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3.1 Introduction

The recorded study of spheres dates back to the first century in the book Sphaer-
ica of Menelaus. Spherical trigonometry was thoroughly developed in modern
form by Euler in his 1782 paper [E1782]. Spherical geometry in n-dimensions
was first studied by Schläfli in his 1852 treatise, which was published posthu-
mously in [S1901]. The most important transformation in spherical geome-
try, the Möbius transformation, was considered by Möbius in his 1855 paper
[M1855].

Hamilton was the first to apply vectors to spherical trigonometry. In 1987
Hestenes [H98] formulated a spherical trigonometry in terms of Geometric Al-
gebra, and that remains a useful supplement to the present treatment.

This chapter is a continuation of the preceding chapter. Here we consider
the homogeneous model of spherical space, which is similar to that of Euclidean
space. We establish conformal geometry of spherical space in this model, and
discuss several typical conformal transformations.

Although it is well known that the conformal groups of n-dimensional Eu-
clidean and spherical spaces are isometric to each other, and are all isometric
to the group of isometries of hyperbolic (n + 1)-space [K1872], [K1873] spher-
ical conformal geometry has its unique conformal transformations, and it can
provide good understanding for hyperbolic conformal geometry. It is an indis-
pensible part of the unification of all conformal geometries in the homogeneous
model, which is addressed in the next chapter.

3.2 Homogeneous model of spherical space

In the previous chapter, we saw that, given a null vector e ∈ Rn+1,1, the intersec-
tion of the null cone N n of Rn+1,1 with the hyperplane {x ∈ Rn+1,1 | x·e = −1}

† This work has been partially supported by NSF Grant RED-9200442.
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represents points in Rn. This representation is established through the projec-
tive split of the null cone with respect to null vector e.

What if we replace the null vector e with any nonzero vector in Rn+1,1? This
section shows that when e is replaced by a unit vector p0 of negative signature,
then the set

N n
p0

= {x ∈ Nn|x · p0 = −1} (3.1)

represents points in the n-dimensional spherical space

Sn = {x ∈ Rn+1|x2 = 1}. (3.2)

The space dual to p0 corresponds to Rn+1 = p̃0, an (n + 1)-dimensional Eu-
clidean space whose unit sphere is Sn.

Applying the orthogonal decomposition

x = Pp0(x) + Pp̃0(x) (3.3)

to vector x ∈ Nn
p0

, we get

x = p0 + x (3.4)

where x ∈ Sn. This defines a bijective map ip0 : x ∈ Sn −→ x ∈ Nn
p0

. Its
inverse map is P⊥

p0
= Pp̃0 .
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Figure 1: The homogeneous model of Sn.
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Theorem 1.

Nn
p0

� Sn. (3.5)

We call Nn
p0

the homogeneous model of Sn. Its elements are called homoge-
neous points.

Distances
For two points a,b ∈ Sn, their spherical distance d(a,b) is defined as

d(a,b) = cos−1
(
a · b

)
. (3.6)

dnd c

d

a

a

bb

– a

ds

Figure 2: Distances in Sn.

We can define other equivalent distances. Distances d1, d2 are said to be
equivalent if for any two pairs of points a1,b1 and a2, b2, then d1(a1,b1) =
d1(a2,b2) if and only if d2(a1,b1) = d2(a2,b2). The chord distance measures
the length of the chord between a,b:

dc(a,b) = |a − b|. (3.7)

The normal distance is

dn(a,b) = 1 − a · b. (3.8)

It equals the distance between points a,b′, where b′ is the projection of b onto
a. The stereographic distance measures the distance between the origin 0 and a′,
the intersection of the line connecting −a and b with the hyperspace of Rn+1

parallel with the tangent hyperplane of Sn at a:

ds(a,b) =
|a ∧ b|

1 + a · b . (3.9)
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Some relations among these distances are:

dc(a,b) = 2 sin
d(a,b)

2
,

dn(a,b) = 1 − cos d(a,b),

ds(a,b) = tan
d(a,b)

2
,

d2
s(a,b) =

dn(a,b)
2 − dn(a,b)

.

(3.10)

For two points a,b in Sn, we have

a · b = a · b − 1 = −dn(a,b). (3.11)

Therefore the inner product of two homogeneous points a, b characterizes the
normal distance between the two points.

