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2.1 Introduction

The standard algebraic model for Euclidean space En is an n-dimensional real
vector space Rn or, equivalently, a set of real coordinates. One trouble with
this model is that, algebraically, the origin is a distinguished element, whereas
all the points of En are identical. This deficiency in the vector space model
was corrected early in the 19th century by removing the origin from the plane
and placing it one dimension higher. Formally, that was done by introducing
homogeneous coordinates [H91]. The vector space model also lacks adequate
representation for Euclidean points or lines at infinity. We solve both problems
here with a new model for En employing the tools of geometric algebra. We call
it the homogeneous model of En.

Our “new model” has its origins in the work of F. A. Wachter (1792–1817),
a student of Gauss. He showed that a certain type of surface in hyperbolic
geometry known as a horosphere is metrically equivalent to Euclidean space, so
it constitutes a non-Euclidean model of Euclidean geometry. Without knowl-
edge of this model, the technique of comformal and projective splits needed to
incorporate it into geometric algebra were developed by Hestenes in [H91]. The
conformal split was developed to linearize the conformal group and simplify the
connection to its spin representation. The projective split was developed to in-
corporate all the advantages of homogeneous coordinates in a “coordinate-free”
representation of geometrical points by vectors.

Andraes Dress and Timothy Havel [DH93] recognized the relation of the
conformal split to Wachter’s model as well as to classical work on distance
geometry by Menger [M31], Blumenthal [B53, 61] and Seidel [S52, 55]. They
also stressed connections to classical invaraint theory, for which the basics have
been incorporated into geometric algebra in [HZ91] and [HS84]. The present
work synthesizes all these developments and integrates conformal and projective
splits into a powerful algebraic formalism for representing and manipulating
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geometric concepts. We demonstrate this power in an explicit construction of
the new homogeneous model of En, the characterization of geometric objects
therein, and in the proofs of geometric theorems.

The truly new thing about our model is the algebraic formalism in which it
is embedded. This integrates the representational simplicity of synthetic geom-
etry with the computational capabilities of analytic geometry. As in synthetic
geometry we designate points by letters a, b, . . . , but we also give them alge-
braic properties. Thus, the outer product a ∧ b represents the line determined
by a and b. This notion was invented by Hermann Grassmann [G1844] and
applied to projective geometry, but it was incorporated into geometric algebra
only recently [HZ91]. To this day, however, it has not been used in Euclidean
geometry, owing to a subtle defect that is corrected by our homogeneous model.
We show that in our model a ∧ b ∧ c represents the circle through the three
points. If one of these points is a null vector e representing the point at infinity,
then a ∧ b ∧ e represents the straight line through a and b as a circle through
infinity. This representation was not available to Grassmann, because he did
not have the concept of null vector.

Our model also solves another problem that perplexed Grassmann thoughout
his life. He was finally forced to conclude that it is impossible to define a
geometrically meaningful inner product between points. The solution eluded
him because it requires the concept of indefinite metric that accompanies the
concept of null vector. Our model supplies an inner product a · b that directly
represents the Euclidean distance between the points. This is a boon to distance
geometry, because it greatly facilitates computation of distances among many
points. Havel [H98] has used this in applications of geometric algebra to the
theory of molecular conformations. The present work provides a framework for
significantly advancing such applications.

We believe that our homogeneous model provides the first ideal framework
for computational Euclidean geometry. The concepts and theorems of synthetic
geometry can be translated into algebraic form without the unnecessary com-
plexities of coordinates or matrices. Constructions and proofs can be done by
direct computations, as needed for practical applications in computer vision and
similar fields. The spin representation of conformal transformations greatly fa-
cilitates their composition and application. We aim to develop the basics and
examples in sufficient detail to make applications in Euclidean geometry fairly
straightforward. As a starting point, we presume familiarity with the notations
and results of Chapter 1.

We have confined our analysis to Euclidean geometry, because it has the
widest applicability. However, the algebraic and conceptual framework applies
to geometrics of any signature. In particular, it applies to modeling spacetime
geometry, but that is a matter for another time.
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2.2 Minkowski Space with Conformal and

Projective Splits

The real vector space Rn,1 (or R1,n) is called a Minkowski space, after the man
who introduced R3,1 as a model of spacetime. Its signature (n, 1) (1, n) is
called the Minkowski signature. The orthogonal group of Minkowski space is
called the Lorentz group, the standard name in relativity theory. Its elements
are called Lorentz transformations. The special orthogonal group of Minkowski
space is called the proper Lorentz group, though the adjective “proper” is often
dropped, especially when reflections are not of interest. A good way to remove
the ambiguity is to refer to rotations in Minkowski space as proper Lorentz
rotations composing the proper Lorentz rotation group.

As demonstrated in many applications to relativity physics (beginning with
[H66]) the “Minkowski algebra” Rn,1 = G(Rn,1) is the ideal instrument for
characterizing geometry of Minkowski space. In this paper we study its surpris-
ing utility for Euclidean geometry. For that purpose, the simplest Minkowski
algebra R1,1 plays a special role.

The Minkowski plane R1,1 has an orthonormal basis {e+, e−} defined by the
properties

e2
± = ±1 , e+ · e− = 0 . (2.1)

A null basis {e0, e} can be introduced by

e0 = 1
2 (e− − e+) , (2.2a)

e = e− + e+ . (2.2b)

Alternatively, the null basis can be defined directly in terms of its properties

e2
0 = e2 = 0 , e · e0 = −1 . (2.3)

A unit pseudoscalar E for R1,1 is defined by

E = e ∧ e0 = e+ ∧ e− = e+ e− . (2.4)

We note the properties

E2 = 1 , E† = −E , (2.5a)
Ee± = e∓ , (2.5b)
Ee = −eE = −e , Ee0 = −e0E = e0 , (2.5c)
1 − E = −ee0 , 1 + E = −e0e . (2.5d)

The basis vectors and null lines in R1,1 are illustrated in Fig. 2.1. It will be
seen later that the asymmetry in our labels for the null vectors corresponds to
an asymmetry in their geometric interpretation.

The Lorentz rotation group for the Minkowski plane is represented by the
rotor

Uϕ = e
1
2 ϕE , (2.6)
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Fig 2.1. Basis vectors null lines in the Minkowski plane. The
shaded area represents the unit pseudoscalar E.

where ϕ is a scalar parameter defined on the entire real line, and use of the
symbol e to denote the exponential function will not be confused with the null
vector e. Accordingly, the Lorentz rotation U of the basis vectors is given by

Uϕe± = Uϕe±U−1
ϕ = U2

ϕe±

= e± cosh ϕ + e∓ sinh ϕ ≡ e′± , (2.7)

Uϕe = eϕEe = ee−ϕE ≡ e′ , (2.8)

Uϕe0 = eϕEe0 ≡ e′0 . (2.9)

The rotation is illustrated in Fig 2.2. Note that the null lines are invariant, but
the null vectors are rescaled.

The complete spin group in R1,1 is

Spin(1, 1) = {eλE , E} . (2.10)

Note that E cannot be put in exponential form, so it is not continuously con-
nected to the identity within the group. On any vector a ∈ R1,1 it generates
the orthogonal transformation

E(a) = EaE = −a = a∗ . (2.11)

Hence E is a discrete operator interchanging opposite branches of the null cone.
It is of interest to know that the Minkowski algebra R1,1 is isomorphic to

the algebra L2(R) of real 2 × 2 matrices. The general linear and special linear
groups have the following isomorphisms to multiplicative subgroups in R1,1

{G ∈ R1,1 | G∗G† �= 0} � GL2(R) , (2.12)

{G ∈ R1,1 | G∗G† = 1} � SL2(R) . (2.13)
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Fig 2.2. Lorentz rotations slide unit vectors along hyperbolas in
the Minkowski plane, and they rescale null vectors.

The matrix representations are worked out in [H91], but they have little practical
value when geometric algebra is available. The group (2.13) is a 3-parameter
group whose structure is revealed by the following canonical decomposition:

G = KαTβUϕ , (2.14)

where Uϕ = U∗
ϕ is defined by (2.11), and

Kα ≡ 1 + αe0 = K†
α , (2.15a)

Tβ ≡ 1 + βe = T †
β . (2.15b)

The form (2.14) holds for all values of the scalar parameters α, β, ϕ in the
interval [−∞,∞]. Our interest in (2.14) stems from its relation to the conformal
group described later.

