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1.1 Introduction

Classical geometry has emerged from efforts to codify perception of space and
motion. With roots in ancient times, the great flowering of classical geometry
was in the 19th century, when Euclidean, non-Euclidean and projective geome-
tries were given precise mathematical formulations and the rich properties of
geometric objects were explored. Though fundamental ideas of classical geome-
try are permanently imbedded and broadly applied in mathematics and physics,
the subject itself has practically disappeared from the modern mathematics cur-
riculum. Many of its results have been consigned to the seldom-visited museum
of mathematics history, in part, because they are expressed in splintered and
arcane language. To make them readily accessible and useful, they need to be
reexamined and integrated into a coherent mathematical system.

Classical geometry has been making a comeback recently because it is use-
ful in such fields as Computer-Aided Geometric Design (CAGD), CAD/CAM,
computer graphics, computer vision and robotics. In all these fields there is a
premium on computational efficiency in designing and manipulating geometric
objects. Our purpose here is to introduce powerful new mathematical tools for
meeting that objective and developing new insights within a unified algebraic
framework. In this and subsequent chapters we show how classical geometry fits
neatly into the broader mathematical system of Geometric Algebra (GA) and
its extension to a complete Geometric Calculus (GC) that includes differential
forms and much more.

Over the last four decades GC has been developed as a universal geometric
language for mathematics and physics. This can be regarded as the culmination
of an R & D program innaugurated by Hermann Grassmann in 1844 [G44,
H96]. Literature on the evolution of GC with extensive applications to math
and physics can be accessed from the GC web site

<http://ModelingNTS la.asu.edu/GC_R&D.html>.
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Here, we draw on this rich source of concepts, tools and methods to enrich
classical geometry by integrating it more fully into the whole system.

This chapter provides a synopsis of basic tools in Geometric Algebra to set
the stage for further elaboration and applications in subsequent chapters. To
make the synopsis compact, proofs are omitted. Geometric interpretation is
emphasized, as it is essential for practical applications.

In classical geometry the primitive elements are points, and geometric objects
are point sets with properties. The properties are of two main types: structural
and transformational. Objects are characterized by structural relations and
compared by transformations. In his Erlanger program, Felix Klein [K08] clas-
sified geometries by the transformations used to compare objects (for example,
similarities, projectivities, affinities, etc). Geometric Algebra provides a unified
algebraic framework for both kinds of properties and any kind of geometry.

1.2 Geometric Algebra of a Vector Space

The terms “vector space” and “linear space” are ordinarily regarded as synony-
mous. While retaining the usual concept of linear space, we enrich the concept
of vector space by defining a special product among vectors that characterizes
their relative directions and magnitudes. The resulting geometric algebra suf-
fices for all the purposes of linear and multilinear algebra. We refer the reader
to the extensive treatment of geometric algebra in [HS84] and to the GC Web
site, so that we can give a more concise treatment here.

Basic Definitions

As a rule, we use lower case letters to denote vectors, lower case Greek letters
to denote scalars and calligraphic capital letters to denote sets.

First, we define geometric algebra. Let V™ be an n-dimensional vector space
over real numbers R. The geometric algebra G, = G(V™) is generated from V"
by defining the geometric product as a multilinear, associative product satisfying
the contraction rule:

a® = e,lal?, for a € V", (1.1)

where €, is 1,0 or —1, |a] > 0, and |a| = 0 if a = 0. The integer ¢, is called the
signature of a; the scalar |a| is its magnitude. When a # 0 but |a| = 0, a is said
to be a null vector.

In the above definition, “multi-linearity” means

al...(b1+...+br)...as:(al...bl...as)_|_..._|_(al...br...ajs)’ (12)

for any vectors ay,--- ,as,b1,--- ,b. and any position of by + --- + b, in the
geometric product. Associativity means
a(be) = (ab)e, for a,b,c € V™. (1.3)

An element M in G, is invertible if there exists an element N in G, such
that MN = NM = 1. The element N, if it exists, is unique. It is called the



inverse of M, and is denoted by M ~!. For example, null vectors in V™ are not
invertible, but any non-null vector a is invertible, with a=! = 1/a = a/a®. This
capability of GA for division by vectors greatly facilitates computations.

From the geometric product, two new kinds of product can be defined. For
a,b € V", the scalar-valued quantity

a-b=3(ab+ba)=b-a (1.4)
is called the inner product; the (nonscalar) quantity

aNb=3(ab—ba)=-bAa (1.5)
is called the outer product. Therefore, the geometric product

ab=a-b+anbd (1.6)

decomposes into symmetric and anti-symmetric parts.