Spheres and hyperplanes
A sphere is a set of points having equal distances with a fixed point in Sn.

A sphere is said to be great, or unit, if it has normal radius 1. In this chapter,
we call a great sphere a hyperplane, or an (n− 1)-plane, of Sn, and a non-great
one a sphere, or an (n − 1)-sphere.

The intersection of a sphere with a hyperplane is an (n − 2)-dimensional
sphere, called (n − 2)-sphere; the intersection of two hyperplanes is an (n − 2)-
dimensional plane, called (n − 2)-plane. In general, for 1 ≤ r ≤ n − 1, the
intersection of a hyperplane with an r-sphere is called an (r − 1)-sphere; the
intersection of a hyperplane with an r-plane is called an (r − 1)-plane. A 0-
plane is a pair of antipodal points, and a 0-sphere is a pair of non-antipodal
ones.

We require that the normal radius of a sphere be less than 1. In this way a
sphere has only one center. For a sphere with center c and normal radius ρ, its
interior is

{x ∈ Sn|dn(x, c) < ρ}; (3.12)

its exterior is

{x ∈ Sn|ρ < dn(x, c) ≤ 2}. (3.13)

A sphere with center c and normal radius ρ is characterized by the vector

s = c − ρp0 (3.14)

of positive signature. A point x is on the sphere if and only if x · c = −ρ, or
equivalently,

x ∧ s̃ = 0. (3.15)

Form (3.14) is called the standard form of a sphere.
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A hyperplane is characterized by its normal vector n; a point x is on the
hyperplane if and only if x · n = 0, or equivalently,

x ∧ ñ = 0. (3.16)

Theorem 2. The intersection of any Minkowski hyperspace s̃ with Nn
p0

is a
sphere or hyperplane in Sn, and every sphere or hyperplane of Sn can be obtained
in this way. Vector s has the standard form

s = c + λp0, (3.17)

where 0 ≤ λ < 1. It represents a hyperplane if and only if λ = 0.

The dual theorem is:

Theorem 3. Given homogeneous points a0, . . . , an such that

s̃ = a0 ∧ · · · ∧ an, (3.18)

then the (n + 1)-blade s̃ represents a sphere in Sn if

p0 ∧ s̃ �= 0, (3.19)

or a hyperplane if

p0 ∧ s̃ = 0. (3.20)

The above two theorems also provide an approach to compute the center
and radius of a sphere in Sn. Let s̃ = a0 ∧ · · · ∧ an �= 0, then it represents the
sphere or hyperplane passing through points a0, . . . ,an. When it represents a
sphere, let (−1)ε be the sign of s · p0. Then the center of the sphere is

(−1)ε+1
P⊥

p0
(s)

|P⊥
p0

(s)| , (3.21)

and the normal radius is

1 − |s · p0|
|s ∧ p0|

. (3.22)

3.3 Relation between two spheres or hyper-
planes

Let s̃1, s̃2 be two distinct spheres or hyperplanes in Sn. The signature of the
blade

s1 ∧ s2 = (s̃1 ∨ s̃2)∼ (3.23)

characterizes the relation between the two spheres or hyperplanes:

Theorem 4. Two spheres or hyperplanes s̃1, s̃2 intersect, are tangent, or do
not intersect if and only if (s1 ∧ s2)2 is less than, equal to or greater than 0,
respectively.
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There are three cases:

Case 1. For two hyperplanes represented by ñ1, ñ2, since n1 ∧n2 has Euclidean
signature, the two hyperplanes always intersect. The intersection is an (n− 2)-
plane, and is normal to both P⊥

n1
(n2) and P⊥

n2
(n1).

Case 2. For a hyperplane ñ and a sphere (c + λp0)∼, since

(n ∧ (c + λp0))2 = (λ + |c ∧ n|)(λ − |c ∧ n|), (3.24)

then:

• If λ < |c ∧ n|, they intersect. The intersection is an (n − 2)-sphere with

center
P⊥

n (c)
|P⊥

n (c)| and normal radius 1 − λ

|c ∧ n| .

• If λ = |c ∧ n|, they are tangent at the point
P⊥

n (c)
|P⊥

n (c)| .