Throughout the rest of this paper we will be working with Rn+1,1, often
decomposed into the direct sum

Rn+1,1 = Rn ⊕R1,1 . (2.16)

This decomposition was dubbed a conformal split in [H91], because it relates
to the conformal group on Rn in an essential way. It will be convenient to
represent vectors or vector components in Rn by boldface letters and employ
the null basis {e0, e} for R1,1. Accordingly, any vector a ∈ Rn+1,1 admits the
split

a = a + αe0 + βe . (2.17)

The conformal split is uniquely determined by the pseudoscalar E for R1,1. Let
I denote the pseudoscalar for Rn+1,1, then

Ẽ = EI−1 = −EI† (2.18)
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is a unit pseudoscalar for Rn, and we can express the split as

a = PE(a) + P⊥
E (a) , (2.19)

where the projection operators PE and P⊥
E are given by

PE(a) = (a · E)E = αe0 + βe ∈ R1,1 , (2.20a)

P⊥
E (a) = (a · Ẽ)Ẽ† = (a ∧ E)E = a ∈ Rn . (2.20b)

The Minkowski plane for R1,1 is referred to as the E-plane, since, as (2.20b)
shows, it is uniquely determined by E. The projection P⊥

E can be regarded as
a rejection from the E-plane.

It is worth noting that the conformal split was defined somewhat differently
in [H91]. There the points a in Rn were identified with trivectors (a ∧ E)E
in (2.20b). Each of these two alternatives has its own advantages, but their
representations of Rn are isomorphic, so the choice between them is a minor
matter of convention.

The idea underlying homogeneous coordinates for “points” in Rn is to remove
the troublesome origin by embedding Rn in a space of higher dimension. An
efficient technique for doing this with geometric algebra is the projective split
introduced in [H91]. We use it here as well. Let e be a vector in the E-plane.
Then for any vector a ∈ Rn+1,1 with a · e �= 0, the projective split with respect
to e is defined by

ae = a · e + a ∧ e = a · e
(
1 +

a ∧ e

a · e
)

. (2.21)

This represents vector a with the bivector a ∧ e/a · e. The representation is
independent of scale, so it is convenient to fix the scale by the condition a ·
e = e0 · e = −1. This condition does not affect the components of a in Rn.
Accordingly, we refer to e∧ a = −a∧ e as a projective representation for a. The
classical approach to homogeneous coordinates corresponds to a projective split
with respect to a non-null vector. We shall see that there are great advantages
to a split with respect to a null vector. The result is a kind of “generalized”
homogeneous coordinates.

A hyperplane Pn+1(n, a) with normal n and containing point a is the solution
set of the equation

n · (x − a) = 0 , x ∈ Rn+1,1 . (2.22)

As explained in Chapter 1, this can be alternatively described by

ñ ∧ (x − a) = 0 , x ∈ Rn+1,1 . (2.23)

where ñ = nI−1 is the (n + 1)-vector dual to n.
The “normalization condition” x · e = e · e0 = −1 for a projective split with

respect to the null vector e is equivalent to the equation e · (x− e0) = 0; thus x
lie on the hyperplane

Pn+1(e, e0) = {x ∈ Rn+1,1 | e · (x − e0) = 0} . (2.24)
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This fulfills the primary objective of homogeneous coordinates by displacing the
origin of Rn by e0. One more condition is needed to fix x as representation for
a unique x in Rn.

2.3 Homogeneous Model of Euclidean Space

The set Nn+1 of all null vectors in Rn+1,1 is called the null cone. We com-
plete our definition of generalized homogeneous coordinates for points in Rn by
requiring them to be null vectors, and lie in the intersection of Nn+1 with the
hyperplane Pn+1(e, e0) defined by (2.24). The resulting surface

N n
e = Nn+1 ∩ Pn+1(e, e0) = {x ∈ Rn+1,1 | x2 = 0, x · e = −1} (2.25)

is a parabola in R2,1, and its generalization to higher dimensions is called a
horosphere in the literature on hyperbolic geometry. Applying the conditions
x2 = 0 and x · e = −1 to determine the parameters in (2.17), we get

x = x + 1
2x

2e + e0 . (2.26)

This defines a bijective mapping of x ∈ Rn to x ∈ Nn
e . Its inverse is the

rejection (2.20b). Its projection onto the E-plane (2.20a) is shown in Fig. 2.3.
Since Rn is isomorphic to En, so is Nn

e , and we have proved

Theorem 1

En � Nn
e � Rn . (2.27)

We call Nn
e the homogeneous model of En (or Rn), since its elements are (gen-

eralized) homogeneous coordinates for points in En (or Rn). In view of their
isomorphism, it will be convenient to identify Nn

e with En and refer to the ele-
ments of N n

e simply as (homogeneous) points. The adjective homogeneous will
be employed when it is necessary to distinguish these points from points in Rn,
which we refer to as inhomogeneous points. Our notations x and x in (2.26) are
intended to maintain this distinction.

We have framed our discussion in terms of “homogeneous coordinates” be-
cause that is a standard concept. However, geometric algebra enables us to
characterize a point as a single vector without ever decomposing a vector into a
set of coordinates for representational or computational purposes. It is prefer-
able, therefore, to speak of “homogeneous points” rather than “homogeneous
coordinates.”

By setting x = 0 in (2.26) we see that e0 is the homogeneous point corre-
sponding to the origin of Rn. From

x

−x · e0
= e + 2

(x + e0

x2

)
−−−−−→
x2→∞ e , (2.28)

we see that e represents the point at infinity.
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Fig 2.3. The horosphere Nn
e and its projection onto the E-plane.

As introduced in (2.21), the projective representation for the point (2.26) is

e ∧ x =
e ∧ x

−e · x = ex + e ∧ e0 . (2.29)

Note that e ∧ x = ex = −xe since e · x = 0. By virtue of (2.5a) and (2.5c),

(e ∧ x) E = 1 + ex . (2.30)

This is identical to the representation for a point in the affine model of En intro-
duced in Chapter 1. Indeed, the homogeneous model maintains and generalizes
all the good features of the affine model.

Lines, planes and simplexes

Before launching into a general treatment of geometric objects, we consider
how the homogeneous model characterizes the simplest objects and relations
in Euclidean geometry. Using (2.26) we expand the geometric product of two
points a and b as

ab = ab+(a−b)e0 − 1
2

[
(a2 + b2) + (ba2 − ab2)e + (b2 − a2)E

]
.(2.31)

From the bivector part we get

e ∧ a ∧ b = e ∧ (a + e0) ∧ (b + e0) = ea ∧ b + (b − a)E . (2.32)

From Chapter 1, we recognize a ∧ b = a ∧ (b − a) as the moment for a line
through point a with tangent a−b, so e∧a∧b characterizes the line completely.
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Accordingly, we interpret e ∧ a ∧ b as a line passing through points a and b, or,
more specifically, as a 1-simplex with endpoints a and b.

The scalar part of (2.31) gives us

a · b = − 1
2 (a − b)2 . (2.33)

Thus, the inner product of two homogeneous points gives directly the squared
Euclidean distance between them. Since a2 = b2 = 0, we have

(a − b)2 = −2 a · b = (a − b)2 . (2.34)

Incidentally, this shows that the embedding (2.26) of Rn in Nn
e is isometric.

The squared content of the line segment (2.32) is given by

(e ∧ a ∧ b)2 = −(b ∧ a ∧ e) · (e ∧ a ∧ b)
= −[ (b ∧ a) · e ] · [e · (a ∧ b) ]

= −[a − b ] · [a − b ] = −(a − b)2 , (2.35)

which equals the negative of the squared Euclidean length of the segment, as it
should. In evaluating (2.35) we used identities from Chapter 1 as well as the
special properties e2 = 0 and e · a = e · b = −1. Alternatively, one could use
(2.32) to evaluate (e ∧ a ∧ b)2 in terms of inhomogeneous points.

Again using (2.26) we find from (2.32)

e ∧ a ∧ b ∧ c = ea ∧ b ∧ c + E(b − a) ∧ (c − a) . (2.36)

We recognize a∧b∧ c as the moment of a plane with tangent (b−a)∧ (c−a).
Therefore e ∧ a ∧ b ∧ c represents a plane through points a, b, c, or, more
specifically, the triangle (2-simplex) with these points as vertices. The squared
content of the triangle is obtained directly from

(e ∧ a ∧ b ∧ c)2 = [(b − a) ∧ (c − a) ]2 , (2.37)

the negative square of twice the area of the triangle, as anticipated.

Spheres

The equation for a sphere of radius ρ centered at point p in Rn can be written

(x − p)2 = ρ2 . (2.38)

Using (2.33), we can express this as an equivalent equation in terms of homo-
geneous points:

x · p = −1
2ρ2 . (2.39)

Using x · e = −1, we can simplify this equation to

x · s = 0 , (2.40)
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where

s = p − 1
2ρ2e = p + e0 +

p2 − ρ2

2
e . (2.41)

The vector s has the properties

s2 = ρ2 > 0 , (2.42a)
e · s = −1 . (2.42b)

From these properties the form (2.41) and center p can be recovered. Therefore,
every sphere in Rn is completely characterized by a unique vector s in Rn+1,1.
According to (2.42b), s lies in the hyperplane Pn+1,1(e, e0), but (2.42a) says
that s has positive signature, so it lies outside the null cone. Our analysis shows
that every such vector determines a sphere.