The outer product of r vectors can be defined as the anti-symmetric part of
the geometric product of the r vectors. It is called an r-blade, or a blade of grade
r. A linear combination of r-blades is called an r-vector. The set of r-vectors
is an (f)—dimensional subspace of G,,, denoted by G;,. The whole of G, is given
by the subspace sum

Go =) G (1.7)
i=0

A generic element in G, is called a multivector. According to (1.7), every
multivector M can be written in the expanded form

M=), (18)
=0

where (M); denotes the i-vector part. The dimension of G, is > (2) = 2",

i=
By associativity and multi-linearity, the outer product extended to any finite
number of multivectors and to scalars, with the special proviso

AMAM=MAN=AM, for \€ R, M € G,,. (1.9)

The inner product of an r-blade ai A --- A a, with an s-blade by A --- A by
can be defined recursively by
(ar A= Nap)-(by A+ ANbg)
_f (@ A---Nap)-b1)-(ba A--- Aby) if r>s (1.10a)
Tl (@A Aap—g) - (ap - (b Ao ADg)) B r<s
and
(ar A+~ Nay)-b
(—1)T_ia1 AN~ Na;—_1 N\ (ai . bl) Najp1 N---Nap,

=1
- (b A~ Aby) (1.10b)

(—1)i71b1 AN+ Abi_1 A (ar . bz) A bi-{-l A+ A bg.
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By bilinearity, the inner product is extended to any two multivectors, if
ANM=M-A=0,for\eR, Me€g,. (1.11)
For any blades A and B with nonzero grades r and s we have

A-B=(AB),_,, (1.12)
ANB=(AB),,. (1.13)

These relations can be adopted as alternative definitions of inner and outer
products or derived as theorems.

An automorphism f of G, is an invertible linear mapping that preserves the
geometric product:

f(MlMQ) = f(Ml)f(MQ), for Ml,Mg S gn (114)

More generally, this defines an isomorphism f from one geometric algebra to
another.

An anti-automorphism g is a linear mapping that reverses the order of geo-
metric products:

g(M1 M) = g(M3)g(My), for My, Ms € G,,. (1.15)

The main anti-automorphism of G,,, also called reversion, is denoted by “”,
and defined by

i(i—1)
2

(MT); = (1) (M);, for M € G,, 0 <i<n. (1.16)

An involution h is an invertible linear mapping whose composition with itself
is the identity map:

h(h(M)) = M, for M € G,. (1.17)

The main involution of G,, also called grade involution or parity conjugation, is
denoted by “*” and defined by

(M*); = (=1)"(M);, for M € G, 0<i <n. (1.18)
For example, for vectors aq,--- , a,, we have
(al . ar)T =Q,- - a1, (al e ar)* = (—]_)Tal Ce Q. (119)

A multivector M is said to be even, or have even parity, if M* = M; it is odd,
or has odd parity, if M* = —M.

The concept of magnitude is extended from vectors to any multivector M
by

(1.20a)




[(M)i| = V(M) - (M)]. (1.20b)

A natural scalar product on the whole of G, is defined by

(MNT) = (NMT) =Y ((M)i(N)]), (1.21)

%
=0

where (---) = (-+-)o denotes the “scalar part.” When scalar parts are used
frequently it is convenient to drop the subscript zero.

In G,,, the maximal grade of a blade is n, and any blade of grade n is called a
pseudoscalar. The space V™ is said to be non-degenerate if it has a pseudoscalar
with nonzero magnitude. In that case the notion of duality can be defined
algebraically. Let I,, be a pseudoscalar with magnitude 1, designated as the
unit pseudoscalar. The dual of a multivector M in G, is then defined by

M=M~=MI;", (1.22)

where I;! differs from I,, by at most a sign. The dual of an r-blade is an
(n — r)-blade; in particular, the dual of an n-blade is a scalar, which is why an
n-blade is called a pseudoscalar.

Inner and outer products are dual to one another, as expressed by the fol-
lowing identities that hold for any vector ¢ and multivector M:

(a- M), =aN(MIL,), (1.23a)
(aANM)I, =a-(MIL,). (1.23b)

Duality enables us to define the meet M V N of multivectors M, N with (grade
M) + (grade N) > n by

MVN=M-N. (1.24)
The meet satisfies the “deMorgan rule”
(MVN)”=MAN. (1.25)

As shown below, the meet can be interpreted as an algebraic representation for
the intersection of vector subspaces. More generally, it can be used to describe
“incidence relations” in geometry [HZ91].

Many other products can be defined in terms of the geometric product. The
commutator product A x B is defined for any A and B by

AxB=1AB-BA)=-BxA. (1.26)

Mathematicians classify this product as a “derivation” with respect to the geo-
metric product, because it has the “distributive property”

Ax (BC)=(AxB)C+B(AxC). (1.27)



This implies the Jacobi identity
Ax(BxC)=(AxB)xC+Bx (AxC(C), (1.28)

which is a derivation on the commutator product. The relation of the commu-
tator product to the inner and outer products is grade dependent; thus, for a
vector a,

ax {(MY,=aN{M)g if k is odd, (1.29a)
X{M),=a-(M )y if k is even. (1.29b)

The commutator product is especially useful in computations with bivectors.
With any bivector A this product is grade preserving;:

In particular, this implies that the space of bivectors is closed under the com-
mutator product. Consequently, it forms a Lie algebra. The geometric product
of bivector A with M has the expanded form

AM =A-M+AXxM+ANM for grade M > 2. (1.31)

Compare this with the corresponding expansion (1.6) for the product of vectors.