• If λ > |c ∧ n|, they do not intersect. There is a pair of points in Sn

which are inversive with respect to the sphere, while at the same time

symmetric with respect to the hyperplane. They are
P⊥

n (c) ± µn
λ

, where

µ =
√

λ2 + (c ∧ n)2.

Case 3. For two spheres (ci + λip0)∼, i = 1, 2, since

((c1 + λ1p0) ∧ (c2 + λ2p0))2 = (c1 ∧ c2)2 + (λ2c1 − λ1c2)2, (3.25)

then:

• If |c1 ∧ c2| > |λ2c1 − λ1c2|, they intersect. The intersection is an (n− 2)-
sphere on the hyperplane of Sn represented by

(λ2c1 − λ1c2)∼. (3.26)

The intersection has center

λ1P
⊥
c2

(c1) + λ2P
⊥
c1

(c2)
|λ1c2 − λ2c1||c1 ∧ c2|

(3.27)

and normal radius

1 − |λ2c1 − λ1c2|
|c1 ∧ c2|

. (3.28)

• If |c1 ∧ c2| = |λ2c1 − λ1c2|, they are tangent at the point

λ1P
⊥
c2

(c1) + λ2P
⊥
c1

(c2)
|c1 ∧ c2|2

. (3.29)
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• If |c1∧c2| < |λ2c1−λ1c2|, they do not intersect. There is a pair of points
in Sn which are inversive with respect to both spheres. They are

λ1P
⊥
c2

(c1) + λ2P
⊥
c1

(c2) ± µ(λ2c1 − λ1c2)
(λ2c1 − λ1c2)2

, (3.30)

where µ =
√

(c1 ∧ c2)2 + (λ2c1 − λ1c2)2. The two points are called the
Poncelet points of the spheres.

The scalar

s1 ∗ s2 =
s1 · s2

|s1||s2|
(3.31)

is called the inversive product of vectors s1 and s2. Obviously, it is invariant
under orthogonal transformations in Rn+1,1. We have the following conclusion
for the geometric interpretation of the inversive product:

Theorem 5. Let a be a point of intersection of two spheres or hyperplanes s̃1

and s̃2, let mi, i = 1, 2, be the respective outward unit normal vector at a of s̃i

if it is a sphere, or si/|si| if it is a hyperplane, then

s1 ∗ s2 = m1 · m2. (3.32)

Proof. Given that si has the standard form ci + λip0. When s̃i is a sphere, its
outward unit normal vector at point a is

mi =
a(a ∧ ci)
|a ∧ ci|

, (3.33)

which equals ci when s̃i is a hyperplane. Point a is on both s̃1 and s̃2 and yields

a · ci = λi, for i = 1, 2, (3.34)

so

m1 · m2 =
c1 − a · c1a√
1 − (a · c1)2

· c2 − a · c2a√
1 − (a · c2)2

=
c1 · c2 − λ1λ2√
(1 − λ2

1)(1 − λ2
2)

. (3.35)

On the other hand,

s1 ∗ s2 =
(c1 + λ1p0) · (c2 + λ2p0)
|c1 + λ1p0||c2 + λ2p0|

=
c1 · c2 − λ1λ2√
(1 − λ2

1)(1 − λ2
2)

. (3.36)

An immediate corollary is that any orthogonal transformation in Rn+1,1 in-
duces an angle-preserving transformation in Sn. This conformal transformation
will be discussed in the last section.
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3.4 Spheres and planes of dimension r

We have the following conclusion similar to that in Euclidean geometry:

Theorem 6. For 2 ≤ r ≤ n + 1, every r-blade Ar of Minkowski signature in
Rn+1,1 represents an (r − 2)-dimensional sphere or plane in Sn.

Corollary The (r − 2)-dimensional sphere passing through r points a1, . . . ,ar

in Sn is represented by a1 ∧ · · · ∧ ar; the (r − 2)- plane passing through r − 1
points a1, . . . ,ar−1 in Sn is represented by p0 ∧ a1 ∧ · · · ∧ ar−1.

There are two possibilities:

Case 1. When p0 ∧ Ar = 0, Ar represents an (r − 2)-plane in Sn. After
normalization, the standard form of the (r − 2)-plane is

p0 ∧ Ir−1, (3.37)

where Ir−1 is a unit (r − 1)-blade of G(Rn+1) representing the minimal space
in Rn+1 supporting the (r − 2)-plane of Sn.