Alternatively, a sphere can be described by the (n+1)-vector s̃ = sI−1 dual
to s. Since

I† = (−1)εI = −I−1 , (2.43)

where ε = 1
2 (n + 2)(n + 1), we can express the constraints (2.42a) and (2.42b)

in the form

s2 = −s̃†s̃ = ρ2 , (2.44a)
s · e = −e · (s̃I) = −(e ∧ s̃)I = −1 . (2.44b)

The equation (2.40) for the sphere has the dual form

x ∧ s̃ = 0 . (2.45)

As seen later, the advantage of s̃ is that it can be calculated directly from
points on the sphere. Then s can be obtained by duality to find the center
of the sphere. This duality of reprentations for a sphere is very powerful both
computationally and conceptually. We do not know if it has been recognized
before. In any case, we doubt that it has ever been expressed so simply.

Euclidean Plane Geometry

The advantages of the homogeneous model for E2 are best seen in an example:

Simson’s Theorem. Let ABC be a triangle and D be a point in the plane.
Draw lines from D perpendicular to the three sides of the triangle and intersect-
ing at points A1, B1, C1. The points A1, B1, C1 lie on a straight line if and
only if D lies on the circle circumscribing triangle ABC.

Analysis and proof of the theorem is facilitated by constructing Simson’s
triangle A1, B1, C1 as shown in Fig. 4. Then the collinearity of points is linked
to vanishing area of Simson’s triangle.

Suspending for the moment our convention of representing vectors by lower
case letters, we interpret the labels in Fig. 2.4 as homogeneous points in E2.
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Fig 2.4. Construction of Simson’s Triangle.

We have geometric algebra to express relations and facilitate analysis. We can
speak of triangle e∧A∧B ∧C and its side e∧A∧B. This fuses the expressive
advantages of synthetic geometry with the computational power of geometric
algebra, as we now show.

Before proving Simson’s theorem, we establish some basic results of general
utility in Euclidean geometry. First, the relation between a triangle e∧A∧B∧C
and its circumcircle is

s̃ = A ∧ B ∧ C . (2.46)

A general proof that this does indeed represent a circle (=sphere in E2) through
the three points is given in the next section, so we take it for granted here.
However, (2.46) is an unnormalized representation, so to calculate the circle
radius ρ we modify (2.44a) and (2.44b) to

ρ2 =
s2

(s · e)2 =
s̃†s̃

(e ∧ s̃)2
=

(C ∧ B ∧ A) · (A ∧ B ∧ C)
(e ∧ A ∧ B ∧ C) · (e ∧ A ∧ B ∧ C)

. (2.47)

The right side of (2.47) is the ratio of two determinants, which, when expanded,
express ρ2 in terms of the distances between points, in other words, the lengths
of the sides of the triangle. Recalling (2.34), the numerator gives

(A ∧ B ∧ C)2 = −

∣∣∣∣∣∣
0 A · B A · C

B · A 0 B · C
C · A C · B 0

∣∣∣∣∣∣ = −2A · B B · C C · A

= −1
4 (A − B)2(B − C)2(C − A)2

= −1
4 (A − B)2(B − C)2(C − A)2 . (2.48)
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The denominator is obtained from (2.37), which relates it to the area of the
triangle and expands to

(e ∧ A ∧ B ∧ C)2 = −4(area)2

= [(B − A) · (C − A) ]2 − (B − A)2(C − A)2

= [(B − A) · (C − A) ]2 − 4(A · B)2(A · C)2 . (2.49)

By normalizing A∧B ∧C and taking its dual, we find the center P of the circle
from (2.41); thus

−(A ∧ B ∧ C)∼

(e ∧ A ∧ B ∧ C)∼
= P − 1

2ρ2 e . (2.50)

This completes our characterization of the intrinsic properties of a triangle.
To relate circle A ∧ B ∧ C to a point D, we use

(A ∧ B ∧ C) ∨ D = (A ∧ B ∧ C)˜ · D = −(A ∧ B ∧ C ∧ D)˜
with (2.50) to get

A ∧ B ∧ C ∧ D =
ρ2 − δ2

2
e ∧ A ∧ B ∧ C , (2.51)

where

δ2 = −2P · D (2.52)

is the squared distance between D and P . According to (2.45), the left side of
(2.51) vanishes when D is on the circle, in conformity with δ2 = ρ2 on the right
side of (2.51).

To construct the Simson triangle algebraically, we need to solve the problem
of finding the “perpendicular intersection” B1 of point D on line e∧A∧C (Fig.
2.4). Using inhomogeneous points we can write the condition for perpendicu-
larity as

(B1 − D) · (C − A) = 0 . (2.53)

Therefore

(B1 − D)(C − A) = (B1 − D) ∧ (C − A) = (A − D) ∧ (C − A) .

Dividing by (C − A),

B1 − D = [(A − D) ∧ (C − A) ] · (C − A)−1

= A − D − (A − D) · (C − A)−1(C − A) . (2.54)

Therefore

B1 = A +
(D − A) · (C − A)

(C − A)2
(C − A) . (2.55)
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We can easily convert this to a relation among homogeneous points. However,
we are only interested here in Simson’s triangle e∧A1∧B1∧C1, which by (2.36)
can be represented in the form

e ∧ A1 ∧ B1 ∧ C1 = E(B1 − A1) ∧ (C1 − A1)
= E(A1 ∧ B1 + B1 ∧ C1 + C1 ∧ A1) . (2.56)

Calculations are simplified considerably by identifying D with the origin in Rn,
which we can do without loss of generality. Then equation (2.52) becomes
δ2 = −2P · D = p2. Setting D = 0 in (2.55) and determining the analogous
expressions for A1 and C1, we insert the three points into (2.56) and find, after
some calculation,

e ∧ A1 ∧ B1 ∧ C1 =
( ρ2 − δ2

4ρ2

)
e ∧ A ∧ B ∧ C . (2.57)

The only tricky part of the calculation is getting the coefficient on the right side
of (2.57) in the form shown. To do that the expanded form for ρ2 in (2.47) to
(2.49) can be used.

Finally, combining (2.57) with (2.51) we obtain the identity

e ∧ A1 ∧ B1 ∧ C1 =
A ∧ B ∧ C ∧ D

2ρ2
. (2.58)

This proves Simson’s theorem, for the right side vanishes if and only if D is on
the circle, while the left side vanishes if and only if the three points lie on the
same line.

2.4 Euclidean Spheres and Hyperspheres

A hyperplane through the origin is called a hyperspace. A hyperspace Pn+1(s)
in Rn+1,1(s) with Minkowski signature is called a Minkowski hyperspace. Its
normal s must have positive.

Theorem 2 The intersection of any Minkowski hyperspace Pn+1(s) with the
horosphere Nn+1

e (s) � En is a sphere or hyperplane

S(s) = Pn+1(s) ∩Nn+1
e (2.59)

in En (or Rn), and every Euclidean sphere or hyperplane can be obtained in this
way. S(s) is a sphere if e · s < 0 or a hyperplane if e · s = 0.

Corollary. Every Euclidean sphere or hyperplane can be represented by a vector
s (unique up to scale) with s2 > 0 and s · e ≤ 0.

From our previous discussion we know that the sphere S(s) has radius ρ
given by

ρ2 =
s2

(s · e)2 , (2.60)
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and it is centered at point

p =
s

−s · e + 1
2ρ2 e . (2.61)

Therefore, with the normalization s · e = −1, each sphere is represented by a
unique vector. With this normalization, the set {x = P⊥

E (x) ∈ Rn|x · s > 0}
represents the interior of the sphere, and we refer to (2.61) as the standard form
for the representation of a sphere by vector s.

To prove Theorem 2, it suffices to analyze the two special cases. These cases
are distinguished by the identity

(s · e)2 = (s ∧ e)2 ≥ 0 , (2.62)

which follows from e2 = 0. We have already established that (e · s)2 > 0
characterizes a sphere. For the case e · s = 0, we observe that the component of
s in Rn is given by

s = P⊥
E (s) = (s ∧ E)E = s + (s · e0)e . (2.63)

Therefore

s = | s |(n + eδ) , (2.64)

where n2 = 1 and δ = s · e0/| s |. Set | s | = 1. The equation for a point x on
the surface S(s) is then

x · s = n · x − δ = 0 . (2.65)

This is the equation for a hyperplane in Rn with unit normal n and signed
distance δ from the origin. Since x · e = 0, the “point at infinity” e lies on S(s).
Therefore, a hyperplane En can be regarded as a sphere that “passes through”
the point at infinity.

With | s | = 1, we refer to (2.64) as the standard form for representation of
a hyperplane by vector s.

Theorem 3 Given homogeneous points a0, a1, a2, . . . , an “in” En such that

s̃ = a0 ∧ a1 ∧ a2 ∧ · · · ∧ an �= 0 , (2.66)

then the (n + 1)-blade s̃ represents a Euclidean sphere if

(e ∧ s̃)2 �= 0 . (2.67)

or a hyperplane if

(e ∧ s̃)2 = 0 . (2.68)

A point x is on the sphere/hyperplane S(s) if and only if

x ∧ s̃ = 0 . (2.69)
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Since (2.66) is a condition for linear independence, we have the converse theorem
that every S(s) is uniquely determined by n + 1 linearly independent points.

