 Deductive, to extract substructure from a model.
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 Inductive, to match models to experience.
 Analogical, to interpret or compare models.
 Metaphorical, to infuse structure into a model.
 Synthesis, to construct a model, perhaps by analogy or blending other models.
 Analysis, to profile or elaborate implicit structure in a model.

Justification of  model-based  reasoning  requires  translation  from  mental  models  to  inference  from
conceptual models that can be publicly shared, like the scientific models discussed below.

In  contrast, formal  reasoning is  computational,  using  axioms,  production  rules  and  other
procedures. It is the foundation for rigorous proof in mathematics and formal logic. However, Modeling
theory (see below) holds that  mathematicians and even logicians reason mostly from mental  models.
Model-based reasoning is more general and powerful than propositional logic, as it integrates multiple
representations  of  information  (propositions,  maps,  diagrams,  equations)  into  a  coherently structured
mental  model. Rules and procedures  are  central  to  the  formal  concept  of  inference,  but  they can be
understood as prescriptions for operations on mental models as well as on symbols.

Psychology of Spatial Perception: Everyone has imagination, the ability to conjure up an image
of a situation from a description or memory. What can that tell us about mental models? Some people
report images that are picture-like, similar to actual visual images. However, others deny such experience,
and blind people are perfectly capable of imagination. Classical research in this domain found support for
the view that mental imagery is internalized perception, but not without critics.

Barbara Tversky and collaborators [13] have tested the classical view by comparison to mental
model  alternatives.  Among  other  things,  they  compared  individual  accounts  of  a  visual  scene
generated from narrative with accounts generated from direct observation and found that they are
functionally equivalent. A crucial  difference is  that  perceptions have a fixed point  of  view, while
mental models allow change in point of view. Furthermore, spatial mental models are more schematic
and categorical  than  images,  capturing  some  features  of  the  object  but  not  all  and  incorporating
information  about  the  world that  is  not  purely perceptual.  The general  conclusion is  that  mental
models represent states of the world as conceived, not perceived. To know a thing is to form a mental
model of it.

Major characteristics of spatial mental models are summarized in the following list. The best
fit  to data is a  spatial framework model,  where each object has an  egocentric frame consisting of
mental extensions with three body axes. 

Spatial MENTAL models
 are schematic, representing only some features,
 are structured, consisting of elements and relations.
 Elements are typically objects (or reified things).
 Object properties are idealized (points, lines or paths).
 Object models are always placed in a background (context or frame).
 Individual objects are modeled separately from the frame,

so they can move around in the frame.

The  details  in  this  list  are  abundantly  supported  by  other  lines  of  research,  especially  in  cognitive
linguistics, to which we now turn. 

Cognitive Linguistics: The most extensive and coherent body of evidence comes from cognitive
linguistics [14], supporting the revolutionary thesis: Language does not refer directly to the world, but
rather to mental models and components thereof! Words serve to activate, elaborate or modify mental
models, as in comprehension of a narrative.

This thesis rejects all  previous versions of semantics, which located the referents of language
outside the mind,  in favor of  cognitive semantics,  which locates referents inside the mind.  I see the
evidence supporting cognitive semantics as overwhelming, but it must be admitted that some linguists are
not  convinced,  and  many  research  questions  remain.  Cognitive  semantics  can  be  regarded  as  a
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culmination of Kant’s revolution toward an epistemology grounded in science, though that is not often
recognized by linguists.

Two pillars of  cognitive linguistics deserve mention here.  The first  pillar  is  Eleanor Rosch’s
discovery  that  natural  categories  are  determined  by  mental  prototypes.  For  example,  “birds”  are
classified by comparison to  a  prototypical  bird,  such as  a  robin.  This  should be contrasted with the
classical  concept  of  a  formal  category for  which  membership  is  determined  by  a  set  of  defining
properties,  a  noteworthy generalization  of  the  container  metaphor.  This  distinction between category
types is supported by a mountain of empirical evidence on natural language use.

The second pillar is the notion of image schema introduced by Mark Johnson and George Lakoff.
Image schemas are basic structural units (gestalts) that provide structure to natural language and 
presumably cognition. There are too many to discuss here. Many are discussed in [15] as structural 
elements in mathematical thinking, including four grounding metaphors for arithmetic.