Blades and Subspaces

The elements of G,, can be assigned a variety of different geometric interpreta-
tions appropriate for different applications. For one, geometric algebra charac-
terizes geometric objects composed of points that are represented by vectors in
yr.

To every r-dimensional subspace in V", there is an r-blade A, such that the
subspace is the solution set of the equation

xANA, =0, for x € V". (1.32)

According to this equation, A, is unique to within a nonzero scalar factor. This
subspace generates a geometric algebra G(A,). Conversely, the subspace itself
is uniquely determined by A,. Therefore, as discussed in [HS84], the blades in
V" determine an algebra of subspaces for V™. The blade A, can be regarded as
a directed measure (or r-volume) on the subspace, with magnitude |A,| and an
orientation. Thus, since A, determines a unique subspace, the two blades A,
and — A, determine two subspaces of the same vectors but opposite orientation.
The blades of grade r form a manifold G(r,n) called a Grassmannian. The
algebra of blades is therefore an algebraic structure for G(r,n), and the rich
literature on Grassmannians [H92] can be incorporated into GC.



Fig 1.1. Blades in the space of a; A as A a3, where the a; are vectors.

Vectors aq,--- ,a,, are linearly dependent if and only if a; A--- Aa, = 0.
The r-blade a1 A - - - A a, represents the r-dimensional subspace of V" spanned
by them, if they are linearly independent. The case r = 3 is illustrated in Fig
1.1.

The square of a blade is always a scalar, and a blade is said to be null
if its square is zero. Null blades represent degenerate subspaces. For a non-
degenerate r-subspace, we often use a unit blade, say I,., to denote it. For any
two pseudoscalars A,., B, in G(I,.), since A,.B; 1 = B 1A, is a scalar, we can
write it A,/ B,.

(ana)v(ana)

Fig 1.2. Dual and meet in the space of a; A as A as.

Figure 1.2 illustrates duality and meet in G3 generated by vectors aq, as, as.
Notice the collinearity of vectors a; and (a; A ag) V (a1 A az).
In a non-degenerate space, the dual of a blade represents the orthogonal



complement of the subspace represented by the blade. The meet of two blades,
if nonzero, represents the intersection of the two subspaces represented by the
two blades respectively.

Two multivectors are said to be orthogonal or perpendicular to one another,
if their inner product is zero. An r-blade A, and s-blade By are orthogonal
if and only if (1) when r > s there exists a vector in the space of By, that is
orthogonal to every vector in the space of A,, and (2) when r < s there exists a
vector in the space of A, that is orthogonal to every vector in the space of Bj.

Let A, be a non-degenerate r-blade in G,,. Then any vector x € V™ has a
projection onto the space of A, defined by

Pa(@) = (0 A,) A7 L. (1.33)
Its rejection from the space of A, is defined by

Py (z)= (v A A;) AL (1.34)
Therefore,

z = Py, (z) + Py (2) (1.35)

is the orthogonal decomposition of V™ with respect to the A,.

Fig 1.3. Projection, rejection and inner product in the space of a; A as A as.

Figure 1.3 shows the projection and rejection of vector a; with respect to
the space as A agz, together with the inner product a; - (a2 A az). Note that the
vector ap - (ag A az) is perpendicular to the vector Py,nas(a1).

Frames
If a blade A, admits the decomposition

A =a1NasA...Na,, (1.36)



the set of vectors {a;; i =1,...,r} is said to be a frame (or basis) for A, and
the vector space it determines. Also, A, is said to be the pseudoscalar for the
frame. A dual frame {a'} is defined by the equations

a'-a; =6 (1.37)
If A, is invertible, these equations can be solved for the a?, with the result

a' = (D)"Y ay A ANaG AL Na) AT (1.38)
where @; indicates that a; is omitted from the product. Moreover,

Al =a'Na® AL NG (1.39)

In this way geometric algebra greatly facilitates manipulations with frames for
vector spaces.

Differentiation

Let a =, a'a; be a vector variable with coordinates a’ = a - a; defined on the
space of A, as specified by (1.36). The vector derivative with respect to a on
A, can be defined by

i 0
0o = Za S (1.40)

It can be defined without introducing coordinates, but this approach relates
it to standard partial derivatives. The following table of derivatives is easily
derived. For any vector b in V™:

dala-b)=b-0,a=1Y,a"(a; - b) = Pa,(b), (1.41a)
Dqa® = 2a, (1.41b)
0u0 =04 -a=r, (1.41c)
O, Na=0. (1.41d)

Of course A, could be the pseudoscalar for V™.