By duality, Theorem 3 is an obvious consequence of Theorem 2 where s̃
is dual to the normal s of the hyperspace Pn+1(s), so it is a tangent for the
hyperspace.

For a hyperplane, we can always employ the point at infinity so the condition
(2.66) becomes

s̃ = e ∧ a1 ∧ a2 ∧ · · · ∧ an �= 0 . (2.70)

Therefore only n linearly independent finite points are needed to define a hy-
perplane in En.

2.5 r-dimensional Spheres, Planes and Simplexes

We have seen that (n + 1)-blades of Minkowski signature in Rn+1,1 represent
spheres and hyperplanes in Rn, so the following generalization is fairly obvious

Theorem 4 For 2 ≤ r ≤ n + 1, every r-blade Ar of Minkowski signature in
Rn+1,1 represents an (r − 2)-dimensional sphere in Rn (or En).

There are three cases to consider:

Case 1. e∧Ar = e0 ∧Ar = 0, Ar represents an (r− 2)-plane through the origin
in Rn with standard form

Ar = EIr−2 , (2.71)

where Ir−2 is unit tangent for the plane.

Case 2. Ar represents an (r − 2)-plane when e ∧ Ar = 0 and

Ar+1 = e0 ∧ Ar �= 0 . (2.72)

We can express Ar as the dual of a vector s with respect to Ar+1:

Ar = sAr+1 = (−1)ε s̃ ∨ Ar+1 . (2.73)

In this case e · s = 0 but s · e0 �= 0, so we can write s in the standard form
s = n + δe for the hyperplane s̃ with unit normal n in Rn and n-distance δ
from the origin. Normalizing Ar+1 to unity, we can put Ar into the standard
form

Ar = (n + eδ)EIr−1 = EnIr−1 + eδIr−1 . (2.74)

This represents an (r−2)-plane with unit tangent nIr−1 = n ·Ir−1 and moment
δIr−1. Its directance from the origin is the vector δn.
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As a corollary to (2.74), the r-plane passing through point a in Rn with unit
r-blade Ir as tangent has the standard form

Ar+1 = e ∧ a ∧ Ir , (2.75)

where a = P⊥
E (a) is the inhomogeneous point.

Case 3. Ar represents an (r − 2)-dimensional sphere if

Ar+1 ≡ e ∧ Ar �= 0 . (2.76)

The vector

s = ArA
−1
r+1 (2.77)

has positive square and s · e �= 0, so its dual s̃ = sI−1 represents an (n − 1)-
dimensional sphere

Ar = sAr+1 = (s̃I) · Ar+1 = (−1)ε s̃ ∨ Ar+1 , (2.78)

where the (inessential) sign is determined by (2.43). As shown below, condition
(2.76) implies that Ar+1 represents an (r − 1)-plane in Rn. Therefore the meet
product s̃ ∨ Ar+1 in (2.78) expresses the (r − 2)-sphere Ar as the intersection
of the (n − 1)-sphere s̃ with the (r − 1)-plane Ar+1.

With suitable normalization, we can write s = c− 1
2ρ2 e where c is the center

and ρ is the radius of sphere s̃ . Since s ∧ Ar+1 = e ∧ Ar+1 = 0, the sphere Ar

is also centered at point c and has radius ρ.
Using (2.74) for the standard form of Ar+1, we can represent an (r−2)-sphere

on a plane in the standard form

Ar = (c − 1
2ρ2e) ∧ (n + eδ)EIr , (2.79)

where | Ir | = 1, c ∧ Ir = n ∧ Ir = 0 and c · n = δ.
In particular, we can represent an (r − 2)-sphere in a space in the standard

form

Ar = (c − 1
2ρ2 e)EIr−1 , (2.80)

where E = e ∧ e0 and Ir−1 is a unit (r − 1)-blade in Rn. In (2.80) the factor
EIr−1 has been normalized to unit magnitude. Both (2.78) and (2.80) express
Ar as the dual of vector s with respect to Ar+1. Indeed, for r = n + 1, In is
a unit pseudoscalar for Rn, so (2.78) and (2.80) give the dual form s̃ that we
found for spheres in the preceding section.

This completes our classification of standard representations for spheres and
planes in En.
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Simplexes and spheres

Now we examine geometric objects determined by linearly independent homoge-
neous points a0, a1, . . . , ar, with r ≤ n so that a0∧a1∧· · ·∧ar �= 0. Introducing
inhomogeneous points by (2.26), a simple computation gives the expanded form

a0 ∧ a1 ∧ · · · ∧ ar = Ar + e0A+
r + 1

2eA−
r − 1

2EA±
r , (2.81)

where, for want of a better notation,

Ar = a0 ∧ a1 ∧ · · · ∧ ar,

A+
r =

r∑
i=0

(−1)ia0 ∧ · · · ∧ ǎi ∧ · · · ∧ ar = (a1 − a0) ∧ · · · ∧ (ar − a0),

A−
r =

r∑
i=0

(−1)ia2
i a0 ∧ · · · ∧ ǎi ∧ · · · ∧ ar,

A±
r =

r∑
i=0

r∑
j=i+1

(−1)i+j(a2
i − a2

j )a0 ∧ · · · ∧ ǎi ∧ · · · ∧ ǎj ∧ · · · ∧ ar.

(2.82)

Theorem 5 The expanded form (2.81)

(1) determines an r-simplex if Ar �= 0,

(2) represents an (r−1)-simplex in a plane through the origin if A+
r = A−

r = 0,

(3) represents an (r − 1)-sphere if and only if A+
r �= 0.

We establish and analyze each of these three cases in turn.
From our study of simplexes in Chapter 1, we recognize Ar as the moment

of a simplex with boundary (or tangent) A+
r . Therefore,

e ∧ a0 ∧ a1 ∧ · · · ∧ ar = eAr + EA+
r (2.83)

represents an r-simplex. The volume (or content) of the simplex is k! |A+
r |,

where

|A+
r |2 = (A+

r )†A+
r = −(ar ∧ · · · ∧ a0 ∧ e) · (e ∧ a0 ∧ · · · ∧ ar)

= −(− 1
2 )r

∣∣∣∣∣∣∣∣∣

0 1 · · · 1
1
... d2

ij

1

∣∣∣∣∣∣∣∣∣
(2.84)

and dij = |ai − aj | is the pairwise interpoint distance. The determinant on the
right side of (2.84) is called the Cayley-Menger determinant, because Cayley
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found it as an expression for volume in 1841, and nearly a century later Menger
[M31] used it to reformulate Euclidean geometry with the notion of interpoint
distance as a primitive.

Comparison of (2.83) with (2.74) gives the directed distance from the origin
in Rn to the plane of the simplex in terms of the points:

δn = Ar(A+
r )−1 . (2.85)

Therefore, the squared distance is given by the ratio of determinants:

δ2 =
|Ar |2

|A+
r |2

=
(ar ∧ · · · ∧ a0) · (a0 ∧ · · · ∧ ar)
(a r ∧ · · · ∧ a 1) · (a 1 ∧ · · · ∧ a r)

, (2.86)

where a i = ai − a0 for i = 1, . . . , r, and the denominator is an alternative to
(2.84).

When A+
r = A−

r = 0, (2.81) reduces to

a0 ∧ · · · ∧ ar = −1
2EA±

r . (2.87)

Comparing with (2.83) we see that this degenerate case represents an (r − 1)-
simplex with volume 1

2k!|A±
r | in an (r − 1)-plane through the origin. To get

an arbitrary (r − 1)-simplex from a0 ∧ · · · ∧ ar we must place one of the points,
say a0, at ∞. Then we have e ∧ a1 ∧ a2 ∧ · · · ∧ ar, which has the same form as
(2.83).