Cognitive Neuroscience: Human brain structures have evolved to support perception, memory
and movement,  that is, all components needed to execute the perception-action cycle. But no distinct
component for cognition has been identified. It seems reasonable, therefore, to conclude that cognition is
executed by coopting drivers of the perception-action for internal planning and simulation.

Stanislas Dehaene reports [16]: “Mathematicians frequently evoke their “intuition” when they are
able  to  quickly  and  automatically  solve  a  problem,  with  little  introspection  into  their  own  insight.
Cognitive  neuroscience  research  shows  that  “automaticity  aspect”  of  mathematical  intuition  can  be
studied in the laboratory in reduced paradigms, and that relates to the availability of “core knowledge”
associated  with  evolutionarily  ancient  and  specialized  cerebral  subsystems.”  Subsystems  involved in
basic operations of arithmetic (such as number estimation, comparison, addition and subtraction) have
been identified as genetically hardwired.  The boundary between hardwired and learned mathematical
abilities continues to be a rich area for further research. 

The  empirical  research  cited above supports  an answer  to  Einstein’s  question:  Thinking is  a
hardwired  human  ability  to  freely  create  mental  models  and  use  them for  planning  and  controlling
interactions with the physical world.  To deepen this insight and coordinate empirical results, we need a
scientific theory, to which we now turn.

IV. MODELING THEORY

Though Modeling Theory is  proposed as  a  general  theory of  Mind embracing all  aspects  of
cognitive science, we limit our attention here to cognition in physics and mathematics. We have seen
above that the study of natural languages gives us rich information about the structure of mental models
in common sense cognition.  Given its greater precision and coherence, we can expect complimentary and
reinforcing results from studying the language of science, especially mathematics. Indeed, after spelling
out the structure of scientific models in explicit detail below, we discuss its implications for cognition in
physics and mathematics.

Our  formulation  of  Modeling Theory rests  on explication  of  two key concepts  “model”  and
“morphism.” We begin with the definition:

A model is a representation of structure in a given system.

A  system is  a set  of  related  objects,  which may be real  or  imaginary,  physical  or  mental,  simple  or
composite. The structure of a system is a set of relations among its objects. The system itself is called the
referent of the model.

We often identify the model with its representation in a concrete inscription of words, symbols or
figures  (such  as  graphs,  diagrams  or  sketches).  But  it  must  not  be  forgotten  that  the  inscription  is
supplemented by a system of (mostly tacit) rules and conventions for encoding model structure.

From my experience as  a  scientist,  I  have concluded that  five  types of  structure suffice to
characterize  any scientific model. Although my initial analysis was based on physics, I have concluded
the classification is sufficient for all other sciences as well. As this seems to be an important empirical
fact, a brief description of each type is in order here.

6



Universal structures in scientific models [2, 17]:

 Systemic structure: Its representation specifies (a)  composition of the system (b)  links among
the parts (individual objects), (c) links to external agents (objects in the environment). A diagrammatic
representation is usually best (with objects represented by nodes and links represented by connecting
lines) because it provides a wholistic image of the entire structure. Examples: electric circuit diagrams,
organization charts, family trees.

 Geometric  structure: specifies  (a)  configuration (geometric  relations  among  the  parts),  (b)
location (position with respect to a reference frame)

 Object structure: intrinsic properties of the parts. For example, mass and charge if the objects
are material things, or roles if the objects are agents with complex behaviors. The objects may themselves
be  systems  (such  as  atoms  composed  of  electrons  and  nuclei),  but  their  internal  structure  is  not
represented in the model, though it may be reflected in the attributed properties.

 Interaction structure: properties of the links (typically causal interactions). Usually represented
as binary relations on object pairs. Examples of interactions: forces (momentum exchange), transport of
materials in any form, information exchange.

 Temporal (event) structure: temporal change in the state of the system.  Change in position
(motion) is the most fundamental kind of change, as it provides the basic measure of time. Measurement
theory specifies how to quantify the properties of a system into property variables. The state of a system
is  a  set  of  values  for  its  property variables  (at  a  given  time).  Temporal  change  can  be  represented
descriptively (as in graphs), or dynamically (by equations of motion or conservation laws).

Optimal precision in definition and analysis of structure is  supplied by  mathematics,  the science of
structure. 

Both the model and its referent are structured objects, but they need not be distinct. Indeed, the
usual notion of a  mathematical model as a representation in terms of mathematical symbols does not
specify any referent, so we say it is an abstract model. Of course, it is a perfect representation of itself.
This suggests that we regard any structured object as an “abstract model.”