[HS84] generalizes differentiation to any multivector variable defined on G,
or any of its subspaces. The derivative dx with respect to a multivector variable
X is characterized by the basic identity

Ox(XA) = (A)yx = (Adx )X, (1.42)

where A is independent of X, (...) means scalar part, and ( A) x means “select
from A only those grades which are contained in X.” If A has the same grade
as X then (A)x = A. It follows that

Ox(XA)=(A)x. (1.43)

The operator { AJx ) is a kind of generalized directional derivative defined by
d

(A0x )F(X) = = F(X +€eA)| _,, (1.44)



where € is a scalar parameter and F' is any differentiable function of X. Applied
to F(X) = X, this yields the right equality in (1.42). If A has the same grade
as X, then the left equality in (1.42) gives

Ox = 04(Adx ), (1.45)

so the general multivector derivative dx F'(X) can be obtained from the “direc-
tional derivative” (1.44). From (1.44) one derives the sum, product and chain
rules for differential operators. Of course, the vector derivative with its proper-
ties (1.40) to (1.41d) is a special case, as is the usual scalar derivative.

Signature

So far, a particular signature has not been attributed to V" to emphasize the fact
that, for many purposes, signature is inconsequential. To account for signature,
we introduce the alternative notation RP'¢" to denote a real vector space of
dimension n = p + ¢ + r, where p, g and r are, respectively, the dimensions of
subspaces spanned by vectors with positive, negative and null signatures. Let
Rp.qr = G(RP?T) denote the geometric algebra of RP%", and let R’;)q,r denote
the (:f)—dimensional subspace of k-vectors, so that

RP#]»T = Z’R’Ig,q,r . (146)
k=0

A pseudoscalar I, for RP?" factors into
In = Ap Bq CT 5 (147)

where the factors are pseudoscalars for the three different kinds of subspaces.
The algebra is said to be non-degenerate if I, is invertible. That is possible
only if r =0, son=p+ q and

I, = A,B,. (1.48)

In that case we write RP? = RP49 and R, , = Rp.40- The algebra is said to
be Euclidean (or anti-Euclidean) if n = p (or n = ¢). Then it is convenient to
use the notations R? = R™?, R™" = RO", etcetera.

Any degenerate algebra can be embedded in a non-degenerate algebra of
larger dimension, and it is almost always a good idea to do so. Otherwise,
there will be subspaces without a complete basis of dual vectors, which will
complicate algebraic manipulations. The n-dimensional vector spaces of every
possible signature are subspaces of R™". For that reason, R, , is called the
mother algebra of n-space. As explained in [DHSA93], it is the proper arena for
the most general approach to linear algebra.

1.3 Linear Transformations

The terms “linear function,” “linear mapping” and “linear transformation” are
usually regarded as synonymous. To emphasize an important distinction in GA,
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let us restrict the meaning of the last term to “linear vector-valued functions
of a vector variable.” Of course, every linear function is isomorphic to a linear
transformation. The special importance of the latter derives from the fact that
the tools of geometric algebra are available to characterize its structure and
facilitate applications. Geometric algebra enables coordinate-free analysis and
computations. It also facilitates the use of matrices when they are desired or
needed. 4

To relate a linear transformation f on V™ to its matrix representation f7,
we introduce a basis {e;} and its dual {e’}, so that

fei=fle) = eif!, (1.49a)
J

and
The last equality defines the adjoint f of [, so that

fel=>"fle'. (1.50)
Without reference to a basis the adjoint is defined by

b-fa=a-fb, (1.51a)
whence,

Fo=0u(b-fa) = €'(b-fe;). (1.51b)

i
Within geometric algebra, it seldom helps to introduce matrices unless they have
been used in the first place to define the linear transformations of interest, as, for

example, in a computer graphics display where coordinates are needed. Some
tools to handle linear transformations without matrices are described below.

Outermorphism

Every linear transformation f on V" extends naturally to a linear function f
on G, with

f(ANB) = (fA)N([B). (1.52)

This extension is called an outermorphism because it preserves the outer product.
Any ambiguity in using the same symbol f for the transformation and its ex-
tension can be removed by displaying an argument for the function. For any
blade with the form (1.36) we have

fAr = (far) N(faz) Ao N (far). (1.53)

This shows explicitly how the transformation of vectors induces a transformation
of blades. By linearity it extends to any multivector.

11



The outermorphism of the adjoint f is easily specified by generalizing (1.51a)
and (1.51b); thus, for any multivectors A and B,

(BfA) = (AfB). (1.54)
By multivector differentiation,

fB=f(B)=0a(Af(B)). (1.55)
We are now equipped to formulate the fundamental theorem:

A-(fB)= fl(fA)-B] or  (fB) A= f[B-fA]. (1.56)

for (grade A) < (grade B).

This theorem, first proved in [HS84], is awkward to formulate without geo-
metric algebra, so it seldom appears (at least in full generality) in the literature
on linear algebra. It is important because it is the most general transformation
law for inner products.