We get more insight into the expanded form (2.81) by comparing it with the
standard forms (2.79), (2.80) for a sphere. When Ar = 0, then A+

r �= 0 for
a0 ∧ · · · ∧ ar to represent a sphere. Since

a0 ∧ · · · ∧ ar = −[e0 − 1
2eA−

r (A+
r )−1 + 1

2A
±
r (A+

r )−1 ]EA+
r ,

we find that the sphere is in the space represented by EA+
r , with center and

squared radius

c = 1
2A

±
r (A+

r )−1 , (2.88a)

ρ2 = c2 + A−
r (A+

r )−1 . (2.88b)

When Ar �= 0, then A+
r �= 0 because of (2.92b) below. Since

a0 ∧ · · · ∧ ar =
(Ar + e0A+

r + 1
2eA−

r − 1
2EA±

r )(eAr + EA+
r )†

(eAr + EA+
r )†(eAr + EA+

r )
(eAr + EA+

r ) ,

and the numerator equals

A+
r (A+

r )†
[
e0 +

2A+
r (Ar)† + A±

r (A+
r )†

2A+
r (A+

r )†
+

2Ar(Ar)† − A−
r (A+

r )†

2A+
r (A+

r )†
e

]
,

we find that the sphere is on the plane represented by eAr + EA+
r , with center

and squared radius

c =
2(A+

r )−1(Ar)† + A±
r (A+

r )†

2A+
r (A+

r )†
, (2.89a)

ρ2 = c2 +
A−

r (A+
r )† − 2Ar(Ar)†

A+
r (A+

r )†
. (2.89b)
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We see that (2.89a), (2.89b) congrue with (2.88a), (2.88b) when Ar = 0.
Having shown how the expanded form (2.81) represents spheres or planes of

any dimension, let us analyze relation among the A’s. In (2.82) A+
r is already

represented as a blade; when ai �= 0 for all i, the analogous representation for
A−

r is

A−
r = Πr(a−1

1 − a−1
0 ) ∧ (a−1

2 − a−1
0 ) ∧ · · · ∧ (a−1

r − a−1
0 ) , (2.90)

where

Πr = a2
0a2

1 · · · a2
r . (2.91)

From this we see that A+
r and A−

r are interchanged by inversions ai → a−1
i , of

all inhomogeneous points.
Using the notation for the boundary of a simplex from Chapter 1, we have

A+
r = /∂Ar , A−

r /Πr = /∂(Ar/Πr) , (2.92a)
A±

r = −/∂A−
r , A±

r /Πr = /∂(A+
r /Πr) . (2.92b)

An immediate corollary is that all A’s are blades, and if A±
r = 0 then all other

A’s are zero.
If Ar �= 0, then we have the following relation among the four A’s:

A+
r ∨ A−

r = −ÃrA±
r , (2.93)

where the meet and dual are defined in G(Ar). Hence when Ar �= 0, the vector
spaces defined by A+

r and A−
r intersect and the intersection is the vector space

defined by A±
r .

Squaring (2.81) we get

| a0 ∧ · · · ∧ ar |2 = det(ai · aj) = (− 1
2 )r+1 det(|ai − aj |2)

= |Ar |2 − (A+
r )† · A−

r − 1
4 |A

±
r |2 . (2.94)

For r = n + 1, Ar vanishes and we obtain

Ptolemy’s Theorem: Let a0, a1, . . . , an+1 be points in Rn, then they are on
a sphere or a hypersphere if and only if det(|ai − aj |2)(n+2)×(n+2) = 0.

2.6 Relation among Spheres and Hyperplanes

In Section 4 we learned that every sphere or hyperplane in En is uniquely rep-
resented by some vector s with s2 > 0 or by its dual s̃ . It will be convenient,
therefore, to use s or s̃ as names for the surface they represent. We also learned
that spheres and hyperplanes are distinguished, respectively, by the conditions
s · e > 0 and s · e = 0, and the latter tells us that a hyperplane can be regarded
as a sphere through the point at infinity. This intimate relation between spheres
and hyperplanes makes it easy to analyze their common properties.
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A main advantage of the representation by s and s̃ is that it can be used
directly for algebraic characterization of both qualitative and quantitative prop-
erties of surfaces without reference to generic points on the surfaces. In this
section we present important examples of qualitative relations among spheres
and hyperplanes that can readily be made quantitative. The simplicity of these
relations and their classifications should be of genuine value in computational
geometry, especially in problems of constraint satisfaction.

Intersection of spheres and hyperplanes

Let s̃1 and s̃2 be two different spheres or hyperplanes of Rn (or En). Both s̃1

and s̃2 are tangent (n + 1)-dimensional Minkowski subspaces of Rn+1,1. These
subspaces intersect in an n-dimensional subspace with n-blade tangent given
algebraically by the meet product s̃1 ∨ s̃2 defined in Chapter 1. This illustrates
how the homogeneous model of En reduces the computations of intersections
of spheres and planes of any dimension to intersections of linear subspaces in
Rn+1,1, which are computed with the meet product.

To classify topological relations between two spheres or hyperplanes, it will
be convenient to work with the dual of the meet:

(s̃1 ∨ s̃2)∼ = s1 ∧ s2 . (2.95)

There are three cases corresponding to the possible signatures of s1 ∧ s2:

Theorem 6 Two spheres or hyperplanes s̃1, s̃2 intersect, are tangent or par-
allel, or do not intersect if and only if (s1 ∧ s2)2 <, =, > 0, respectively.

Let us examine the various cases in more detail.
When s̃1 and s̃2 are both spheres, then

• if they intersect, the intersection (s1∧s2)∼ is a sphere, as e∧(s1∧s2)∼ �= 0.
The center and radius of the intersection are the same with those of the
sphere (Ps1∧s2(e))

∼. The intersection lies on the hyperplane (e·(s1∧s2))∼.

• if they are tangent, the tangent point is proportional to the null vector
P⊥

s1
(s2) = (s2 ∧ s1)s−1

1 .

• if they do not intersect, there are two points a, b ∈ Rn, called Poncelet
points [S88], which are inversive to each other with respect to both spheres
s̃1 and s̃2. The reason is, since s1 ∧ s2 is Minkowski, it contains two
noncollinear null vectors |s1 ∧ s2|s1 ± |s1|s2|P⊥

s1
(s2), which correspond to

a,b ∈ Rn respectively. Let si = λia + µib, where λi, µi are scalars.
Then the inversion of a homogeneous point a with respect to the sphere
si gives the point si a = (−µi/λi)b, as shown in the section on conformal
transformations.

When s̃1 is a hyperplane and s̃2 is a sphere, then
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• if they intersect, the intersection (s1∧s2)∼ is a sphere, since e∧(s1∧s2)∼ �=
0. The center and radius of the intersection are the same with those of
the sphere (P⊥

s1
(s2))∼.

• if they are tangent, the tangent point corresponds to the null vector
P⊥

s1
(s2).

When a sphere s̃ and a point a on it is given, the tangent hyperplane of
the sphere at a is (s + s · ea)∼.

• if they do not intersect, there are two points a, b ∈ Rn as before, called
Poncelet points [S88], which are symmetric with respect to the hyperplane
s̃1 and also inversive to each other with respect to the sphere s̃2.

When s̃1 and s̃2 are both hyperplanes, they always intersect or are parallel, as
(s1 ∧ s2)∼ always contains e, and therefore cannot be Euclidean. For the two
hyperplanes,

• if they intersect, the intersection (s1∧s2)∼ is an (n−2)-plane. When both
s̃1 and s̃2 are hyperspaces, the intersection corresponds to the (n − 2)-
space (s1 ∧ s2)In in Rn, where Ir is a unit pseudoscalar of Rn; otherwise
the intersection is in the hyperspace (e0 · (s1 ∧ s2))∼ and has the same
normal and distance from the origin as the hyperplane (Ps1∧s2(e0))∼.

• if they are parallel, the distance between them is |e0 · P⊥
s2

(s1)|/|s1|.

Now let us examine the geometric significance of the inner product s1 ·s2. For
spheres and hyperspaces s̃1, s̃2, the scalar s1 · s2/|s1||s2| is called the inversive
product [I92] and denoted by s1 ∗ s2. Obviously, it is invariant under orthogonal
transformations in Rn+1,1, and

(s1 ∗ s2)2 = 1 +
(s1 ∧ s2)2

s2
1s

2
2

. (2.96)

Let us assume that s̃1 and s̃2 are normalized to standard form. Following
[I92, p. 40, 8.7], when s̃1 and s̃2 intersect, let a be a point of intersection, and
let mi, i = 1, 2, be the respective outward unit normal vector of s̃ i at a if it is
a sphere, or the negative of the unit normal vector in the standard form of s̃ i if
it is a hyperplane; then

s1 ∗ s2 = m1 · m2. (2.97)

The above conclusion is proved as follows: For i = 1, 2, when s̃ i represents
a sphere with standard form si = ci − 1

2ρ2
i e where ci is its center, then

s1 ∗ s2 =
ρ2
1 + ρ2

2 − |c1 − c2|2
2ρ1ρ2

, (2.98)

m1 · m2 =
(a − c1)
|a − c1|

· (a − c2)
|a − c2|

=
ρ2
1 + ρ2

2 − |c1 − c2|2
2ρ1ρ2

. (2.99)
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When s2 is replaced by the standard form n2 + δ2e for a hyperplane, then

s1 ∗ s2 =
c1 · n2 − δ2

ρ1
, (2.100)

m1 · m2 =
(a − c1)
|a − c1|

· (−n2) =
c1 · n2 − δ2

ρ1
; (2.101)

For two hyperspheres si = ni + δif ; then

s1 ∗ s2 = n1 · n2, (2.102)
m1 · m2 = n1 · n2. (2.103)

An immediate consequence of this result is that orthogonal transformations in
Rn+1,1 induce angle-preserving transformations in Rn. These are the conformal
transformations discussed in the next section.