Our  definition of “model”  above is  likewise abstract,  because it  does not  specify the  worlds
(domains) in which the model and its referent exist as structured objects. To address this issue, Modeling
Theory [3] posits three distinct worlds in which structured objects exist:

World 1: The PHYSICAL WORLD of real things and events, including biological entities.

World 2: The MENTAL WORLD of mental models generated by perception or intuition. 

World 3: The CULTURAL WORLD of human artifacts, including natural languages and
           mathematics in any form, written or spoken.

This helps us make a crucial distinction between mental models and conceptual models. Mental models
are private constructions in the mind of an individual (World 2). They can be elevated to  conceptual
models by encoding model structure in symbols (World 3) that activate the individual’s mental model and
corresponding  mental  models  in  other  minds.  Thus,  communication  between  individuals  involves
construction and use of shared conceptual models. 

Note that a conceptual model establishes an  analogy between a mental model and its symbolic
representation. Mathematical models are symbolic structures, and to understand one is to create a mental
model with analogous structure. Actually, the structure is supplied by the mind not the symbols, which are
reduced to meaningless marks without a mind to interpret them.

An analogy is defined as a  mapping of structure from one domain (source) to another (target)
[18]. The mapping is always partial, which means that some structure is not mapped.  Science sets up
many kinds of analogy between and within the three worlds [3]. Thus, experimental testing or simply
interpreting a scientific model (World 3) requires a mapping to a physical system (World 1) that I call a
referential analogy. Material analogies relate structures of different physical objects in World 1 and this
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reduces to an  inductive analogy when the objects are regarded as identical. And there are many more
analogies with computer models (World 1). 

There are other kinds of structure-preserving mappings such as  metaphors, which Lakoff [15]
defines as a projection of structure from one domain into another. I  recommend formalizing all  such
concepts with the technical term  MORPHISM.  In mathematics a  morphism is a structure-preserving
mapping: Thus the terms homomorphism (preserves algebraic structure) and homeomorphism (preserves
topological structure). 

Now let us reconsider Kant’s trenchant analysis of thinking in physics and mathematics. Physical
intuition  is accorded the same high regard by physicists that mathematicians accord to  mathematical
intuition. To quote unquestionable leaders in each field [2]: 
Einstein explains, 

“The words or the language, as they are written or spoken, do not seem to play any role in
my mechanism of thought. . . . The physical entities which seem to serve as elements in
thought  are  certain  signs  and  more  or  less  clear  images  which  can  be  voluntarily
reproduced and combined. . . . “

Hilbert asserts,

“No more than any other science can mathematics be founded on logic alone; rather, as a 
condition for the use of logical inferences and the performance of logical operations, something 
must already be given to us in our faculty of representation, certain extralogical concrete objects 
that are intuitively present as immediate experience prior to all thought.”

Modeling theory asserts that physical and mathematical intuitions are merely two different ways to relate
products of imagination to the external world. Physical intuition matches structure in mental models with
structure in physical systems. Mathematical intuition matches mental structure with symbolic structure.
Thus, structure in imagination is common ground for both physical and mathematical intuition.

Kant reasoned in much the same way. He also took the physics and mathematics of his day as
given and asked what makes them so special. His analysis is cogent even today, so key points are worth
reconsidering.  He  began  by  identifying  construction  in  intuition as  a  means for  acquiring  certain
geometrical knowledge:

“Thus we think of a triangle as an object, in that we are conscious of the combination of 
the straight lines according to a rule by which such an intuition can always be 
represented. . . This representation of a universal procedure of imagination in providing 
an image for a concept, I entitle the schema of this concept.”

Kant did not stop there. Like any good scientist he anticipated objections to his hypothesis. Specifically,
he  noted  that  his  intuitive  image  of  a  triangle  is  always  a  particular  triangle. How,  he  asks,  can
construction of a concept by means of a single figure “express universal validity for all possible intuitions
which fall under the same concept?” This is the general epistemological  problem of universality for the
case of Kant’s theory of geometrical proof. Kant’s notion of geometrical  proof is by construction of
figures, and he argues that such proofs have universal validity as long as the figures are “determined by
certain universal conditions of construction.” In other words, construction in intuition is a rule-governed
activity that makes it possible for geometry to discern “the universal in the particular.”