Outermorphisms generalize and simplify the theory of determinants. Let I
be a pseudoscalar for V". The determinant of f is the eigenvalue of f on I, as
expressed by ) )

fI=(det f)I. (1.57)
If I is invertible, then

I7'VfI=1""(fI)=det f =det f =det f/. (1.58)
To prove the last equality, we can write I =e; Aea A ... Ae, so that

det f=(e"A...A€e" ) [(fer) A... A f(en)]. (1.59)

Using the identities (1.10a) and (1.10b), the right side of (1.14) can be expanded
to get the standard expression for determinants in terms of matrix elements f;.
This exemplifies the fact that the Laplace expansion and all other properties of
determinants are easy and nearly automatic consequences of their formulation
within geometric algebra.

The law (1.56) has the important special case

AFI = FI(fA)T]. (1.60)

For det f # 0, this gives an explicit expression for the inverse outermorphism

L, fAnI?
[ A= Tdetf (1.61)

Applying this to the basis {e’} and using (1.38) we obtain

(—1)i+1f(€1/\"'/\di/\"'/\en)'(elA"'/\en)

-1 _
[t = det_f

(1.62)
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Again, expansion of the right side with the help of (1.10a) and (1.10b) gives the
standard expression for a matrix inverse in terms of matrix elements.

The composition of linear transformations g and f can be expressed as an
operator product: - -

h=gf. (1.63)

This relation extends to their outermorphism as well. Applied to (1.57), it
immediately gives the classical result

det h = (det g)det f, (1.64)

from which many more properties of determinants follow easily.

Orthogonal Transformations

A linear transformation U is said to be orthogonal if it preserves the inner
product of vectors, as specified by

(Ua) - (Ub) = a - (UUb) =a-b. (1.65)

Clearly, this is equivalent to the condition U~! = U. For handling orthogonal
transformations geometric algebra is decisively superior to matrix algebra, be-
cause it is computationally more efficient and simpler to interpret geometrically.
To explain how, some new terminology is helpful.

A wversor is any multivector that can be expressed as the geometric product
of invertible vectors. Thus, any versor U can be expressed in the factored form

U=ug- - usu, (1.66)

where the choice of vectors u; is not unique, but there is a minimal number
k < n. The parity of U is even (odd) for even (odd) k.
Every versor U determines an orthogonal transformation U given by

Ulx) =UzU* ' =U*2UY,  for zeV". (1.67)

Conversely, every orthogonal transformation U can be expressed in the canoni-
cal form (1.67). This has at least two great advantages. First, any orthogonal
transformation is representable (and therefore, visualizable) as a set of vectors.
Second, the composition of orthogonal transformations is reduced to multipli-
cation of vectors.

The outermorphism of (1.67) is

UM)y=UMU"  for U*=U, (1.68a)
or
UM)y=uMU" for U*=-U, (1.68b)

where M is a generic multivector.
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An even versor R = R* is called a spinor or rotor if

RR' = |R?, (1.69a)
so that
1 RT RT
R7!'= (1.69b)

R~ RR' ~ |RI*

Alternative, but closely related, definitions of “spinor” and “rotor” are common.
Often the term rotor presumes the normalization | R |2 = 1. In that case, (1.67)
takes the simpler form

Rz = RaR' (1.70)

and R is called a rotation. Actually, the form with R~! is preferable to the one
with R, because R is independent of | R |, and normalizing may be inconvenient.

Note that for U = usuq, the requirement | U |2 = u3u? for a rotation implies
that the vectors u; and us have the same signature. Therefore, when they have
opposite signature U is the prime example of an even versor which is not a
spinor, and the corresponding linear operator U in (1.67) is not a rotation.

In the simplest case where the versor is a single vector u; = —uj, we can
analyze (1.67) with the help of (1.35) as follows:

uy(2) = ujzuy = —uy(Py, (2) + Py (2))uy |

=—P,, (z) + Py (). (1.71)

The net effect of the transformation is to re-verse direction of the component of
x along u1, whence the name versor (which dates back to Hamilton). Since every
invertible vector is normal to a hyperplane in V", the transformation (1.71) can
be described as reflection in a hyperplane. In view of (1.66), every orthogonal
transformation can be expressed as the composite of at most n reflections in
hyperplanes. This is widely known as the Cartan-Dieudonné Theorem.

The reflection (1.71) is illustrated in Fig. 1.4 along with the next simplest
example, a rotation ugus induced by two successive reflections. The figure pre-
sumes that the rotation is elliptic (or Euclidean), though it could be hyperbolic
(known as a Lorentz transformation in physics), depending on the signature of
the plane.

Given that a rotation takes a given vector a into b = Ra, it is often of
interest to find the simplest spinor R that generates it. It is readily verified that
the solution is

R=(a+ba=bla+b). (1.72)

Without loss of generality, we can assume that a and b are normalized to a? =
b? = £1, so that

IR =a?(a+b)2=2|a-b+1]. (1.73)

14
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Fig 1.4. Versor (vector and rotor) actions. Here u; is orthogonal to both us, us.