Relations among Three Points, Spheres or Hyperplanes

Let s1, s2, s3 be three distinct nonzero vectors of Rn+1,1 with non-negative
square. Then the sign of

∆ = s1 · s2 s2 · s3 s3 · s1 (2.104)

is invariant under the rescaling s1, s2, s3 → λ1s1, λ2s2, λ3s3, where the λ’s are
nonzero scalars. Geometrically, when s2

i > 0, then s̃ i represents either a sphere
or a hyperplane; when s2

i = 0, then si represents either a finite point or the
point at infinity e. So the sign of ∆ describes some geometric relationship
among points, spheres or hyperplanes. Here we give a detailed analysis of the
case when ∆ < 0.

When the s’s are all null vectors, then ∆ < 0 is always true, as long as no
two of them are linearly dependent.

When s1 = e, s2 is null, and s2
3 > 0, then ∆ < 0 implies s̃3 to represent a

sphere. Our previous analysis shows that ∆ < 0 if and only if the point s2 is
outside the sphere s̃3.

When s1, s2 are finite points and s2
3 > 0, a simple analysis shows that ∆ < 0

if and only if the two points by s1, s2 are on the same side of the sphere or
hyperplane s̃3.

When s1 = e, s2
2, s

2
3 > 0, then ∆ < 0 implies s̃2, s̃3 to represent two spheres.

For two spheres with centers c1, c2 and radii ρ1, ρ2 respectively, we say they are
(1) near if |c1 −c2|2 < ρ2

1 +ρ2
2, (2) far if |c1 −c2|2 > ρ2

1 +ρ2
2, and (3) orthogonal

if |c1 − c2|2 = ρ2
1 + ρ2

2. According to the first equation of (2.6), ∆ < 0 if and
only if the two spheres s̃2 and s̃3 are far.

When s1 is a finite point and s2
2, s

2
3 > 0, then

• if s̃2 and s̃3 are hyperplanes, then ∆ < 0 implies that they are neither
orthogonal nor identical. When the two hyperplanes are parallel, then
∆ < 0 if and only if the point s1 is between the two hyperplanes. When the
hyperplanes intersect, then ∆ < 0 if and only if s1 is in the wedge domain
of the acute angle in Rn formed by the two intersecting hyperplanes.
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• if s̃2 is a hyperplane and s̃3 is a sphere, then ∆ < 0 implies that they are
non-orthogonal, i.e., the center of the sphere does not lie on the hyper-
plane. If the center of a sphere is on one side of a hyperplane, we also say
that the sphere is on that side of the hyperplane. If the point s1 is outside
the sphere s̃3, then ∆ < 0 if and only if s1 and the sphere s̃3 are on the
same side of the hyperplane s̃2; if the point is inside the sphere s̃3, then
∆ < 0 if and only if the point and the sphere are on opposite sides of the
hyperplane.

• if s̃2, s̃3 are spheres, then ∆ < 0 implies that they are non-orthogonal. If
they are far, then ∆ < 0 if and only if the point s1 is either inside both of
them or outside both of them. If they are near, then ∆ < 0 if and only if
s1 is inside one sphere and outside the other.

When s1, s2, s3 are all of positive square, then ∆ < 0 implies that no two of
them are orthogonal or identical.

• If they are all hyperplanes, with normals n1, n2, n3 respectively, then
∆ < 0 implies that no two of them are parallel, as the sign of ∆ equals
that of n1 · n2 n2 · n3 n3 · n1. ∆ < 0 if and only if a normal vector of s̃1

with its base point at the intersection of the two hyperplanes s̃2 and s̃3,
has its end point in the wedge domain of the acute angle in Rn formed by
the two intersecting hyperplanes.

• If s̃1, s̃2 are hyperplanes and s̃3 is a sphere, then when the hyperplanes
are parallel, ∆ < 0 if and only if the sphere’s center is between the two
hyperplanes. When the hyperplanes intersect, ∆ < 0 if and only if the
sphere’s center is in the wedge domain of the acute angle in Rn formed
by the two intersecting hyperplanes.

• If s̃1 is a hyperplane and s̃2, s̃3 are spheres, then when the two spheres are
far, ∆ < 0 if and only if the spheres are on the same side of the hyperplane.
When the spheres are near, ∆ < 0 if and only if they are on opposite sides
of the hyperplane.

• If all are spheres, then either they are all far from each other, or two
spheres are far and the third is near to both of them.

Bunches of Spheres and Hyperplanes

In previous sections, we proved that Minkowski subspaces of Rn+1,1 represent
spheres and planes of various dimensions in Rn. In this subsection we consider
subspaces of Rn+1,1 containing only their normals, which are vectors of posi-
tive square. Such subspaces are dual to Minkowski hyperspaces that represent
spheres or hyperplanes. Therefore the tangent blade for a subspace Ar of Rn+1,1

can be used to represent a set of spheres and hyperplanes, where each of them is
represented by a vector of positive square. Or dually, the dual of Ar represents
the intersection of a set of spheres and hyperplanes.
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The simplest example is a pencil of spheres and hyperplanes. Let s̃1, s̃2

be two different spheres or hyperplanes, then the pencil of spheres/hyperplanes
determined by them is the set of spheres/hyperplanes (λ1s1 + λ2s2)∼, where
λ1, λ2 are scalars satisfying

(λ1s1 + λ2s2)2 > 0. (2.105)

The entire pencil is represented by the blade A2 = s1 ∧ s2 or its dual (s1 ∧ s2)∼.
There are three kinds of pencils corresponding to the three possible signatures
of the blade s1 ∧ s2:

1. Euclidean, (s1 ∧ s2)2 < 0. The space (s1 ∧ s2)∼, which is a subspace of
any of the spaces (λ1s1 +λ2s2)∼, is Minkowski, and represents an (n−2)-
dimensional sphere or plane in Rn. If the point at infinity e is in the space,
then the pencil (s1 ∧ s2)∼ is composed of hyperplanes passing through an
(n − 2)-dimensional plane. We call it a concurrent pencil.

If e is not in the space (s1∧s2)∼, there is an (n−2)-dimensional sphere
that is contained in every sphere or hyperplane in the pencil (s1 ∧ s2)∼.
We call it an intersecting pencil.

2. Degenerate, (s1∧s2)2 = 0. The space (s1∧s2)∼ contains a one-dimensional
null subspace, spanned by P⊥

s1
(s2). If e is in the space, then the pencil

is composed of hyperplanes parallel to each other. We call it a parallel
pencil.

If e is not in the space (s1 ∧ s2)∼, the pencil is composed of spheres
tangent to each other at the point in Rn represented by the null vector
P⊥

s1
(s2). We call it a tangent pencil.

3. Minkowski, (s1∧s2)2 > 0. The Minkowski plane s1∧s2 contains two non-
collinear null vectors |s1 ∧ s2|s1 ±|s1|s2|P⊥

s1
(s2). The two one-dimensional

null spaces spanned by them are conjugate with respect to any of the vec-
tors λ1s1 +λ2s2, which means that the two points represented by the two
null vectors are inversive with respect to any sphere or hyperplane in the
pencil (s1 ∧ s2)∼.

If e is in the space s1∧s2, then the pencil is composed of spheres centered
at the point represented by the other null vector in the space. We call it
a concentric pencil.

If e is outside the space s1 ∧ s2, the two points represented by the
two null vectors in the space are called Poncelet points. The pencil now is
composed of spheres and hyperplanes with respect to which the two points
are inversive. We call it a Poncelet pencil.

This finishes our classification of pencils. From the above analysis we also obtain
the following corollary:

• The concurrent (or intersecting) pencil passing through an (n−2)-dimen-
sional plane (or sphere) represented by Minkowski subspace An is Ãn.
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• The parallel pencil containing a hyperplane s̃ is (e ∧ s)∼. In particular,
the parallel pencil normal to vector n ∈ Rn is (e ∧ n)∼.

• The tangent pencil containing a sphere or hyperplane s̃ and having tangent
point a = P⊥

E (a) ∈ Rn is (a ∧ s)∼. In particular, the tangent pencil
containing a hyperplane normal to n ∈ Rn and having tangent point a is
(a ∧ (n + a · ne))∼.

• The concentric pencil centered at a = P⊥
E (a) ∈ Rn is (e ∧ a)∼.

• The Poncelet pencil with Poncelet points a,b ∈ Rn is (a ∧ b)∼.

The generalization of a pencil is a bunch. A bunch of spheres and hyperplanes
determined by r spheres and hyperplanes s̃1, . . . , s∼r is the set of spheres and
hyperplanes (λ1s1 + · · · + λrsr)∼, where the λ’s are scalars and satisfy

(λ1s1 + · · · + λrsr)2 > 0. (2.106)

When s1 ∧ · · · ∧ sr �= 0, the integer r − 1 is called the dimension of the bunch,
and the bunch is represented by (s1 ∧ · · · ∧ sr)∼. A pencil is a one-dimensional
bunch. The dimension of a bunch ranges from 1 to n − 1.