Case 2. Ar represents an (r − 2)-dimensional sphere if

Ar+1 = p0 ∧ Ar �= 0. (3.38)

The vector

s = ArA
−1
r+1 (3.39)

has positive square and p0 ·s �= 0, so its dual s̃ represents an (n−1)-dimensional
sphere. According to Case 1, Ar+1 represents an (r − 1)-dimensional plane in
Sn, therefore

Ar = sAr+1 = (−1)εs̃ ∨ Ar+1, (3.40)

where ε = (n+2)(n+1)
2 + 1 represents the intersection of (n − 1)-sphere s̃ with

(r − 1)-plane Ar+1.
With suitable normalization, we can write s = c − ρp0. Since s ∧ Ar+1 =

p0 ∧ Ar+1 = 0, the sphere Ar is also centered at c and has normal radius ρ.
Accordingly we represent an (r − 2)-dimensional sphere in the standard form

(c − ρp0) (p0 ∧ Ir), (3.41)

where Ir is a unit r-blade of G(Rn+1) representing the minimal space in Rn+1

supporting the (r − 2)-sphere of Sn.
This completes our classification of standard representations for spheres and

planes in Sn.
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Expanded form
For r + 1 homogeneous points a0, . . . , ar “in” Sn, where 0 ≤ r ≤ n + 1, we

have

Ar+1 = a0 ∧ · · · ∧ ar = Ar+1 + p0 ∧ Ar, (3.42)

where

Ar+1 = a0 ∧ · · · ∧ ar,
Ar = /∂Ar+1.

(3.43)

When Ar+1 = 0, Ar+1 represents an (r−1)-plane, otherwise Ar+1 represents
an (r − 1)-sphere. In the latter case, p0 ∧ Ar+1 = p0 ∧ Ar+1 represents the
support plane of the (r − 1)-sphere in Sn, and p0 ∧ Ar represents the (r − 1)-
plane normal to the center of the (r−1)-sphere in the support plane. The center
of the (r − 1)-sphere is

ArA
†
r+1

|Ar||Ar+1|
, (3.44)

and the normal radius is

1 − |Ar+1|
|Ar|

. (3.45)

Since

A†
r+1 · Ar+1 = det(ai · aj)(r+1)×(r+1)

= (−1
2 )r+1 det(|ai − aj |2)(r+1)×(r+1);

(3.46)

thus, when r = n + 1, we obtain Ptolemy’s Theorem for spherical geometry:

Theorem 7 (Ptolemy’s Theorem). Let a0, · · · ,an+1 be points in Sn, then
they are on a sphere or hyperplane of Sn if and only if det(|ai−aj |2)(n+2)×(n+2) =
0.

3.5 Stereographic projection

In the homogeneous model of Sn, let a0 be a fixed point on Sn. The space
Rn = (a0 ∧ p0)∼, which is parallel to the tangent spaces of Sn at points ±a0,
is Euclidean. By the stereographic projection of Sn from point a0 to the space
Rn, the ray from a0 through a ∈ Sn intersects the space at the point

jSR(a) =
a0(a0 ∧ a)
1 − a0 · a

= 2(a − a0)−1 + a0. (3.47)

Many advantages of Geometric Algebra in handling stereographic projections
are demonstrated in [HS84].

We note the following facts about the stereographic projection:
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Figure 3: Stereographic projection of Sn from a0 to the space normal to a0.

1. A hyperplane passing through a0 and normal to n is mapped to the hy-
perspace in Rn normal to n.

2. A hyperplane normal to n but not passing through a0 is mapped to the

sphere in Rn with center c = n − a0

n · a0
and radius ρ =

1√
|n · a0|

. Such

a sphere has the feature that

ρ2 = 1 + c2. (3.48)

Its intersection with the unit sphere of Rn is a unit (n − 2)-dimensional
sphere. Conversely, given a point c in Rn, we can find a unique hyperplane
in Sn whose stereographic projection is the sphere in Rn with center c and
radius

√
1 + c2. It is the hyperplane normal to a0 − c.