This is a case where normalization is inconvenient. Besides destroying the sim-
plicity of the unnormalized form (1.72), it would require taking the square root
of (1.73), an unnecessary computation because it does not affect R. Note that
|R| = 0 and R~! is undefined when a and b are oppositely directed. In that
case a and b do not define a unique plane of rotation.

Although it is helpful to know that rotors can be “parameterized” by vectors
as in (1.66) and (1.70), there are many other parameterizations, such as Euler
angles, which are more suitable in certain applications. A detailed treatment of
alternatives for 3-D rotations is given in [H98].

The versors in G, form a group under the geometric product, called the
versor group. The versors of unit magnitude form a subgroup, called the pin
group. Since U in (1.67) is independent of the sign and magnitude of U, the two
groups are equivalent double coverings of the orthogonal group O(p,q), where
the signature of V" = RP9 is displayed to enable crucial distinctions. At first
sight the pin group seems simpler than the versor group, but we have already
noted that it is sometimes more efficient to work with unnormalized versors.

For any U

det U = +1, (1.74)

where the sign corresponds to the parity of the versor U which generates it.
Those with positive determinant compose the special orthogonal group SO(p,r).
It is doubly covered by the subgroup of even versors. The subgroup of ele-
ments in SO(p,r) which are continuously connected to the identity is called
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the rotation group SO (p,r). The versor group covering SO(p,r) is called the
spin group Spin(p,r). Let us write Spin™(p,r) for the group of rotors covering
SO (p,r). This group is distingiushed by the condition (1.68a) on its elements,
and that ensures that the rotations are continuously connected to the identity.
The distinction between SO and SO™ or between Spin and Spin™ is not always
recognized in the literature, but that seldom creates problems. For Euclidean
or anti-Euclidean signature there is no distinction.

The Spin groups are more general than anyone suspected for a long time.
It has been proved in [DHSA93| that every Lie group can be represented as a
spin group in some Geometric Algebra of suitable dimension and signature. The
corresponding Lie algebra is then represented as an algebra of bivectors under
the commutator product (1.26). All this has great theoretical and practical
advantages, as it is computationally more efficient than matrix representations.
Engineers who compute 3-D rotations for a living are well aware that quaternions
(the rotors in R3) are computationally superior to matrices.

1.4 Vectors as geometrical points

The elements of G,, can be assigned a variety of geometric interpretations ap-
propriate for different applications. The most common practice is to identify
vectors with geometric points, so that geometric objects composed of points are
represented by point sets in a vector space. In this section we show how ge-
ometric algebra can be used to characterize some of the most basic geometric
objects. This leads to abstract representations of objects by their properties
without reference to the points that compose them. Thus we arrive at a kind
of “algebra of geometric properties” which greatly facilitates geometric analy-
sis and applications. We have already taken a large step in this direction by
constructing an “algebra of vector subspaces” in Section 1.2. Here we take two
more steps. First, we displace the subspaces from the origin to give us as alge-
bra of k-planes. Second, we break the k-planes into pieces to get a “simplicial
algebra.” In many applications, such as finite element analysis, simplexes are
basic building blocks for complex structures. To that end, our objective here
is to sharpen the tools for manipulating simplexes. Applications to Geometric
Calculus are described in [S92].

In physics and engineering the vector space R? is widely used to represent
Euclidean 3-space £2 as a model of “physical space.” More advanced applica-
tions use R as a model for spacetime with the “spacetime algebra” Ry3 to
characterize its properties. Both of these important cases are included in the
present treatment, which applies to spaces of any dimension and signature.

r-planes

An r-dimensional plane parallel to the subspace of A, and through the point a
is the solution set of

(r—a)NA, =0, forz e V. (1.75)
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It is often called an r-plane, or r-flat. It is called a hyperplane when r =n — 1.
As detailed for R? in [H98], A, is the tangent of the r-plane, and M, =
a A A, is the moment. When A, is invertible, d = M, 1A, is the directance.
Let n be a unit vector collinear with d, then d - n is the signed distance of the
r-plane from the origin in the direction of n, or briefly, the n-distance of the
r-plane.
An r-plane can be represented by

A+ M =(1+d)A,, (1.76)

where A, is the tangent, M, 1 is the moment, and d is the directance. A point
x is on the r-plane if and only if x A M,y; = 0 and x A A, = M,41. This
representation, illustrated in Fig 1.4, has applications in rigid body mechanics
[H98]. The representation (1.76) is equivalent to the Pliicker coordinates for an
r-plane [P1865].

A ER@

Fig 1.5. A 2-plane in the space of a A As.

A linear transformation f of points in V" induces a transformation of (1.75)
via its outermorphism: thus,

fllx—a)NA ] = (fo— fa) AN(fA) = (2" —d)NA.=0. (1.77)

This proves that every nonsingular linear transformation maps straight lines
into straight lines and, more generally, k-planes into k-planes. This generalizes
trivially to affine transformations.