The classification of bunches is similar to that of pencils. Let (s1∧· · ·∧sr)∼,
2 ≤ r ≤ n, be a bunch. Then the signature of the space (s1 ∧ · · · ∧ sr)∼ has
three possibilities:

1. Minkowski. The space (s1∧· · ·∧sr)∼ corresponds to an (n−r)-dimensional
sphere or plane of Rn, and is contained in any of the spheres and hyper-
planes (λ1s1 + · · · + λrsr)∼.

If e is in the space, then the bunch is composed of hyperplanes passing
through an (n− r)-dimensional plane. We call it a concurrent bunch. If e
is not in the space, there is an (n− r)-dimensional sphere that are on any
sphere or hyperplane in the bunch. We call it an intersecting bunch.

2. Degenerate. The space (s1 ∧ · · · ∧ sr)∼ contains a one-dimensional null
subspace, spanned by the vector (s1 ∧ · · · ∧ sr) · (s1 ∧ · · · ∧ ši ∧ · · · ∧ sr),
where the omitted vector si is chosen so that (s1 ∧ · · · ∧ ši ∧ · · · ∧ sr)2 �= 0.

If e is in the space (s1 ∧ · · · ∧ sr)∼, then the bunch is composed of
hyperplanes normal to an (r − 1)-space of Rn represented by the blade
e0 · (s1 ∧ · · · ∧ sr). We call it a parallel bunch. If e is not in the space, the
bunch is composed of spheres and hyperplanes passing through a point
ai ∈ Rn represented by the null vector of the space, at the same time
orthogonal to the (r−1)-plane of Rn represented by e∧a∧(e·(s1∧· · ·∧sr)).
We call it a tangent bunch.

3. Euclidean. The Minkowski space s1 ∧ · · · ∧ sr corresponds to an (r − 2)-
dimensional sphere or plane. It is orthogonal to all of the spheres and
hyperplanes (λ1s1 + · · · + λrsr)∼.

If e is in the space s1∧· · ·∧sr, then the pencil is composed of hyperplanes
perpendicular to the (r − 2)-plane represented by s1 ∧ · · · ∧ sr, together
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Geometric conditions Bunch Ar Bunch Ãr

Ar · A†
r < 0 ,

e ∧ Ar = 0

Concurrent bunch,
concurring at the
(r − 2)-plane Ar

Concentric bunch,
centered at the
(r − 2)-plane Ar

Ar · A†
r < 0 ,

e ∧ Ar �= 0

Intersecting bunch, at
the (r − 2)-sphere Ar

Poncelet bunch, with
Poncelet sphere Ar

Ar · A†
r = 0 ,

e ∧ Ar = 0

Parallel bunch, normal
to the (n− r +1)-space
(e0 · Ar)∼

Parallel bunch, normal
to the (r − 1)-space

e ∧ e0 ∧ (e0 · Ar)

Ar · A†
r = 0, e ∧ Ar �=

0, assuming a is a null
vector in the space Ar

Tangent bunch, at
point a and orthogonal
to the (n− r +1)-plane
(e · Ar)∼

Tangent bunch, at
point a and orthogonal
to the (r − 1)-plane
e ∧ a ∧ (e · Ar)

Ar · A†
r > 0 ,

e ∧ Ar = 0

Concentric bunch,
centering at the
(n − r)-plane Ãr

Concurrent bunch,
concurring at the
(n − r)-plane Ãr

Ar · A†
r > 0 ,

e ∧ Ar �= 0

Poncelet bunch, with
Poncelet sphere Ãr

Intersecting bunch, at
the (n − r)-sphere Ãr

Table 2.1: Bunch dualities

with spheres whose centers are in the (r−2)-plane. We call it a concentric
bunch. If e is outside the space, the (r−2)-sphere represented by s1∧· · ·∧sr

is called a Poncelet sphere. Now the pencil is composed of spheres and
hyperplanes orthogonal to the Poncelet sphere, called a Poncelet bunch.

Finally we discuss duality between two bunches. Let Ar, 2 ≤ r ≤ n, be
a blade. Then it represents an (n − r + 1)-dimensional bunch. Its dual, Ãr,
represents an (r − 1)-dimensional bunch. Any bunch and its dual bunch are
orthogonal, i.e., any sphere or hyperplane in a bunch Ar is orthogonal to a
sphere or hyperplane in the bunch Ãr. Table 2.1 provides details of the duality.

2.7 Conformal Transformations

A transformation of geometric figures is said to be conformal if it preserves
shape; more specifically, it preserves angles and hence the shape of straight lines
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and circles. As first proved by Liouville [L1850] for R3, any conformal trans-
formation on the whole of Rn can be expressed as a composite of inversions
in spheres and reflections in hyperplanes. Here we show how the homogeneous
model of En simplifies the formulation of this fact and thereby facilitates compu-
tations with conformal transformations. Simplification stems from the fact that
the conformal group on Rn is isomorphic to the Lorentz group on Rn+1. Hence
nonlinear conformal transformations on Rn can be linearized by representing
them as Lorentz transformation and thereby further simplified as versor rep-
resentations. The present treatment follows, with some improvements, [H91],
where more details can be found.

From Chapter 1, we know that any Lorentz transformation G of a generic
point x ∈ Rn+1 can be expressed in the form

G(x) = Gx(G∗)−1 = σx′ , (2.107)

where G is a versor and σ is a scalar. We are only interested in the action of G
on homogeneous points of En. Since the null cone is invariant under G, we have
(x′)2 = x2 = 0. However, for fixed e, x · e is not Lorentz invariant, so a scale
factor σ has been introduced to ensure that x′ · e = x · e = −1 and x′ remains a
point in En. Expressing the right equality in (2.107) in terms of homogeneous
points we have the expanded form

G[x + 1
2x

2e + e0 ](G∗)−1 = σ[x′ + 1
2 (x′)2e + e0 ] , (2.108)

where

x′ = g(x) (2.109)

is a conformal transformation on Rn and

σ = −e · (Gx) = −〈 eG∗xG−1 〉 . (2.110)

We study the simplest cases first.
For reflection by a vector s = −s∗ (2.107) becomes

s(x) = −sxs−1 = x − 2(s · x)s−1 = σx′ , (2.111)

where sx + xs = 2s · x has been used. Both inversions and reflections have this
form as we now see by detailed examination.

Inversions. We have seen that a circle of radius ρ centered at point c =
c + 1

2c
2e + e0 is represented by the vector

s = c − 1
2ρ2e . (2.112)

We first examine the important special case of the unit sphere centered at the
origin in Rn. Then s reduces to e0 − 1

2e, so −2s · x = x2 − 1 and (2.111) gives

σx′ = (x+ 1
2x

2e+ e0)+ (x2 − 1)(e0 − 1
2e) = x2[x−1 + 1

2x
−2e+ e0 ] .(2.113)

Whence the inversion

g(x) = x−1 =
1
x

=
x

|x |2
. (2.114)

27



Type g(x) on Rn Versor in Rn+1,1 σ(x)

Reflection −nxn + 2nδ s = n + eδ 1

Inversion
ρ2

x − c
+ c s = c − 1

2ρ2e
(x − c

ρ

)2

Rotation R(x − c)R−1 + c Rc = R+e(c×R) 1

Translation x − a Ta = 1 + 1
2ae 1

Transversion
x − x2a

σ(x)
Ka = 1 + ae0 1 − 2a · x + x2a2

Dilation λx Dλ = e−
1
2 E ln λ λ−1

Involution x∗ = −x E = e ∧ e0 −1

Table 2.2: Conformal transformations and their versor representations (see text
for explanation)

Note how the coefficient of e0 has been factored out on the right side of (2.113)
to get σ = x2. This is usually the best way to get the rescaling factor, rather
than separate calculation from (2.110). Actually, we seldom care about σ, but
it must be factored out to get the proper normalization of g(x).

Turning now to inversion with respect to an arbitrary circle, from (2.112)
we get

s · x = c · x − 1
2ρ2e · x = − 1

2 [ (x − c)2 − ρ2 ] . (2.115)

Insertion into (2.111) and a little algebra yields

σx′ =
(x − c

ρ

)2[
g(x) + 1

2 [g(x) ]2e + e0

]
, (2.116)

where

g(x) =
ρ2

x − c
+ c =

ρ2

(x − c)2
(x − c) + c (2.117)

is the inversion in Rn.
Reflections. We have seen that a hyperplane with unit normal n and signed

distance δ from the origin in Rn is represented by the vector

s = n + eδ . (2.118)
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Inserting s · x = n · x − δ into (2.111) we easily find

g(x) = nxn∗ + 2nδ = n(x − nδ)n∗ + nδ . (2.119)

We recognize this as equivalent to a reflection nxn∗ at the origin translated by
δ along the direction of n. A point c is on the hyperplane when δ = n · c, in
which case (2.118) can be written

s = n + en · c . (2.120)

Via (2.119), this vector represents reflection in a hyperplane through point c.
With a minor exception to be explained, all the basic conformal transforma-

tions in Table 2.2 can be generated from inversions and reflections. Let us see
how.