3. A sphere passing through a0, with center c and normal radius ρ, is mapped

to the hyperplane in Rn normal to P⊥
a0

(c) and with
1 − ρ√

1 − (1 − ρ)2
as the

signed distance from the origin.

4. A sphere not passing through a0, with center c and normal radius ρ, is

mapped to the sphere in Rn with center
(1 − ρ)p0 + P⊥

a0
(c)

dn(c,a0) − ρ
and radius√

1 − (1 − ρ)2

|dn(c,a0) − ρ| .

It is a classical result that the map jSR is a conformal map from Sn to Rn.
The conformal coefficient λ is defined by

|jSR(a) − jSR(b)| = λ(a,b)|a − b|, for a,b ∈ Sn. (3.49)
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We have

λ(a,b) =
1√

(1 − a0 · a)(1 − a0 · b)
. (3.50)

Using the null cone of Rn+1,1 we can construct the conformal map jSR trivially:
it is nothing but a rescaling of null vectors.

Let

e = a0 + p0, e0 =
−a0 + p0

2
, E = e ∧ e0. (3.51)

For Rn = (e ∧ e0)∼ = (a0 ∧ p0)∼, the map iE : x ∈ Rn 
→ e0 + x + x2

2 e ∈ Nn
e

defines a homogeneous model for the Euclidean space.
Any null vector h in Sn represents a point in the homogeneous model of Sn,

while in the homogeneous model of Rn it represents a point or point at infinity
of Rn. The rescaling transformation kR : Nn −→ Nn

e defined by

kR(h) = − h

h · e , for h ∈ Nn, (3.52)

induces the conformal map jSR through the following commutative diagram:

a + p0 ∈ Nn
p0

kR−−−− → a + p0

1 − a · a0
∈ Nn

e

ip0

↑
|
|

|
|
↓

P⊥
E

a ∈ Sn
jSR−−−− → a0(a0 ∧ a)

1 − a · a0
∈ Rn

(3.53)

i.e., jSR = P⊥
E ◦ kR ◦ ip0 . The conformal coefficient λ is derived from the

following identity: for any vector x and null vectors h1, h2,∣∣∣∣− h1

h1 · x
+

h2

h2 · x

∣∣∣∣ =
|h1 − h2|√

|(h1 · x)(h2 · x)|
. (3.54)

The inverse of the map jSR, denoted by jRS , is

jRS(u) =
(u2 − 1)a0 + 2u

u2 + 1
= 2(u − a0)−1 + a0, for u ∈ Rn. (3.55)

According to [HS84], (3.55) can also be written as

jRS(u) = −(u − a0)−1a0(u − a0). (3.56)

From the above algebraic construction of the stereographic projection, we
see that the null vectors in Rn+1,1 have geometrical interpretations in both Sn

and Rn, as do the Minkowski blades of Rn+1,1. Every vector in Rn+1,1 of
positive signature can be interpreted as a sphere or hyperplane in both spaces.
We will discuss this further in the next chapter.
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3.6 Conformal transformations

In this section we present some results on the conformal transformations in
Sn. We know that the conformal group of Sn is isomorphic with the Lorentz
group of Rn+1,1. Moreover, a Lorentz transformation in Rn+1,1 is the product
of at most n + 2 reflections with respect to vectors of positive signature. We
first analyze the induced conformal transformation in Sn of such a reflection in
Rn+1,1.

3.6.1 Inversions and reflections

After normalization, any vector in Rn+1,1 of positive signature can be written
as s = c+ λp0, where 0 ≤ λ < 1. For any point a in Sn, the reflection of a with
respect to s is

1 + λ2 − 2λc · a
1 − λ2

b, (3.57)

where

b =
(1 − λ2)a + 2(λ − c · a)c

1 + λ2 − 2λc · a . (3.58)

If λ = 0, i.e., if s̃ represents a hyperplane of Sn, then (3.58) gives

b = a − 2c · a c, (3.59)

i.e., b is the reflection of a with respect to the hyperplane c̃ of Sn.
If λ �= 0, let λ = 1 − ρ, then from (3.58) we get(

c ∧ a
1 + c · a

)† (
c ∧ b

1 + c · b

)
=

ρ

2 − ρ
. (3.60)

Since the right-hand side of (3.60) is positive, c,a,b and −c are on a half great
circle of Sn. Using (3.9) and (3.10) we can write (3.60) as

ds(a, c)ds(b, c) = ρ2
s, (3.61)

where ρs is the stereographic distance corresponding to the normal distance ρ.
We say that a,b are inversive with respect to the sphere with center c and
stereographic radius ρs. This conformal transformation is called an inversion
in Sn.