Simplezes

An r-dimensional simplex (r-simplex) in V™ is the convex hull of 7 4+ 1 points, of
which at least r are linearly independent. A set {ag, a1, as, ... a,} of defining
points is said to be a frame for the simplex. One of the points, say ag, is distin-
guished and called the base point or place of the simplex. It will be convenient
to introduce the notations

A, =agNag ANas A - ANay =ag A Ay, (1.78a)
A, = (ay —ag) A (az —ag) A -+ A (a, — ag)

=@1 AT A - Ay, (1.78b)
a;=a; —ag for t=1,...,7. (1.78¢)
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A, is called the tangent of the simplex, because it is tangent for the r-
plane in which the simplex lies (See Fig 1.6.). It must be nonzero for the
simplex to have a convex hull. We also assume that it is non-degenerate, so
we don’t deal with complications of null vectors. The tangent assigns a natural
directed measure A,/r! to the simplex. As shown by Sobczyk [S92], this is
the appropriate measure for defining integration over chains of simplexes and
producing a generalized Stokes Theorem. The scalar content (or volume) of the
simplex is given by (r!)7!| A,.|. For the simplex in Fig 1.6 this is the area of
the triangle (3-hedron) with sides a1 and @s. In general, it is the volume of an
(r + 1)-hedron. The tangent A, assigns a definite orientation to the simplex,
and interchanging any two of the vectors a; in (1.78b) reverses the orientation.
Also, A, is independent of the choice of origin, though A, is not.

Fig 1.6. Simplex at ag with tangent As =a1 ANas.

In accordance with (1.75), the equation for the plane of the simplex is
e ANA =agNA, =A,. (1.79)

Thus A, is the moment of the simplex. It will be convenient to use A, as a name
for the simplex, since the expanded form (1.78a) displays all the defining points
of the simplex. We also assume A, # 0, since it greatly facilitates analysis
of simplex properties. However, when the simplex plane (1.79) passes through
the origin, its moment ag A A, vanishes. There are two ways to deal with
this problem. One is to treat it as a degenerate special case. A better way
is to remove the origin from V" by embedding V" as an n-plane in a space
of higher dimension. Then all points will be treated on equal footing and the
moment agA A, never vanishes. This is tantamount to introducing homogeneous
coordinates, an approach which is developed in Chapter 2. Note that the simplex
A, is oriented, since interchanging any pair of vectors in (1.78a) will change its
sign.

Since (1.78a) expresses A, as the pseudoscalar for the simplex frame {a;} it
determines a dual frame {a’} given by (1.36). The face opposite a; in simplex
A, is represented by its moment

FrA, = A =d" - A, = (=) agA---Na; A Na, . (1.80)

This defines a face operator F; (as illustrated in Fig 1.7). Of course, the face
Al is an (r — 1)-dimensional simplex. Also

A, =a; N AL, for any 0<i<r. (1.81)
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The boundary of simplex A, can be represented formally by the multivector sum
PA, =) AL=>"FiA,. (1.82)
i=0 i=0

This defines a boundary operator @. Obviously,
A =a; NPA, for any 0<i<r. (1.83)

Comparing the identity

(a1 —ag) A (ag —ap) A+ A(a, —ag) = Z(—l)iao/\- S Aa; A Aar(1.84)
i=0

with (1.78b) and (1.80) we see that
A, = A, . (1.85)

Also, note the symmetry of (1.84) with respect to the choice of base point.

Fig 1.7. Simplex ag A a1 A as A as.

For the two operators F; and @ we have

FF, =0, (1.86a)
FiF;=—FiFi, for i#j, (1.86b)
Fid = —9F;, (1.86¢)
P9 =0. (1.86d)

These operator relations are strongly analogous to relations in algebraic topol-

ogy.
If a point x lies in the r-plane of the simplex, we can write

T
T = Zo/ai , (1.87)
i=0
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where o' = x - a*. The point lies within the simplex if and only if
Y a'=1 and 0<a'<1. (1.88)
=0

Subject to these conditions the o' are known as barycentric coordinates of the
point.
From (1.80) it follows that

a'- Al =(a"Na')- A, =0 (1.89a)
and
a’Al =a' NAL= A, (1.89b)

Thus, a’ is normal to the (moment of) the ith face A% and is contained in A,.
In view of (1.88), a’ can be regarded as an outward normal to the face.

Precisely analogous relations hold for the tangent A, and its faces. By virtue
of (1.78b), the frame {@;} has a dual frame {@'} of outward normals to the faces
of A,. These normals play a crucial role in an invariant formulation of Stokes
Theorem that has the same form for all dimensions ([HS84], [S92]).

1.5 Linearizing the Euclidean group

The Euclidean group is the group of rigid displacements on £™. With £" repre-
sented as R™ in R,, any rigid displacement can be expressed in the canonical
form

~

De:x—a' =Dex=T.Rx=RaR ' +¢, (1.90)

where, in accordance with (1.67), R is a rotor determining a rotation R about
the origin and ZA“C is a translation by vector ¢. The composition of displacements
is complicated by the fact that rotations are multiplicative but translations
are additive. We alleviate this difficulty with a device that makes translations
multiplicative as well.