Translations. We have already seen in Chapter 1 that versor Ta in Table 2.2
represents a translation. Now notice

(n + eδ)n = 1 + 1
2ae = Ta (2.121)

where a = 2δn. This tells us that the composite of reflections in two parallel
hyperplanes is a translation through twice the distance between them.

Transversions. The transversion Ka in Table 2.2 can be generated from two
inversions and a translation; thus, using e0ee0 = −2e0 from (2.5c) and (2.5d),
we find

e+Tae+ = (1
2e − e0)(1 + 1

2ae)( 1
2e − e0) = 1 + ae0 = Ka . (2.122)

The transversion generated by Ka can be put in the various forms

g(x) =
x − x2a

1 − 2a · x + x2a2
= x(1 − ax)−1 = (x−1 − a)−1 . (2.123)

The last form can be written down directly as an inversion followed by a trans-
lation and another inversion as asserted by (2.122). That avoids a fairly messy
computation from (2.108).

Rotations. Using (2.120), the composition of reflections in two hyperplanes
through a common point c is given by

(a + ea · c)(b + eb · c) = ab + ec · (a ∧ b) , (2.124)

where a and b are unit normals. Writing R = ab and noting that c · (a ∧ b) =
c×R, we see that (2.124) is equivalent to the form for the rotation versor in Table
2.2 that we found in Chapter 1. Thus we have established that the product of
two reflections at any point is equivalent to a rotation about that point.

Dilations. Now we prove that the composite of two inversions centered at
the origin is a dilation (or dilatation). Using (2.5d) we have

(e0 − 1
2e)(e0 − 1

2ρ2e) = 1
2 (1 − E) + 1

2 (1 + E)ρ2 . (2.125)

Normalizing to unity and comparing to (2.6) with ρ = eϕ, we get

Dρ = 1
2 (1 + E)ρ + 1

2 (1 − E)ρ−1 = eEϕ , (2.126)
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where Dρ is the square of the versor form for a dilation in Table 2.2. To verify
that Dρ does indeed generate a dilation, we note from (2.8) that

Dρ(e) = Dρ eD−1
ρ = D2

ρ e = ρ−2e .

Similarly

Dρ(e0) = ρ2 e0 .

Therefore,

Dρ(x + 1
2x

2e + e0)D−1
ρ = ρ2[ρ−2x + 1

2 (ρ−2x)2e + e0 ] . (2.127)

Thus g(x) = ρ−2x is a dilation as advertised.
We have seen that every vector with positive signature in Rn+1,1 represents a

sphere or hyperplane as well as an inversion or reflection in same. They compose
a multiplicative group which we identify as the versor representation of the full
conformal group C(n) of En. Subject to a minor proviso explained below, our
construction shows that this conformal group is equivalent to the Lorentz group
of Rn+1,1. Products of an even number of these vectors constitute a subgroup,
the spin group Spin+(n + 1, 1). It is known as the spin representation of the
proper Lorentz group, the orthogonal group O+(n + 1, 1). This, in turn, is
equivalent to the special orthogonal group SC+(n + 1, 1).

Our constructions above show that translations, transversions, rotations, di-
lations belong to SC+(n). Moreover, every element of SC+(n) can be generated
from these types. This is easily proved by examining our construction of their
spin representations Ta, Kb, Rc, Dλ from products of vectors. One only needs
to show that every other product of two vectors is equivalent to some product of
these. Not hard! Comparing the structure of Ta, Kb, Rc, Dλ exhibited in Table
2.2 with equations (2.6) through (2.15b), we see how it reflects the structure of
the Minkowski plane R1,1 and groups derived therefrom.

Our construction of Spin+(n + 1, n) from products of vectors with posi-
tive signature excludes the bivector E = e+e− because e2

− = −1. Extending
Spin+(n + 1, n) by including E we get the full spin group Spin(n + 1, n). Un-
like the elements of Spin+(n + 1, n), E is not parametrically connected to the
identity, so its inclusion gives us a double covering of Spin+(n + 1, n). Since E
is a versor, we can ascertain its geometric significance from (2.108); thus, using
(2.5c) and (2.5a), we easily find

E(x + 1
2x

2e + e0)E = −[ − x + 1
2x

2e + e0 ] . (2.128)

This tells us that E represents the main involution x∗ = −x of Rn, as shown in
Table 2.2. The conformal group can be extended to include involution, though
this is not often done. However, in even dimensions involution can be achieved
by a rotation so the extension is redundant.

Including E in the versor group brings all vectors of negative signature along
with it. For e− = Ee+ gives us one such vector, and Dλe− gives us (up to scale
factor) all the rest in the E-plane. Therefore, extension of the versor group
corresponds only to extension of C(n) to include involution.
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Since every versor G in Rn+1,1 can be generated as a product of vectors,
expression of each vector in the expanded form (2.17) generates the expanded
form

G = e(−e0A + B) − e0(C + eD) (2.129)

where A, B, C, D are versors in Rn and a minus sign is associated with e0 for
algebraic convenience in reference to (2.5d) and (2.2a). To enforce the versor
property of G, the following conditions must be satisfied

AB†, BD†, CD†, AC† ∈ Rn , (2.130)

GG† = AD† − BC† = ±|G |2 �= 0 . (2.131)

Since G must have a definite parity, we can see from (2.129) that A and D must
have the same parity which must be opposite to the parity of C and D. This im-
plies that the products in (2.130) must have odd parity. The stronger condition
that these products must be vector-valued can be derived by generating G from
versor products or from the fact that the conformal transformation generated
by G must be vector-valued. For G ∈ Spin+(n + 1, n) the sign of (2.131) is
always positive, but for G ∈ Spin(n + 1, n) a negative sign may derive from a
vector of negative signature.

Adopting the normalization |G | = 1, we find

G∗† = ±(G∗)−1 = −(A∗†e0 + B∗†)e + (C∗† − D∗†e)e0 , (2.132)

and inserting the expanded form for G into (2.108), we obtain

g(x) = (Ax + B)(Cx + D)−1 (2.133)

with the rescaling factor

σ = σg(x) = (Cx + D)(C∗x + D∗)† . (2.134)

In evaluating (2.131) and (2.110) to get (2.134) it is most helpful to use the
property 〈MN 〉 = 〈NM 〉 for the scalar part of any geometric product.

The general homeographic form (2.133) for a conformal transformation on
Rn is called a Möbius transformation by Ahlfors [A85]. Because of its nonlinear
form it is awkward for composing transformations. However, composition can be
carried out multiplicatively with the versor form (2.129) with the result inserted
into the homeographic form. As shown in [H91], the versor (2.133) has a 2 × 2
matrix representation

[
G

]
=

[
A B
C D

]
, (2.135)

so composition can be carried out by matrix multiplication. Ahlfors [A86] has
traced this matrix representation back to Vahlen [V02].

The apparatus developed in this section is sufficient for efficient formulation
and solution of any problem or theorem in conformal geometry. As an example,
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consider the problem of deriving a conformal transformation on the whole of
Rn from a given transformation of a finite set of points.

Let a1, · · · ,an+2 be distinct points in Rn spanning the whole space. Let
b1, · · · ,bn+2 be another set of such points. If there is a Möbius transforma-
tion g changing ai into bi for 1 ≤ i ≤ n + 2, then g must be induced by a
Lorentz transformation G of Rn+1,1, so the corresponding homogeneous points
are related by

G(ai) = λibi, for 1 ≤ i ≤ n + 2 . (2.136)

Therefore ai · aj = (λibi) · (λjbj) and g exists if and only if the λ’s satisfy

(ai − aj)2 = λiλj(bi − bj)2 . for 1 ≤ i �= j ≤ n + 2, (2.137)

This sets (n + 2)(n − 1)/2 constraints on the b’s from which the λ’s can be
computed if they are satisfied.

Now assuming that g exists, we can employ (2.136) to compute g(x) for a
generic point x ∈ Rn. Using the ai as a basis, we write

x =
n+1∑
i=1

xiai, (2.138)

so G(x) =
n+1∑
i=1

xiλibi, and

g(x) =

n+1∑
i=1

xiλibi

n+1∑
i=1

xiλi

. (2.139)

The x’s can be computed by employing the basis dual to {ai} as explained
in Chapter 1.

If we are given, instead of n + 2 pairs of corresponding points, two sets
of points, spheres and hyperplanes, say t1, · · · , tn+2, and u1, · · · , un+2, where
t2i ≥ 0 for 1 ≤ i ≤ n + 2 and where both sets are linearly independent vectors
in Rn+1,1, then we can simply replace the a’s with the t’s and the b’s with the
u’s to compute g.
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