Kant’s argument is often dismissed because it led him to conclude that Euclidean geometry is
certain a priori. But that is a red herring! Because we now know that non-Euclidean geometry can be
associated with the same intuitive construction simply by changing the rules assigned to it. His essential
point  is that  mathematical inference from intuition is  governed by subsumption under rules.  As
mathematician Saunders MacLane [19] asserts, “Mathematics is not concerned with reality but with rule.”

V. RULES AND TOOLS FOR THINKING AND DOING 

Science and technology have coevolved with language and mathematics. The evolution is driven
by invention of tools with increasing sophistication and power to shape and understand the physical
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world.  The  tools  of  science are  of  two kinds:  instruments  for  detecting reproducible  patterns  in  the
material world, and symbolic systems to represent those patterns for contemplation in the mind.

The detection of patterns in nature began with direct observation using human sensory apparatus.
Then  the  human  perceptual  range  was  extended  by  scientific  instruments,  such  as  telescopes  and
microscopes. Finally, Technology has replaced human sensory detectors with more sensitive instruments,
and the data is processed by computers with no role for humans except to interpret the final results; even
there the results may be fed to a robot to take action with no human participation at all. 

Tool development in the cognitive domain began with the natural languages in spoken and then
written form. Considering their  ad hoc evolution, the coherence, flexibility and subtlety of the natural
languages is truly astounding. More deliberate and systematic development of symbolic tools came with
the emergence of science and mathematics. The next stage of enhancing human cognitive powers with
computer tools is just beginning. 

While science is a search for structure, mathematics is the science of structure. Every science
develops specialized modeling tools to represent the structure it investigates. Witness the rich system of
diagrams  that  chemists  have  developed  to  characterize  atomic  and  molecular  structure.  Ultimately,
though,  these  diagrams  provide  grist  for  mathematical  models  of  greater  explanatory  power.  What
accounts  for  the  ubiquitous  applicability  of  mathematics  to  science?  An  answer  is  suggested  by
considering the coevolution of mathematics and physics from the perspective of modeling theory.

Tools of technology provide an obvious index of progress in human civilization, because their
results  are  so  tangible.  A  more  subtle  and  informative  index  is  the  development  of  language  and
mathematics, which provide us with  tools to think with! Though spoken language reaches back more
than 150,000 years, written language is barely 5,000 years old, and printed books less than 700. With the
invention of calculus by Newton and Leibniz in the seventeenth century, the development of mathematics
and physics has accelerated to this day. Kant put his finger on the source of this stunning revolution: the
use of rules to harness the powers of human intuition. 

Precision in science requires precise standards and conventions, in short, precise rules in both
empirical  and theoretical  domains.  The  coevolution of  physics  and mathematics  has  been driven by
invention and application of new rules to shape human intuition and model the physical world. The tools
of technology from simple hand tools to complex machines were obviously invented. Likewise the tools
of  mathematics  were  invented,  not  discovered;  though  it  may  be  said  that  theorems  derived  from
structures built with those tools are discovered.

The vicissitudes of mathematical invention are evident in the motley assortment of mathematical
tools used by physicists today, from vectors and matrices to tensors, spinors and differential forms. Far
from  exhibiting  the  unity  and  richness  of  mathematics,  these  “tool  kits”  contribute  redundancy,
inefficiency and obscurity [21]. A more coherent and powerful system of mathematical tools explicitly
designed to integrate algebra and geometry is already well developed with a huge range of applications.
Few physicists and mathematicians know about it, so an introduction to the literature is appropriate here,
especially as it supports the present thesis of mathematics by design! 

Kant  himself  contributed to the rule-based developments  in mathematics.  He was the first  to
formulate the abstract commutative and associative rules for addition (published by his mathematician
friend Johann Schultz).  Within  the  next  century,  Hermann  Grassmann  and W.  K.  Clifford  provided
foundations for integrating geometry,  algebra and calculus into a  universal geometric calculus that is
developing with renewed vigor today. A history of geometric algebra and calculus is given in [20]. Its
implications for the design of mathematical  tools to simplify and unify the physics  and mathematics
curriculum are discussed in [21]. Extension to modeling spacetime, quantum mechanics and gauge theory
gravity is given in [22,23].

To the question: “What is man?” 
Aristotle answered: “Man is a rational animal.”
Anthropologists observe: “Man is a tool-making animal.” 
Modeling Theory suggests: “Man is a modeling animal!”     Homo modelens!
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