An inversion can be easily described in the language of Geometric Algebra.
The two inversive homogeneous points a and b correspond to the null directions
in the 2-dimensional space a ∧ (c − ρp0), which is degenerate when a is on the
sphere represented by (c − ρp0)∼, and Minkowski otherwise.

Any conformal transformation in Sn is generated by inversions with respect
to spheres, or reflections with respect to hyperplanes.
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3.6.2 Other typical conformal transformations

Antipodal transformation
By an antipodal transformation a point a of Sn is mapped to point −a. This

transformation is induced by the versor p0.

Rotations
A rotation in Sn is just a rotation in Rn+1. Any rotation in Sn can be

induced by a spinor in G(Rn+1).
Given a unit 2-blade I2 in G(Rn+1) and 0 < θ < 2π, the spinor eI2θ/2 induces

a rotation in Sn. Using the orthogonal decomposition

x = PI2(x) + P⊥
I2 (x), for x ∈ Sn, (3.62)

we get

e−I2θ/2xeI2θ/2 = PI2(x)eI2θ + PĨ2
(x). (3.63)

Therefore when n > 1, the set of fixed points under this rotation is the (n− 2)-
plane in Sn represented by Ĩ2. It is called the axis of the rotation, where θ is
the angle of rotation for the points on the line of Sn represented by p0 ∧ I2.
This line is called the line of rotation.

For example, the spinor a(a + b) induces a rotation from point a to point
b, with p0 ∧ a∧b as the line of rotation. The spinor (c∧ a)(c∧ (a+b)), where
a and b have equal distances from c, induces a rotation from point a to point
b with p0 ∧ P⊥

c (a) ∧ P⊥
c (b) as the line of rotation.

Rotations belong to the orthogonal group O(Sn). A versor in G(Rn+1,1)
induces an orthogonal transformation in Sn if and only if it leaves {±p0} in-
variant.

Tidal transformations
A tidal transformation of coefficient λ �= ±1 with respect to a point c in Sn

is a conformal transformation induced by the spinor 1 + λp0 ∧ c. It changes a
point a to point

b =
(1 − λ2)a + 2λ(λa · c − 1)c

1 + λ2 − 2λa · c . (3.64)

Points a,b and c are always on the same line. Conversely, from a,b and c we
obtain

λ =
d2

n(b,a)
d2

n(b − c) − d2
n(a − c)

. (3.65)

By this transformation, any line passing through point c is invariant, and
any sphere with center c is transformed into a sphere with center c or −c,
or the hyperplane normal to c. The name “tidal transformation” arises from
interpreting points ±c as the source and influx of the tide.

Given points a, c in Sn, which are neither identical nor antipodal, let point
b move on line ac of Sn, then λ = λ(b) is determined by (3.65). This function
has the following properties:
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1. λ �= ±1, i.e., b �= ±c. This is because if λ = ±1, then 1 + λp0 ∧ c is no
longer a spinor.

2. Let c(a) be the reflection of a with respect to c, then

c(a) = a − 2a · cc−1, (3.66)

and

λ(−c(a)) = ∞, λ(c(a)) = a · c. (3.67)

3. When b moves from −c(a) through c, a, −c back to −c(a), λ increases
strictly from −∞ to ∞.

4. λ(−c(b)) =
1

λ(b)
. (3.68)

5. When c · a = 0 and 0 < λ < 1, then b is between a and −c, and

λ = ds(a,b). (3.69)

When 0 > λ > −1, then b is between a and c, and

λ = −ds(a,b). (3.70)

.
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. .

. .

. .λ λ
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80

-1
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_

– c_

Figure 4: λ = λ(b) of a tidal transformation.

When |λ| > 1, a tidal transformation is the composition of an inversion with
the antipodal transformation, because

1 + λp0 ∧ c = −p0(p0 − λc). (3.71)
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