We augment R™ with a null vector e orthogonal to R™. In other words, we
embed R" in a vector space V"1 = R™%1 5o the degenerate geometric algebra
Rn,0,1 is at our disposal. In this algebra we can represent the translation 7T'. as
a spinor

T, = e =1+ lec, (1.91a)
with inverse

T '=1-Ltec=1T7, (1.91b)
where “x” is the main involution in R,,, so ¢* = —c but e* = e. If we represent

the point = by
X=1+ex, (1.92)
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the translation fc can be replaced by the equivalent linear operator
T,:X - X' =T.XT: ' =T.(1+ex)T. =1+e(xr+c). (1.93)
Consequently, any rigid displacement lA)C has the spinor representation
D.=T.R, (1.94a)
and the linear representation

D.(X)=D.XD;:™1 (1.94b)

[

in conformity with (1.67).

We call the representation of points by (1.92) the affine model for Euclidean
space, because it supports affine transformations, which are composites of linear
transformations (Section 1.3) with translations. It has the advantage of lineariz-
ing the Euclidean group through (1.94b). More important, it gives us the spinor
representation (1.94a) for the group elements. This has the great advantage of
reducing the group composition to the geometric product. For example, let us
construct the spinor R, for rotation about an arbitrary point ¢. We can achieve
such a rotation by translating ¢ to the origin, rotating about the origin, and
then translating back. Thus

R.=T.RT;' =R+ ecxR, (1.95)

where x denotes the commutator product.

In R3 any rigid displacement can be expressed as a screw displacement, which
consists of a rotation about some point composed with a translation along the
rotation axis. This is known as Chasles Theorem. It is useful in robotics and
other applications of mechanics. The theorem is easily proved with (1.94a),
which shows us how to find the screw axis at the same time. Beginning with
the displacement (1.94a), we note that the vector direction n for the rotation
axis R satisfies

RnR™'=n or Rn =nR. (1.96)

This suggests the decomposition ¢ = ¢ 4+ ¢ where ¢ = (c¢-n)n. The theorem
will be proved if we can find a vector b so that

D.=T.T.,R="T.Ry, (1.97)

where R}, is given by (1.95). From the null component of T,., R = R, we obtain
the condition

lciR=bx R=3b(R-R").
With R normalized to unity, this has the solution

1 - R?
b= CL(l — R*Q)*l — %CLW . (198)

This tells us how to find a point b on the screw axis.
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Everything we have done in this section applies without change for reflections
as well as rotations. Thus, for any invertible vector n, (1.94a) gives us the versor

ne=n+ec-n, (1.99)

which represents a reflection in the hyperplane through ¢ with normal n. Note
that we have a symmetric product ¢-n = n - ¢ in (1.99) instead of the skew-
symmetric product ¢ X R = —R x ¢ in (1.95); this is an automatic consequence
of the fact that e anticommutes with vectors n and ¢ but commutes with R.

We have shown how the degenerate model for Euclidean space simplifies
affine geometry. In Chapter 2 we shall see how it can be generalized to a more
powerful model for Euclidean geometry.

Dual Quaternions

Clifford originated the idea of extending the real number system to include an
element ¢ with the nilpotence property €2 = 0. Then any number can be written
in the form a + €3, where « and (§ are ordinary numbers. He called them dual
numbers. Clearly, this has no relation to our use of the term “dual” in geometric
algebra, so we employ it only in this brief subsection to explain its connection
to the present work.

A dual quaternion has the form @y + €Qs, where, )1 and Q) are ordinary
quaternions. There has been renewed interest in dual quaternions recently,
especially for applications to rigid motions in robotics. A direct relation to the
present approach stems from the fact that the quaternions can be identified
with the spinors in R3. To demonstrate, it will suffice to consider (1.94a). The
so-called “vector part” of a quaternion actually corresponds to a bivector in R3.
The dual of every vector ¢ in Rs is a bivector C = ¢It = —cI, where I is the
unit pseudoscalar. Therefore, writing e = el = —Ie, we can put (1.94a) in the
equivalent “dual quaternion form”

R.=R+¢C xR, (1.100)

where €2 = 0, and € commutes with both C and R. In precisely the same
way, for £2 the representation of points by (1.92) can be reexpressed as a dual
quaternion, so we have a dual quaternion model of £3.

The drawback of quaternions is that they are limited to 3-D applications,
and even there they fail to make the important distinction between vectors and
bivectors. This can be remedied somewhat by resorting to complex quaternions,
because they are isomorphic to the whole algebra R3. However, the quaternion
nomenclature (dual complex or otherwise) is not well-tailored to geometric ap-
plications, so we advise against it. It should be clear that geometric algebra
retains all of the advantages and none of the drawbacks of quaternions, while
extending the range of applications enormously.
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